以磁珠为载体的电化学免疫传感器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以磁珠为载体的电化学免疫传感技术是当前的一个研究热点。如何有效地将携带了大量检测信息的磁珠固定在工作电极的检测表面,并对其进行直接电化学测定是制约该技术发展的一个关键性问题。使用磁性工作电极可有效解决此困难。本论文将围绕磁性工作电极的制作,基于纳米信号放大的以磁珠为载体的电化学免疫检测新方法的构建及其在动物疾病诊断中的应用,开展以下几方面的工作:
     (1)磁性工作电极的制作
     分别建立了磁性金工作电极和磁性玻碳电极的制作方法,且制作方法简单、易行,成本低廉,易于推广。此外,我们对磁性工作电极的性能进行了测试,结果表明,它们能有效捕获磁珠进行直接电化学测定,为构建以磁珠为载体的电化学免疫分析新方法奠定了基础。
     (2)基于碳纳米管掺杂以磁珠为载体的电化学免疫新方法在日本乙型脑炎病毒检测中的应用
     以磁珠为载体,掺杂碳纳米管构建了一种新的电化学免疫分析方法,并将其应用于日本乙型脑炎病毒的检测中。选用金磁纳米粒子为载体,辣根过氧化物酶为示踪标记物。免疫反应后,掺杂碳纳米管。利用磁性金工作电极将碳纳米管掺杂的金磁复合物捕获到电极检测表面上进行电化学测定。掺杂碳纳米管可有效改善电极表面的导电性,得到高灵敏的检测结果。采用日本乙型脑炎病毒作为目标分析物。在最佳检测条件下,日本乙型脑炎病毒的检测限为2.0×103 PFU/mL,比胶体金免疫试纸条法低两个数量级,与RT-PCR法的基本类似。分别用本方法和RT-PCR法分析60份临床样品,结果显示本方法与RT-PCR法的符合率高达95%,表明本方法在日本乙型脑炎病毒的临床诊断中具有较好的应用前景。
     (3)基于纳米金标记的以磁珠为载体的电化学免疫新方法在伪狂犬病毒抗体检测中的应用
     采用纳米金为电活性探针,构建了一种新的以磁珠为载体的电化学免疫分析方法,并将其应用到伪狂犬病毒抗体的检测中。选用羧基修饰的磁珠为载体。免疫反应后,利用磁性玻碳电极将磁珠捕获到电极检测表面上,采用电化学氧化法使得纳米金生成AuC14-,通过测定AuC14-的信号对检测物进行分析。采用伪狂犬病毒抗体作为目标分析物。在最佳检测条件下,可检测到稀释了1:1000的伪狂犬病毒抗体标准阳性血清,其检测限低于传统的ELISA检测法。分别用本方法和ELISA法分析52份猪的血清样本,结果表明本方法与ELISA法具有很好的符合率。
     (4)基于纳米金催化银沉积的以磁珠为载体的电化学免疫新方法在猪圆环病毒2型抗体检测中的应用
     结合纳米金催化银沉积信号放大技术,构建了一种新的以磁珠为载体的电化学免疫分析方法,并将其应用于猪圆环病毒2型抗体的检测。选用异硫氰根修饰磁珠为载体,纳米金为标记物。免疫反应后,加入银染液进行银放大,固定在磁珠表面的纳米金可催化溶液中的银离子以纳米金为核进行沉积。利用磁性玻碳电极将磁珠捕获到电极的检测表面上,通过测定银单质的溶出信号对分析物进行检测。以猪圆环病毒2型抗体为目标分析物。在最佳检测条件下,可检测到稀释了1:4096的猪圆环病毒2型抗体标准阳性血清,该检测限明显低于传统的ELISA检测法。分别用本方法和ELISA法去分析猪的血清样本,结果表明本方法与ELISA法的符合率高。
Special attention has been paid in magnetic beads-based electrochemical immunosensor in the recent years. However, one major obstacle for magnetic beads-based electrochemical immunoassay is how to confine the magnetic beads on the detection surface for the direct electrochemical sensing. The use of magnetic electrodes for magnetic beads manipulation is an effective solution. Focusing on the preparation of magnetic electrodes, and the construction of the novel magnetic beads-based electrochemical immunoassay with nanoparticles amplification for animal diseases diagnosis, this thesis carried out some researches as follows.
     (1) The fabrication of magnetic electrodes
     The simple and low cost methods were developed to fabricate the magnetic gold electrode and magnetic glass carbon electrode. The properties of the magnetic electrodes were carefully examined. The results showed that magnetic electrode could effectively confine the magnetic beads on their detection surfaces for the direct sensing. It is telling that the developed magnetic electrodes can be applied in the magnetic beads-based electrochemical immunoassay.
     (2) Magnetic beads-based electrochemical immunoassay for the detection of Japanese encephalitis virus using multiwalled carbon nanotubes s as dopant
     A novel magnetic beads-based electrochemical immunoassay strategy using multiwalled carbon nanotubes as dopant has been developed for the detection of Japanese encephalitis virus. Gold-coated magnetic beads were employed as the platforms for the immobilization and immunoreaction process, and horseradish peroxidase was chosen as an enzymatic tracer. After immunological reaction, multiwalled carbon nanotubes were introduced to improve electric conductivity and the sensitivity of the assay. With the help of the magnetic gold electrode, magnetic beads mixed with multiwalled carbon nanotubes were confined on the detection surface for the direct sensing. The Japanese encephalitis virus was selected as the model. Under the optimal conditions, the detection limit of Japanese encephalitis virus was 2.0×103 PFU/mL, which was 2 orders of magnitude lower than that of immunochromatographic strip and similar to that obtained from RT-PCR. Finally, the proposed method was applied in the clinical diagnosis of Japanese encephalitis virus, and had a good diagnostic agreement (95%) with the results from RT-PCR. This is telling that the present method has a great promise for the clinical diagnosis of Japanese encephalitis virus.
     (3) Magnetic beads-based electrochemical immunoassay for the detection of pseudorabies virus antibody using gold nanoparticles as tags
     A novel magnetic beads-based electrochemical immunoassay has been developed for the detection of pseudorabies virus antibody using gold nanoparticles as electroactive labels. COOH-coated magnetic beads were employed as the platforms. After immunological reaction, the magnetic beads were captured and focused on the detection surface with the help of magnetic glass carbon electrode. The gold nanoparticles were first oxidized electrochemically to produce AuC14-, and then DPV was employed for the determination of AuC14-. Pseudorabies virus antibody was chosen as the model. Under the optimal conditions, the detection limit of pseudorabies virus antibody was 1:1000 (standard positive serum), which was lower than that obtained from ELISA. Finally, this developed immunoassay method was successfully applied in the detection of pseudorabies virus antibody in swine serum, and had a good diagnostic accordance in comparison with ELISA.
     (4) Magnetic beads-based electrochemical immunoassay with silver amplification for the detection of antibody against porcine circovirus type 2
     A novel magnetic beads-based electrochemical immunoassay with silver amplification has been developed for the detection of antibody against porcine circovirus type 2. ITC-coated magnetic beads were employed as the platforms, and gold nanoparticles were selected as labels. After immunological reaction, the silver deposition solution was introduced to deposit silver on the gold nanoparticle tags. Magnetic beads were then confined on the detection surface with help of magnetic glass carbon electrode. The deposited silver was measured by anodic stripping analysis. Antibody against porcine circovirus type 2 was employed as model analytes. Under the optimal conditions, the detection limit of antibody against porcine circovirus type 2 was 1:4096, which was lower than that obtained from ELISA. Finally, this developed immunoassay method was successfully applied in the detection of antibody against porcine circovirus type 2 in swine serum, and had a good diagnostic accordance in comparison with ELISA.
引文
[1]Mcnaught A. D., Wilkinson A. Compendium of chemical terminology (2nd ed.), Oxford:Blackwell Scientific Publications,1997,148
    [2]张炯,万莹,王丽华等.电化学DNA生物传感器.化学进展,2007,19(10):1576-1584
    [3]武宝利,张国梅,高春光等.生物传感器的应用研究进展.中国生物工程杂志,2004,24(7):65-69
    [4]Singh R. P., Oh B. K., Koo K. K. et. al. Biosensor arrays for environmental pollutants detection. Biochip Journal,2008,2(4):223-234
    [5]Hu C. L., Gan N. Q., Chen Y. Y. et. al. Detection of microcystins in environmental samples using surface plasmon resonance biosensor. Talanta,2009,80(1):407-410
    [6]Liu J., Yin L. F., Dai Y. R. et. al. Application of electrochemical enzyme biosensor in environmental pollution monitoring, progress in chemistry,2012,24(1): 131-143
    [7]胡冠九,刘建琳,邹公伟.生物传感器在环境检测中的应用.环境检测管理与技术,1999,11(2):12-16
    [8]王丽红,张林,陈欢林.有机磷农药酶生物传感器研究进展.化学进展,2006,18(4):440-452
    [9]蒋雪松,王剑平,应义斌等.用于食品安全检测的生物传感器的研究进展.农业工程学报,2007,23(5):272-277
    [10]Bermer M. G. E. G., Smits N. G. E., Haasnoot W. Biosensor immunoassay for traces of hazelnut protein in olive oil. Analytical and Bioanalytical Chemistry. 2009,395(1):119-126
    [11]Virolanines N. E., Pikkemaat M. G., Elferink J. W. A. et. al. Rapid detection of tetracyclines and their 4-epimer derivatives from poultry meat with bioluminescent biosensor bacteria. Journal of Agricultural and Food Chemistry,56(23): 11065-11070
    [12]Yuan J., Deng D. W., Lauren D. R. et. al. Surface plasmon resonance biosensor for the detection of ochratoxin A in cereals and beverages. Analytica Chimica Acta, 2009,656(1-2):63-71
    [13]Vinayaka A. C., Basheer S., Thakur M. S. Bioconjugation of CdTe quantum dot for the detection of 2,4-dichlorophenoxyacetic acid by competitive fluoroimmunoassay based biosensor. Biosensors and Bioelectronics,2009,24(6): 1615-1620
    [14]Lu X., Zheng H., Li X. Q. et. al. Detection of ractopamine residues in pork by surface plasmon resonance-based biosensor inhibition immunoassay. Food Chemistry,2012,130(4):1061-1065
    [15]张先恩.生物传感技术原理与应用.长春:吉林科学技术出版社,1990.6-8
    [16]陈玲.生物传感器的研究进展综述.传感器与微系统,2006,25(9):4-7
    [17]刘艳.我国电化学生物传感器的研究进展.重庆科技学院学报(自然科学版),2010,12(6):153-155
    [18]覃柳,刘仲明,邹小勇,电化学生物传感器研究进展.中国医学物理学杂志,2007,24(1):60-62
    [19]Clark L. C., Lyons C. Electrodes systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences,1962,102: 29-32
    [20]Updike S. J., Hicks G. P. The enzyme electrode. Nature,1967,214:986-988
    [21]张静,顾婷婷.直接电化学酶传感器的研究进展.辽宁科技大学学报,2009,32(5):460-466
    [22]张学记,鞠烷先,约瑟夫·王.电化学与生物传感器.张书圣,李雪梅,杨涛等译.北京.化学工业出版社,2009.48-51
    [23]Frew J., Hill H. A. Electrochemical biosensor. Analytical Chemistry,1987,59: 993A-939A
    [24]Willner I., Heleg V., Blonder R. et. al. Electrical wiring of glucose oxidase by reconstitution of FAD-modified monolayers assembled onto Au-electrodes. Journal of America Chemical Socienty,1996,118(42):10321-10322
    [25]Campas M, Marty J L. Enzyme sensor for the electrochemical detection of the marine toxin okadaic acid. Analytica Chimica Acta,2007,605(1):87-93
    [26]Jia J. B., Wang B. Q., Wu A. G. et. al. A method to construct a third-generation horseradish peroxidase biosensor:self-assembling gold nanoparticles to three-dimensional Sol-Gel network. Analytical Chemistry,2002,74(9): 2217-2223
    [27]Shan C. S., Yang H. F., Song J. F. et. al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Analytical Chemistry,2009,81(6): 2378-2382
    [28]Polsky R., Harper. C., Dirk. M., et al. Diazonium-functionalized horseradish peroxidase immobilized via addressable electrodeposition:direct electron transfer and electrochemical detection. Langmuir,2007,23(2):364-366
    [29]Jian F., Qiao Y., Zhang R. Direct electrochemistry of hemoglobin in TATP film: Application in biological sensor. Sensors and Actuators B,2007,124(2):413-420
    [30]池其金,董绍俊.酶直接电化学与第三代生物传感器.分析化学,1994,2(10):1065-1072
    [31]Zhou M., Zhai Y. M., Dong S. J. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Analytical Chemistry,2009,81(14): 5603-5613
    [32]Zheng Y. Q., Yang C. Z., Pu W. H. et. al. Carbon nanotube-based DNA biosensor for monitoring phenolic pollutants. Microchim Acta,2009,166(1):21-26
    [33]Sun W., Li Y. Z., Duan Y. Y. et. al. Direct electrocatalytic oxidation of adenine and guanine on carbon ionic liquid electrode and the simultaneous determination. Biosensors and Bioelectronics,2008,24(4):988-993
    [34]Muti M., Sharma S., Erdem A. et. al. Electrochemical monitoring of nucleic acid hybridization by single-use graphene oxide-based sensor. Electroanalysis,2011, 23(1):272-279
    [35]Huang K.. J., Niu D. J., Sun J. Y. et. al. Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloids and Surfaces B-Biointerfaces,2011,82(2):543-549
    [36]Wei L. L., Borowiec J., Zhu L. H. et. al. Electrochemical sensor for monitoring the photodegradation of catechol based on DNA-modified graphene oxide. Microchimica Acta,2011,173(2-4):439-443
    [37]Abbaspour A., Noori A. A cyclodextrin host-guest recognition approach to a label-free electrochemical DNA hybridization biosensor. Analyst,2012,137(8): 1860-1865
    [38]Erdem A, Kerman K., Meric B. et. al. Methylene blue as a novel electrochemical hybridization indicator. Electroanalysis,2001,13(3):219-223
    [39]Jin Y., Yao X., Liu Q., Li J. H. Hairpin DNA probe based electrochemical biosensor using methylene blue as hybridization indicator. Biosenor and Bioelectronics,2007,22(6):1126-1130
    [40]Xiao Y, Qu X. G., Plaxco K. W. et. al. Label-free electrochemical detection of DNA in blood serum via target-induced resolution of an electrode-bound DNA pseudoknot. Journal of American Chemical Society,2007,129(39):11896-11897
    [41]Zhang S. B., Wu Z. S., Shen G. L. et. al. A label-free strategy for SNP detection with high fidelity and sensitivity based on ligation-rolling circle amplification and intercalating of methylene blue. Biosenor and Bioelectronics,2009,24(11): 3201-3207
    [42]Liu X. P., Sun C. H., Wu H. W. et. al. Label-free electrochemical biosensor of mercury ions based on DNA strand displacement by thymine-Hg(Ⅱ)-thymine complex. Electroanalysis,2010,22(17-18):2110-2116
    [43]Hu L. Z., Bian Z., Li H. J. et. al. [Ru(bpy)2dppz]2+ electrochemiluminescence switch and its applications for DNA interaction study and label-free ATP aptasensor. Analytical Chemistry.2009,81(23):9807-9811
    [44]Choi M. S., Yoon M., Baeg J. O. et. al. Label-free dual assay of DNA sequences and potassium ions using an aptamer probe and a molecular light switch complex. Chemical Communication,2009,47:7419-7421
    [45]Liu Z. Y., Zhang W., Hu L. Z. Label-free and signal-on electrochemiluminescence aptasensor for ATP based on target-induced linkage of split aptamer fragments by using [Ru(phen)3]2+ intercalated into double-strand DNA as a probe. Chemistry-A European Journal,2010,16(45):13356-13359
    [46]Vyskocil V., Labuda J., Barek J. Voltammetric detection of damage to DNA caused by nitro derivatives of fluorene using an electrochemical DNA biosensor. Analytical and Bioanalytical Chemistry,2010,397(1):233-241
    [47]Gibbs J. M., Park S., Anderson D. R. et. al. Polymer-DNA hybrids as electrochemical probes for the detection of DNA. Journal of American Chemical Society,2005,127(4):1170-1178
    [48]Husken N., Gebala M., Schuhmann W. et. al. A single-electrode, dual-potential ferrocene-PNA biosensor for the detection of DNA. Chembiochem,2010,11(12): 1754-1761
    [49]Wu D. H., Zhang Q., Chu X. et. al. Ultrasensitive electrochemical sensor for mercury (Ⅱ) based on target-induced structure-switching DNA. Biosensors and Bioelectronics,2010,25(5):1025-1031
    [50]Cai H., Wang Y. Q., He P. G. et. al. Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label. Analytica Chimica acta,2002,469(2):165-172
    [51]Cai H., Xu Y., Zhu N. N. et. al. An electrochemical DNA hybridization detection assay based on a silver nanoparticle label. Analyst,2002,127(6):803-808
    [52]Zhu N. N., Zhang A. P., He P. G. et. al. Cadmium sulfide nanocluster-based electrochemical stripping detection of DNA hybridization. Analyst,2003,128(3): 260-264
    [53]Zhu N. N., Zhang A. P., Wang Q. J. et. al. Lead sulfide nanoparticle as oligonucleotides labels for electrochemical stripping detection of DNA hybridization. Electroanalysis,2004,16(7):577-582
    [54]Cai H., Zhu N. N., Jiang Y. et. al. Cu@Au alloy nanoparticle as oligonucleotides labels for electrochemical stripping detection of DNA hybridization. Biosensors and Bioelectronics,2003,18(11):1311-1319
    [55]Zhu N. N., Chang Z., He P. G. et. al. Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes. Analytica Chimica acta,2005, 545(1):21-26
    [56]Wang J., Liu G D., Merkoci A. Electrochemical coding technology for simultaneous detection of multiple DNA targets. Journal of American Chemical Socienty,2003,125(11):3214-3215
    [57]Miao P., Liu L., Li Y. et. al. A novel electrochemical method to detect mercury (Ⅱ) ions. Electrochemistry Communications,2009,11(10):1904-1907
    [58]Tang C. X., Zhao Y., He X. W. et. al. A "turn-on" electrochemiluminescent biosensor for detecting mercury(Ⅱ) at femtomole level based on the intercalation of Ru(phen)32+ into ds-DNA. Chemical Communications,2010,46:9022-9024
    [59]Li B. L., Du Y., Dong S. J. DNA based gold nanoparticles colorimetric sensors for sensitive and selective detection of Ag(Ⅰ) ions. Analytica Chemica Acta,2009, 644(1-2):78-82
    [60]Li T., Shi L. L., Wang E. et. al. Silver-ion-mediated DNAzyme switch for the ultrasensitive and selective colorimetric detection of aqueous Ag+and cysteine. Chemistry-A European Journal,2009,15(14):3347-3350
    [61]Ono A., Cao S., Togashi H. et. al. Specific interactions between silver(Ⅰ) ions and cytosine-cytosine pairs in DNA duplexes. Chemical Communications,2008,39: 4825-4827
    [62]Li T. Wang E., Dong S. J. Lead(Ⅱ)-induced allosteric G-quadruplex DNAzyme as a colorimetric and chemiluminescence sensor for highly sensitive and selective Pb2+ detection. Analytical Chemistry,2010,82(4):1515-1520
    [63]Li T., Dong S. J., Wang E. A lead(Ⅱ)-driven DNA molecular device for turn-on fluorescence detection of lead(Ⅱ) ion with high selectivity and sensitivity. Journal of American Chemical Society,2010,132(38):13156-13157
    [64]Li Z. Z. Chen Y. Li X. H. et. al. Pb2+ induced DNA conformational switch from hairpin to G-quadruplex:electrochemical detection of Pb2+. Analyst,2011,136(11): 2367-2372
    [65]Li Z. Z., Li X. H., Kraatz H. B. Impedimetric immobilized DNA-based sensor for simultaneous detection of Pb2+, Ag+, and Hg2+. Analytical Chemistry,2011,83(17): 6896-6901
    [66]Ronkainen N. J., Halsall H. B., Heineman W. R. Electrochemical biosensors. Chemical Society Reviews,2010,39(5):1747-1763
    [67]Zhong Z. Y., Li M. X., Xiang D.I. et. al. Signal amplification of electrochemical immunosensor for the detection of human serum IgG using double-codified nanosilica particles as labels, Biosensors and Bioelectronics,2009,24(7): 2246-2249
    [68]Zhong Z. Y., Wu W., Wang D. et. al. Nanogold-enwrapped graphene nanocomposites as trace labels for sensitivity enhancement of electrochemical immunosensors in clinical immunoassays:Carcinoembryonic antigen as a model. Biosensors and Bioelectronics,2010,25(10):2379-2383
    [69]Ding C. F., Zhao F., Ren R. et. al. An electrochemical biosensor for alpha-fetoprotein based on carbon paste electrode constructed of room temperature ionic liquid and gold nanoparticles. Talanta,2009,78(3):1148-1154
    [70]An Y., Jiang X. L., Bi W. J. et. al. Sensitive electrochemical immunosensor for alpha-synuclein based on dual signal amplicication using PAMAM dendrimer-encapsulated Au and enhanced gold nanoparticle labels. Biosensor and Bioelectronics,2012,32(1):224-230
    [71]Qi H. L., Ling C., Chen H. R. et. al. Functionalization of single-walled carbon nanotubes with protein by click chemistry as sensing platform for sensitized electrochemical immunoassay. Electrochimica Acta,2012,63:76-82
    [72]Haque A. M. J., Park H., Sung D. et. al. An electrochemically reduced grapheme oxide-based electrochemical immunosensing platform for ultrasensitive antigen detection. Analytical Chemistry,2012,84(4):1871-1878
    [73]张学记,鞠熀先,约瑟夫·王.电化学与生物传感器.张书圣,李雪梅,杨涛等译.北京.化学工业出版社,2009.94-97
    [74]Keay R. W., McNeil C. J. Separation-free electrochemical immunosensor for rapid determination of atrazine. Biosensors and Bioelectronics,1998,13(9):963-970
    [75]Tan Y., Chu X., Shen G. L. A signal-amplified electrochemical immunosensor for aflatoxinBl determination in rice. Analytical Biochemistry,2009,387(1):82-86
    [76]Salam F., Tothill I. E. Detection of Salmonella typhimurium using an electrochemical immunosensor. Biosensors and Bioelectronics,2009,24(8): 2630-2636
    [77]Akram M., Stuart M. C., Wong D. K. Y. Signal generation at an electrochemical immunosensor via the direct oxidation of an electroactive label. Electroanalysis, 2006,18(3):237-246
    [78]Su H. L., Yuan R., Chai Y. Q. et. al. Ferrocenemonocarboxylic-HRP@Pt nanoparticles labeled RCA for multiple amplification of electro-immunosensing. Biosensors and Bioelectronics,2011,26(11):4601-4604
    [79]Ball P., Li G. Science at atomic scale. Nature,1992,355(6363):761-766
    [80]Cavicchi R. E. Coulomb suppression of tunneling rate from small metal particles. Physical Review Letters,1984,52(16):1453-1456
    [81]Daniel M. C., Astruc D. Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews,2004,104(1):293-346
    [82]Tang D. P., Tang J., Su B. et. al. Gold nanoparticles-decorated amine-terminated poly(amidoamine) dendrimer for sensitive electrochemical immunoassay of brevetoxins in food samples. Biosensors and Bioelectronics,2011,26(5): 2090-2096
    [83]Shan C. S., Yang H. F., Han D. X. et. al. Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosensors and Bioelectronics,2010, 25(5):1070-1074
    [84]Lin C. C., Chen L. C., Huang C. H. et. al. Development of the multi-functionalized gold nanoparticles with electrochemical-based immunoassay for protein A detection. Journal of Electroanalytical Chemistry,2008,619-620:39-45
    [85]Xie C. G., Li H. F., Li S. Q. et. al. Surface molecular self-assembly for organophosphate pesticide imprinting in electropolymerized poly(p-aminothiophenol) membranes on a gold nanoparticle modified glassy carbon electrode. Analytical Chemistry,2010,82(1):241-249
    [86]Dequaire M., Degrand C., Limoges B. An electrochemical metalloimmunoassay based on a colloidal gold label. Analytical Chemistry,2000,72(22):5521-5528
    [87]Chen Z. P., Peng Z. F., Zhang P. et. al. A sensitive immunosensor using colloidal gold as electrochemical label. Talanta,2007,72(5):1800-1804
    [88]Idegami K., Chikae M., Kerman K. et. al. Gold nanoparticle-based redox signal enhancement for sensitive detection of human chorionic gonadotropin hormone. Electroanalysis,2008,20(1):14-21
    [89]Leng C. A., Lai G. S., Yan F. et. al. Gold nanoparticle as an electrochemical label for inherently crosstalk-free multiplexed immunoassay on a disposable chip. Analytical Chimica Acta,2010,666(1-2):97-101
    [90]Kerman K., Chikae M., Yamamura S. et. al. Gold nanoparticle-based electrochemical detection of protein phosporylation. Analytica Chimica Acta,2007, 588(1):26-33
    [91]Ambrosi A., Castaneda M. T., Killard A. J. et. al. Double-codified gold nanolabels for enhanced immunoanalysis. Analytical Chemistry,2007,79(14):5232-5240
    [92]Liao K. T., Huang H. J. Femtomolar immunoassay based on coupling gold nanoparticle enlargement with square wave strpping voltammetry. Analytica Chimica Acta,2005,538(1-2):159-164
    [93]Wang J., Xu D. K., Kawde A. et. al. Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Analytical Chemistry, 2001,73(22):5576-5581
    [94]Chu X., Xiang Z. F., Fu X. et. al. Silver-enhanced colloidal gold metalloimmunoassay for Schistosoma japonicum antibody detection. Journal of Immunological Methods,2005,301(1-2):77-88
    [95]Chu X., Fu X., Chen K. et. al. An electrochemical stripping metalloimmunoassay based on silver-enhanced glod nanoparticle label. Biosensors and Bioelectronics, 2005,20(9):1805-1812
    [96]Zhang J. J., Wang J. L., Zhu J. J. et. al. An electrochemical impedimetric assayed immunosensor based on indium tin oxide electrodes and silver-enhanced gold nanoparticles. Microchimica Acta,2008,163(1-2):63-70
    [97]Lai G. S., Yan F., Wu J. et. al. Ultrasensitive multiplexed immunoassay with electrochemical stripping ananlysis of silver nanoparticels catalytically deposited by gold nanoparticles and enzymatic reaction. Analytical Chemistry,2011,83(7): 2726-2732
    [98]Xu L. J., Du J. J., He N. Y. et. al. Anodic stripping voltammetry or detection of DNA hybridization with porous pseudo-carbon paste electrode by gold nanoparticle-catalyzed silver enhancement. Journal of Nanoscience and Nanotechnology,2009,9(4):2698-2703
    [99]Zhuang J., Cheng T., Gao L. Z. et. al. Silica coating magnetic nanoparticle-based silver enhancement immunoassay for rapid electrical detection of ricin toxin. Toxicon,2010,55(1):145-152
    [100]De la Escosura-Muniz A., Costa M. M. D., Merkoci A. Controlling the electrochemical deposition of silver onto gold nanoparticles:Reducing interferences and increasing the sensitivity of magnetoimmuno assays. Biosensors and Bioelectronics,2009,24(8):2475-2482
    [101]Wang J., Polsky R., Xu D. Silver-enhanced colloidal gold electrochemical stripping detection of DNA hybridization. Langmuir,2001,17(19):5739-5741
    [102]Wang J., Xu D. K., Posky R. Magnetically-induced solid-state electrochemical detection of DNA hybridization. Journal of American Chemical Society,2002, 124(16):4808-4809
    [103]Guo H., He N., Ge S. et. al. MCM-41 mesoporous material modified carbon paste electrode for the determination of cardiac troponin I by anodic stripping voltammetry. Talanta,2005,68(1):61-66
    [104]Chumbimuni-Torres K. Y., Dai Z. et. al. Rubinova N. et. al. Potentiometric biosensing of proteins with ultrasensitive ion-selective microelectrodes and nanoparticle labels. Journal of American Chemical Society,2006,128(42): 13676-13677
    [105]Min I. H., Choi L., Ahn K. S. et. al. Electrochemical determination of carbohydrate-binding proteins using carbohydrate-stabilized gold nanoparticles and silver enhancement. Biosensors and Bioelectronics,2010,26(4):1326-1331
    [106]Mao X., Jiang J. H., Luo Y. et. al. Copper-enhanced gold nanoparticle tags for electrochemical stripping detection of human IgG. Talanta,2007,73(3):420-424
    [107]Dungchai W., Siangproh W., Chaicumpa W. et. al. Salmonella typhi detennination using voltammetric amplification of nanoparticles:A highly sensitive strategy for metalloimmunoassay based on a copper-enhanced gold label. Talanta,2008,77(2): 727-732
    [108]Selvaraju T., Das J., Han S. W. et. al Ultrasensitive electrochemical immunosensing using magnetic beads and gold nanocatalysts. Biosensors and Bioelectronics,2008,23(7):932-938
    [109]Lee Y. M., Garcia M. A., Huls N. A. F. et. al. Synthetic tuning of the catalytic properties of Au-Fe3O4 nanoparticles. Angewandte Chemie International Edition, 2010,49(7):1271-1274
    [110]Wei Q., Xiang Z., He J. et. al. Dumbbell-like Au-Fe3O4 nanoparticles as label for the preparation of electrochemical immunosensors. Biosensors and Bioelectronics, 2010,26(2):627-631
    [111]Cui R, Huang H, Yin Z, et al. Horseradish peroxidase-functionalized gold nanoparticle label for amplified immunoanalysis based on gold nanoparticles/carbon nanotubes hybrids modified biosensor. Biosensors and Bioelectronics,2008,23(11):1666-1673
    [112]Tang D. P., Ren J. J. In situ amplified electrochemical immunoassay for carcinoembryonic antigen using horseradish peroxidase-encapsulated nanogold hollow microspheres as labels. Analytical Chemistry,2008,80(21):8064-8070
    [113]Wang J., Li J. H., Baca A. J. et. al. Amplified voltammetric detection of DNA hybridizaiton via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates. Analytical Chemistry,2003,75(15):3941-3945
    [114]Liu G. D., Wang J., Kim J. et. al. Electrochemical coding for multiplexed immunoassays for proteins. Analytical Chemistry,2004,76(23):7126-7130
    [115]Jacobs C. B., Peairs M. J., Venton B. J. Review:Carbon nanotube based electrochemical sensors for biomolecules. Analytica Chimica Acta,2010,662(2): 105-127
    [116]刘雪平.基于纳米金信号转换和信号放大的新型生物传感技术研究:[博士论文].长沙:湖南大学图书馆,2009
    [117]Wu K. B., Hu S. S., Fei J. J. et. al. Mercury-free simultaneous determination of cadmium and lead at a glassy carbon electrode modified with multi-wall carbon nanotubes. Analytica Chimica Acta,2003,489(2):215-221
    [118]Gong K. P., Dong Y., Xiong S. X. et. al. Novel electrochemical method for sensitive determination of homocysteine with carbon nanotube-based electrodes. Biosensors and Bioelectronics,2004,20(2):253-259
    [119]Yang M. H., Yang Y., Yang H. F. et. al. Layer-by-layer self-assembled multilayer films of carbon nanotubes and platinum nanoparticles with polyelectrolyte for the fabrication of biosensors. Biomaterials,2006,27(2):246-255
    [120]Musameh M., Wang J., Merkoci A. et. al. Low-potenital stable NADH detetion at carbon-nanotube-modified glassy carbon electrodes. Electrochemistry Communications,2002,4(10):743-746
    [121]Wang J., Musameh M., Lin Y. H. Solubilization of carbon nanotubes by Nafion toward preparation of amperometric biosensors. Journal of American Chemical Society,2003,125(9):2408-2409
    [122]Yu X., Munge B., Patel V. et. al. Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. Journal of American Chemical Society,2006,128(34):11199-11205
    [123]Wu Z., Zhen Z., Jiang J. H. et. al. Terminal protection of small-molecule-linked DNA for sensitive electrochemical detection of protein bingding via selective carbon nanotube assembly. Journal of American Chemical Society,2009,131(34): 12325-12332
    [124]Alefantis T., Grewal P., Ashton J. et. al. A rapid and sensitive magnetic bead-based immunoassay for the detection of staphylococcal enterotoxin B for high-through put screening. Molecular and Cellular Probes,2004,18:379-382
    [125]胡佳.免疫磁性微粒的制备及其在人血浆高丰度蛋白去除中的应用研究:[硕士学位论文].西安:西北大学图书馆,2010
    [126]唐金凡,简强,崔亚丽等.基于金磁微粒标记技术的可目视化蛋白质芯片检测方法的建立.临床检验杂志,2007,25(4):263-265
    [127]Mani V., Chikkaveeraiah B. V., Patel V. et. al. Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme-particle amplification. ACS Nano,2009,3(3):585-594
    [128]Munge B. S., Coffey A. L., Doucette J. M. et. al. Nano structured Immunosensor for Attomolar Detection of Cancer Biomarker Interleukin-8 Using Massively Labeled Superparamagnetic Particles. Angewandte Chemie International Edition, 2011,50(34):7915-7918
    [129]Loaiza O. A., Jubete E., Ochoteco E. et. al. Gold coated ferric oxide nanoparticles based disposable magnetic genosensors for the detection of DNA hybridization processes. Biosensors and Bioelectronics,2011,26(5):2194-2200
    [130]Wang J., Liu G. D., Jan M. R. Ultrasensitive electrical biosensing of proteins and DNA:carbon-nanotubes derived amplification of the recognition and transduction events. Journal of American Chemical Society,2004,126(10):3010-3011
    [131]Yantasee W., Hongsirikarn K., Warner C. L. et. al. Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles. Analyst,2008, 133:348-355
    [132]Goon I. Y, Lai L. M. H., Lim M. et. al.'Dispersible electrodes':a solution to slow response times of sensitive sensors. Chemical Communicaiton,2010,46: 8821-8823
    [133]杨明,力虎林.磁微球在测定痕量甲醛中的应用,兰州大学学报(自然科学版),2001,37(6):10-13
    [134]洪小平,彭图治.功能高分子磁性微球的制备及分析应用.分析化学,2003,7:789
    [135]赖国松,张海丽,韩德艳等.对苯二酚在铁磁性葡聚糖微球修饰电极上的电化学行为.化学研究与应用,2008,20(4):430-432
    [136]黄生,李树根,吴时清等.猪伪狂犬病得微量血清中和试验.中国兽医科技,1986,7:29-30
    [137]张慧敏,杨利,李广泉等.乳胶宁激发快速检测猪圆环病毒2型.分析化学,2011,39(7):1113-1116
    [138]Li Y. M., Hou L. D., Ye J. et. al. Development of a convenient immunochromatographic strip for the diagnosis of infection with Japanese encephalitis virus in swine. Journal of Virological Methods,2010,168(1-2):51-56
    [139]黄晓尧,张长弓,方莹等.用于检测猪瘟抗体的免疫金标试纸条的研制与应用研究.福建畜牧兽医,2002,24(1):3-4
    [140]李学伍,陈焕春,杨艳艳等.PCR法对伪狂犬病病猪不同部位的检测及敏感性试验.中国畜禽传染病,1998,20(6):365-368
    [141]Sheng J., Zhang L., Lei J. P. Fabrication of tunable microreactor with enzyme modified magnetic nanoparticles for microfluidic electrochemical detection of glucose. Analytica Chimica Acta,2012,709:41-46
    [142]Panini N. V., Salinas E., Messina G. A. Modified paramagnetic beads in a microfluidic system for the determination of zearalenone in feedstuffs samples. Food Chemistry,2011,125(2):791-796
    [143]Ambrosi A., Guix M., Merkoci A. Magnetic and electrokinetic manipulations on a microchip device for bead-based immunosensing applications. Electrophoresis, 2011,32(8):861-869
    [144]Hervas M., Lopez M. A., Escarpa A. Integrated electrokinetic magnetic bead-based electrochemical immunoassay on microfluidic chips for reliable control of permitted levels of zearalenone in infant foods. Analyst,136(10):2131-2138
    [145]郑静.基于纳米金胶和磁性纳米颗粒的DNA和凝血酶蛋白质电化学检测的研究:[博士学位论文].上海:华东师范大学图书馆,2007
    [146]Baldrch E., Gomez R., Gabriel G. et. al. Magnetic entrapment for fast, simple and reverible electrode modification with carbon nanotubes:Applicaiton to dopamine detection. Biosensors and Bioelectronics,2011,26(5):1876-1882
    [147]Zacco E., Pividori M. I., Alegret S. Electrochemical magnetoimmunosensing strategy for the detection of pesticides residues. Analytical Chemistry,2006,78(6): 1780-1788
    [148]Erdem A., Pividori M. I., Lermo A. et. al. Genomagnetic assay based on label-free electrochemical detection using magneto-composite electrodes. Sensors and Actuators B-chemical,2006,114(2):591-598
    [149]Liebana S., Lermo A., Campoy S. et. al. Magneto immunoseparation of pathogenic bacteria and electrochemical magneto genosensing of the double-tagged amplicon. Analytical Chemistry,2009,81(14):5812-5820
    [150]Lermo A., Fabiano S., Hernandez S. et. al. Immunoassay for folic acid detection in vitamin-fortified milk based on electrochemical magneto sensors. Biosensors and Bioelectronics,2009,24(7):2057-2063
    [151]Castilho M. D., Laube T., Yamanaka H. et. al. Magneto immunoassays for plasmodium falciparum histidine-rich protein 2 related to malaria based on magnetic nanoparticles. Analytical Chemistry,2011,83(14):5570-5577
    [152]Laube T., Kergaravat S. V., Fabiano S. N. et. al. Magneto immunosensor for gliadin detection in gluten-free foodstuff:Towards food safety for celiac patients. Biosensors and Bioelectronics.2011,27(1):46-52
    [153]Qu S., Wang J., Kong J. L. et. al. Magnetic loading of carbon nanotube/nano-Fe3O4 composite for elctrochemical sensing. Talant,2007,71(3):1096-1102
    [154]Misra U. K., Kalita J. Overview:Japanese encephalitis. Progress in Neurobiology, 2010.91(2):108-120
    [155]Van den Hurk A. F., Ritchie S. A., Mackenzie J. S. Ecology and geographical expansion of Japanese encephalitis virus. Annual Review of Entomology,2009,54: 17-35
    [156]刘学芹.应用siRNAs抑制乙型脑炎病毒复制及乙型脑炎“自杀性”DNA疫苗研究:[博士学位论文].武汉:华中农业大学图书馆,2006
    [157]Lei C. X., Wu J., Wang H. et. al. A new electrochemical immunoassay strategy for detection of transferrin based on electrostatic interaction of natural polymers. Talanta,2004,63(2):469-474
    [158]Hervas M., Lopez M. A., Escarpa A. et. al. Electrochemical immunoassay using magnetic beads for the determination of zeralenone in baby food:An anticipated analytical tool for food safety. Analytica Chimica Acta,2009,653(2):167-172
    [159]Yang W. R., Ratinac K. R., Ringer S. P. et. al. Carbon nanomaterials in biosenors: Should you use nanotubes or grapheme? Angewandte Chemie International Edition,2010,49(12):2114-2138
    [160]Chinsakchai S., Molitor T. W. Immunobiology of pseudorabies virus infection in swine. Veterinary Immunology and Immunopathology,1994,43(1-3):107-116
    [161]肖少波.伪狂犬病毒gC基因“自杀性”DNA疫苗及VP22蛋白转导的免疫增强效应研究:[博士学位论文].武汉:华中农业大学图书馆,2004
    [162]Urusov A. E., Kostenko S. N., Sveshnikov P. G. et. al. Ochratoxin A immunoassay with surface Plasmon resonance registration:Lowering limit of detection by the use of colloidal gold immunoconjugates. Sensors and Actuators B:Chemical,2011, 156(1):343-349
    [163]Li D. J., Wang J. P., Wang R. H. et. al. A nanobeads amplified QCM immunosensor for the detection of avian influenza virus H5N1. Biosensors and Bioelectronics,2011,26(10):4146-4154
    [164]Grabar K. C., Freeman R. G, Hommer M. B. et. al. Preparation and characterization of Au colloid monolayers. Analytical Chemistry,1995,67(4): 735-743
    [165]李杰.基于猪圆环病毒Rep和Capd蛋白ELISA方法的建立及其应用:[硕士论文].长沙:湖南农业大学图书馆,2001
    [166]陈美玲.猪圆环病毒Ⅱ型ORF2蛋白单克隆抗体的制备鉴定及Ⅰ型ORF2基因的研究:[硕士学位论文].武汉:华中农业大学图书馆,2005
    [167]Tang B. T., Zhang J., Khan M. et. al. The solid-state Ag/AgC1 process as a highly sensitive detection mechanism for an electrochemical immunosensor. Chemical Communication,2009,41:6231-6233

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700