辐照条件下模拟放射性核素Sr~(2+)的微生物吸附研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锶作为核爆、核事故等引起的全球性沉降中危害最大的核素之一,其污染具有隐蔽性和滞后性等特点。为寻求Sr2+的高效微生物吸附剂,探索微生物在放射性环境下对Sr2+吸附富集的可能性。实验以直接从自然环境(土壤)分离获得菌株和利用工业酵母分别作为活菌体与死菌体的研究对象,开展特定辐照条件对实验微生物吸附特性影响对比研究。
     在对活菌体微生物吸附剂的Sr2+吸附研究中,通过对土壤样品中分离的47株微生物进行Sr2+的吸附效果对比分析,确定其中1株真菌和11株细菌对Sr2+的吸附效果较好。经过长期反复在含Sr2+培养液中的胁迫诱导驯化,所选12株菌在含Sr2+液体培养基中的生长能力、吸附效率及吸附速率均有增强。其中,各土壤分离菌的最大生长速率(vODmax)位置整体提前了0.5d,各菌株吸附吸附平衡基本出现在2.0d~3.0d之间,较驯化前提前了1.0d~2.5d。并通过研究确定实验条件下较佳吸附条件为初始pH=6.0~7.0,初始接种量Vi=0.5mL/25mL (1/50),初始Sr2+浓度C0=25mg/L~100mg/L。
     各株菌对Sr2+动力学吸附过程为初期吸附平衡、快速吸附增长和二次吸附平衡等三个吸附阶段(10#菌只有后两个吸附过程),且三个阶段均符合准二级反应动力学模型,分阶段拟合结果也足反映了活菌体吸附过程复杂,不仅在于复杂的吸附机理,还有其吸附体系的复杂性。在对各株土壤分离菌吸附Sr2+进行等温吸附模型拟合时发现,各菌的Sr2+吸附对Langmuir均比Freundlich吸附模型要符合的好,相关系数R基本在0.98以上,但对qmax分析认为,Langmuir吸附模型对于活菌体吸附Sr2+的研究具有一定局限性。
     各株菌吸附Sr2+的等温吸附类型参数KR均小于0.82,确定其对应等温吸附类型为有利于吸附行反应进行。各株菌在30℃、pH7.0等实验条件下,其△G0均为负值,表明实验条件下各株菌对Sr2+的吸附均能自发进行。
     通过对各株土壤分离菌进行辐照条件下筛选及吸附特性研究过程中发现,0.5kGy和1.0kGy的辐照剂量下,观察所选12株土壤分离菌在平板上的生长情况,发现大多数实验菌株的生长受到明显抑制,但辐照情况下有无Sr2+对于各菌株的菌落形成无明显影响。其中6#菌在所有实验菌株中对辐照的耐受性最好,最后对相对耐辐照的高效土壤分离细菌进行16S rDNA序列测定并与GeneBank数据库进行比对,表明该菌株属于芽孢杆菌属(Bacillus),与短小芽孢杆菌(Bacillus pumilus)序列相似性高达100%。
     辐照条件下液相吸附实验发现,就整个动力学吸附曲线而言,辐照组菌体对液相中Sr2+的吸附比无辐照对照组有迟滞现象,而接种12.0h实验组受辐照影响比接种1.0h实验组受辐照的影响要小些。先吸附Sr2+再辐照实验显示,处于吸附初期阶段(1.0d~2.0d)的实验组受辐照的影响较为显著,而吸附后期辐照前后吸附效率差值不超过1.00%。先辐照后吸附Sr2+实验认为,吸附时间对各菌株对Sr2+吸附效果的影响比辐照影响更显著。
     从不同辐照条件实验下各菌株的FTIR谱图变化情况来看,来自菌体细胞上的多糖、蛋白质酰胺、脂类等成分变化,反映了实验辐照条件对各菌株产生的具体损伤作用,且辐照条件下液相中的Sr2+具有一定协同损伤作用。
     在对以面包酵母菌为对象的死菌体吸附Sr2+研究过程中,通过批量实验室实验确定酵母菌对Sr2+较佳吸附条件为:pH=4.0~5.5,吸附温度T=20℃~40℃,酵母菌施加浓度Cm=2.0~6.0g/L, Sr2+初始浓度C0=0.25~1.0mmol/L。 FTIR分析认为,酵母菌吸附Sr2+的过程的确存在化学吸附过程;相对而言,酵母菌细胞上的多糖、蛋白质酰胺成分更多地参与了对Sr2+的吸附过程。
     1.0kGy剂量辐照面包酵母菌,发现辐照前后其在不同温度下对Sr2+的等温吸附结果均能很好符合Langmuir和Freunlich两个吸附模型。同时,根据其对应KR取值在0.88     对辐照前后酵母菌吸附Sr2+的动力学分析发现,酵母菌对Sr2+的吸附是一个快速进行的反应过程,30℃下吸附速度要略快一些;且整个吸附动力学过程中,qt均存在30℃>20℃>10℃。另外,辐照后酵母菌对Sr2+的吸附效果比相同温度条件下辐照前实验组要略好。各实验温度下酵母菌对Sr2+的动力学二级吸附速率方程拟合结果中R均在0.999以上,拟合程度较好。在此基础上,计算获得酵母菌辐照前后吸附Sr2+的反应活化能Ea分别为9.955kJ/mol和9.162kJ/mol。这一定程度上能够表明实验条件下的辐照更有利于酵母菌对Sr2+的吸附反应顺利进行。
     酵母菌对5种重金属离子与Sr2+吸附的效果综合分析发现,其对所选二价离子的吸附具有相似性特性。在相对最佳吸附条件:pH=4.5, Cm=4.0g/L, C0=1.0mmol/L下,对酵母菌对6种重金属离子的动力学吸附过程中,其单位吸附量qt和n大小顺序均为:Pb2+>Cd2+>Sr2+> Cu2+>Zn2+> Ni2+。
     通过论文研究结果认为,从无放射污染土壤中分离的菌株,经过实验条件下的胁迫诱导驯化,可以提高其对Sr2+的吸附效果,且部分菌株能够在1.0kGy辐照条件下(相当于中高放条件)下对Sr2+仍具有较好吸附效果。相比之下,尽管面包酵母菌吸附效率相对实验所得土壤菌株的活菌体吸附要低,但工业废弃酵母具有量大、成本低、吸附快,干燥后死菌体方便运输且耐辐照等优点,也可成为很好的放射性Sr2+的吸附剂。
As one of most hazardous nuclide ions from global sedimentation radionuclide originated from nuclear explode and nuclear accident etc., radioisotope of Strontium has its characteristic concealment and hysteresis. For achieving efficient microbial adsorbent and exploring the feasibility of biosorption of Sr2+using microbes under radioactive environment, some living microorganism from nature (soli) and dead thalli from industry waste yeast were chose as study objects in this PhD dissertation.
     47strains from soli were isolated, in which one strain of fungus and eleven strains of bacteria were confirmed have better biosorption efficiencies to Sr2+. The growth rate, biosorption efficiency and biosorption rate of these12kinds of strains were increased under domesticated intimidation stress in aqueous stable isotope of strontium. The appearance time of their highest growth rate was accelerated0.5d, while the appearance time of biosorption equilibrium was accelerated1.0~2.5d as they appeared at2.0-3.0d. The optimized biosorption condition for soli strains to Sr2+was pH=6.0~7.0, Vi=0.5mL/25mL (1/50) and C0=25mg/L~100mg/L.
     The kinetic processes of different strains are composed of initial biosorption equilibrium, fast biosorption increasing and second biosorption equilibrium. These three biosorption phases were all consistent with pseudo-second order adsorption kinetics. The results showed that the biosorption process of living cells to Sr2+was extremely complex due to its complex biosorption mechanism and its complex biosorption system. The biosorption of different strains to Sr2+were all better consistent with Langmuir adsorption isotherm than Freundlich adsorption isotherm, R>0.98. However, the analysis to qmax showed that the model of Langmuir adsorption isotherm still had some limits for describing the biosorption Sr2+by living cells.
     The adsorption isotherm type parameters (KR) of experimental strains to Sr2+were all less than0.82ensured the experimental condition was propitious to biosorption activity of different strains to Sr2+. Under experimental condition of303K and pH7.0, The biosorption activities of Sr2+were spontaneously due to Gibbs free energy change (ΔG0) of different stains were all below zero.
     Although the growth of twelve strains soil microbes were restrained obviously under the radiant dose of0.5kGy and1.0kGy, there were no distinct evidence show the effects of Sr2+on bacteria colony formation under experimental radiation condition. The strain of6#has best radiation-resistant ability. This strain was subject to Bacillus according to analysis results of16S rDNA was100%accordance with GeneBank database of Bacillus pumilus.
     As for the whole kinetic biosorption curves, under the radiation dose of1.0kGy, bacterial growth rates of test groups have retardation phenomena comparing to the control groups without radiation. The radiation effect of test groups of inoculated12.Oh in advance was weaker than the test groups of inoculated1.0h. The experimental results of radiation after adsorbed Sr2+showed that the radiation effect of different strains at initial biosorption stage (1.0~2.0d) were more obvious than anaphase biosorption stage, while the results of adsorption Sr2+after radiation showed that biosorption time has more obvious effect than radiation.
     FTIR analysis results under different radiation condition showed that the characteristic peaks of amylase, protein amide and lipids on bacteria cells were slightly shifted. These indicated that bacteria cells were damaged by radiation and Sr2+has cooperation damage effects with radiation in aqueous condition.
     Batch experiments about biosorption Sr2+on baker's yeast showed that the optimized adsorption condition as following:pH=4.0-5.5, T=20℃-40℃, Cm=2.0-6.0g/L, C0=0.25-].Ommol/L. FTIR results showed that its existent chemical adsorption in the biosorption process to Sr2+. The changes observed in the spectra indicated the possible involvements of functional groups on the surface of the biomass in biosorption process, and the further analysis showed that amylose and protein amide have more important roles in the biosorption of Sr2+on yeast cells.
     With the radiant dose of1.0kGy, the biosorption of baker's yeast and control groups without radiation to Sr2+were all better consistent with Langmuir adsorption isotherm and Freundlich adsorption isotherm. The analysis results of adsorption isotherm type parameters (0.88     The kinetic analysis showed that the biosorption of baker's yeast to Sr2+was a fast reaction process. As the whole biosorption process, qt is being the relation at different experimental temperatures as30℃>20℃>10℃. The biosorption effect to Sr2+on baker's yeast after radiation was better than the control groups without radiation. The biosorption analysis results of baker's yeast to Sr2+were all consistent with pseudo-second order adsorption kinetics at different experimental temperatures, as R>0.999. The activation energy Ea of biosorption to Sr2+can be calculate as9.955kJ/mol and9.162kJ/mol before and after radiated to baker's yeast. These indicated that an experimental radiation condition is favor to the spontaneous biosorption of baker's yeast to Sr2+
     The analysis results of biosorption five kinds of heavy metal ions and Sr2+showed that baker's yeast has similar adsorption activity to bivalent ions. At the relative optimized experimental conditions as pH=4.5, Cm=4.0g/L and Co=1.0mmol/L, the biosorption kinetics of six ions on baker's yeast showed that qt and n have the relation as following: Pb2+>Cd2+>Sr2+> Cu2+>Zn2+> Ni2+.
     This study obtained some strains from soli without radiation pollution. Their biosorption abilities to Sr2+increased after domestication of intimidation stress. Some of them have satisfactory biosorption efficiencies to Sr2+under the conditions of low to moderate, even high radioactivity. As industry waste, although baker's yeast have not the similar high biosorption efficiencies to Sr2+as strains from soli, it has advantages of easily obtained, low-cost and fast adsorption, etc.. On the other hand, dry yeast cells are favor to transport and is able to bear radiation; these indicated baker's yeast may become one kind of excellent biosorbent to Sr2+in the future.
引文
[1]王建龙.微生物与铯的相互作用及其在放射性核素污染环境修复中的应用潜力[J].核技术,2003,26(12):949-955.
    [2]李兵,廖家莉,张东,等.蛭石对Cs的吸附性能研究[J].四川大学学报(自然科学版),2008,45(1):115-120.
    [3]Ahmet E O. Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey [J]. Journal of Hazardous Materials,2006, B137:332-335.
    [4]车春霞,滕元成,桂强.放射性废物固化处理的研究及应用现状[J].材料导报,2006,20(2):94-97.
    [5]唐志坚.张平.左社强.低浓度含铀废水处理技术的研究进展[J].工业用水与废水,2003,34(4):9-12.
    [6]徐世明,赵文虎,李霞.水稻对137Cs的叶面吸收[J].农业环境保护,1998,17(1):8-10.
    [7]罗上庚.核废物的安全与环境影响[J].安全与环境学报,2001,1(2):16-20.
    [8]Deokattey S, Jahagirdar P B, Kumar V, et al. Borosilicate glass and synroc R&D for radioactive waste immobilization:an international perspective [J]. JOM,2003,55(10):48-51.
    [9]Tolstova O V, Lashchenova T N, Stefanovskij S V. Basalt-based glass materials for immobilizing wastes of medium radioactivity [J]. Stekloi Keramika,2002,6:28-31.
    [10]Barinova T V, Borovinskaya I P, Ratnikov V I et al. SHS immobilization of radioactive wastes [J]. Key Engineering Materials,2002,217:193-200.
    [11]Borzunov A I, D'yakov S V, Poluektov P P. Immobilization of radioactive wastes by embedding in phosphate ceramic [J]. Atomnaya Energiya,2004,96(2):133-137.
    [12]Perera D S, Blackford M G, Vance E R et al. Geopolymers for the immobilization of radioactive waste [J]. Materials Research Society Symposium Proceedings, Scientific Basis for Nuclear Waste Management XXVIII,2004,824:607-612.
    [13]Osmanlioglu A E. Immobilization of radioactive waste by cementation with purified kaolin clay [J]. Waste Management,2002,22(5):481-483.
    [14]Sakr K, Sayed M S, Hafez M B. Immobilization of radioactive waste in mixture of cement, clay and polymer [J]. Journal of Radioanalytical and Nuclear Chemistry,2003,256(2):179-184.
    [15]Qian G R, Sun D D, Joo H T. New aluminium-rich alkali slag matrix with clay minerals for immobilizing simulated radioactive Sr and Cs waste [J]. Journal of Nuclear Materials,2001,299(3): 199-204.
    [16]Guerrero A, Goni S. Efficiency of a blast furnace slag cement for immobilizing simulated borate radioactive liquid waste [J]. Waste Management,2002,22(7):831-836.
    [17]李玉香.碱矿渣—粘土复合胶凝材料固化Sr、Cs的机理与性能研究[D].博士论文.绵阳:中国程物理研究院,2005.
    [18]张东.铀在特定场址地下水中存在和迁移形态研究及其热力学分析[D].博士论文.绵阳:中国工程物理研究院,2005.
    [19]张伟.微生物处理液相中放射性锶的研究[D].硕士论文.绵阳:西南科技大学,2005.
    [20]何佳恒,蹇源,李兴亮.无机离子交换材料在放射性废水处理中的应用[J].辐射防护通讯,2008,28(6):9-]3.
    [21]Manos M J, Ding N, Kanatzidis M G. Layered metal sul-fides:exceptionally selective agents for radioactive strontium removal [J]. PNAS,2008,105:3696.
    [22]Su Z, Li X L, Lan Y, et al. A New Chalcogenide ion ex-changing material:porous indium sulfide built from condensed [In10S18]6-T3 super tetrahedral clusters [J]. Materials Letter,2008,62:2802.
    [23]Peng C S, Meng H, Song S X, et al. Elimination of Cr(Ⅵ) from electroplating wastewater by electro dialysis following chemical precipitation [J]. Separation Science and Technology,2004,39(7): 1501-1517.
    [24]Dhage S R, Khollam Y B, Potdar H S et al. Chemical co-precipitation of mixed (Pb plus Ti) oxalates precursor for the synthesis of PbTiO3 powders [J]. Materials Letters,2002,56 (4):564-570.
    [25]Berber-Mendoza M S. Leyva-Ramos R, Alonso-Davila P, et al. Comparison of isotherms for the ion exchange of Pb(Ⅱ) from aqueous solution onto homoionic clinoptilolite [J]. Journal of Colloid and Interface Science,2006.301(1):40-45.
    [26]Kartal S, Tokalioglu S, Ozkan B. Speciation of Cr(Ⅲ)/Cr(Ⅵ) in tannery waste waters by using ion-exchange resins [J]. Bulletin of the Korean chemical society,2006,27 (5):694-698.
    [27]Ding S L, Zhao Q Y, Ren H J, et al. Experimental study of separating Cr(VI) using a mixed carrier emulsion membrane [J]. Journal of the Society of Leather Technologists and Chemists,2005,89(3): 111-116.
    [28]Choi Y W, Moon S H. A study on supported liquid membrane for selective separation of Cr(VI) [J]. Separation Science and Technology,2004,39 (7):1663-1680.
    [29]Bernard S, Fauchals P, Jarrige J, et al. Process achievement for the treatment by transferred arc of fly ashes from waste incinerators by on line measurement of heavy metal evaporation [J]. High Temperature Material Processes,2001,5(2):181-194.
    [30]Watanabe T, Jin H W, Cho K J, et al. Application of a bio-electrochemical reactor process to direct treatment of metal pickling wastewater containing heavy metals and high strength nitrate [J]. Water Science and Technology,2004,50(8):111-118.
    [31]张华明,李兴亮,杨玉山,等.裂变放射性核素90Sr、137Cs分离的研究进展[J].同位素,2009,22(4):237-246.
    [32]陈虹,张承红.水合五氧化二锑吸附稀酸中锶的研究[J].水处理技术,2009,35(10):59-62.
    [33]Shabana E I, Ei-Dessouky M I, Abed Ei-Aziz M M. The ion exchange characteristics of antimonic acid [J]. Journal of Radioanalytical and Nuclear Chemistry,2002,251(2):293-296.
    [34]Sivaiah M V. Venkatesan K A, Krishna R M, et al. Ion exchange properties of strontium on in situ precipitated polyantimonic acid in Amberlite XAD-7 [J]. Separation and Purification Technology, 2005,44(1):1-9.
    [35]Tranter T J, Herbst R S, Todd T A. Evaluation of ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) as a cesium selective sorbent for the removal of Cs-137 from acidic nuclear waste solutions [J]. Advance In Environmental Research,2002,2 (6):107-121.
    [36]邓启民,李茂良,程作用.聚锑酸合成及吸附锶性能研究[J].核动力工程,2008,29(5):142-144.
    [37]Abusafa A, Yucel H. Removal of137Cs from aqueous solutions using different cationic forms of anatural zeolite:clinoptilolite [J]. Separation and Puri-fication Technology,2002,28:103-116.
    [38]冯启明,易发成,王维清.酸热活化累托石黏土对Sr2+、Cs+、Co2的吸附特性研究[J].非金属矿2008,31(1):49-52.
    [39]王金明,易发成.合成沸石对Sr2+的吸附性能及其表征[J].核动力工程.2010,31(2):89-93.
    [40]杨威,彭同江.蒙脱石吸附模拟核素Sr、Cs的性能研究[J].矿物学报,2010,30(1):49-55.
    [41]王彩霞,刘云海,花榕,等.壳聚糖及其衍生物吸附铀的研究进展[J].铀矿地质,2010,26(5):313-319.
    [42]Akkaya R, Ulusoy U. Adsorptive features of chitosan entrapped in polyacrylamide hydrogel for Pb/2+ UO22+, and Th4+ [J]. Journal of Hazardous Materials,2008,151(2-3):380-388.
    [43]Oshita K, Seo K, Sabarudin A. Synthesis of chitosan resin possessing a phenylarsonic acid moiety for collection/concentration of uranium and its determination by ICP-AES [J]. Anal Bioanal Chem,2008, 390(7):1927-1932.
    [44]Hasan S, Ghosh T K. Adsorption of uranium on a novel bioadsorbent chitosan-coated perlite [J]. Nuclear Technology,2007,159(1):59-71.
    [45]谢志英,肖化云,王光辉.交联壳聚糖对铀的吸附研究[J].环境工程学报,2010,4(8):1749-1752.
    [46]Schneider I A H, Smith R W, Roubio J. Effect of mining chemicals on biosorption of Cu(Ⅱ) by the non-living biomass of the macrophyte Potamogeton lucens [J]. Minerals Engineering,1999,12(3): 255-260.
    [47]Han R P, Zhang J H, Zou W H, et al. Equilibrium biosorption isotherm for lead ion on chaff [J]. Journal of Hazardous Materials,2005,125(1/2/3):266-271.
    [48]Sadowski Z. Effect of biosorption of Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) on the zeta potential and flocculation of Nocardia sp [J]. Minerals Engineering,2001,14(5):547-552.
    [49]Akar T, Cabuk A, Tunali S, et al. Biosorption potential of the macrofungus Ganoderma carnosum for removal of lead(Ⅱ) ions from aqueous solutions [J]. Journal of Environmental Science and Health Part A-Ttoxic/Hazardous Substances & Environmental Engineering,2006,41(11):2587-2606.
    [50]王立娜.生物吸附法去除废水中重金属离子[D].长春理工大学,2008.
    [51]Matheickal J T, Yu Q M. Biosorption of lead(Ⅱ) and copper(Ⅱ) from aqueous solutions by pretreated biomass of Australian marine algae [J]. Bioresource Technology,1999,69(3):223-229.
    [52]Ashkenazy R, Gottlieb L. Yannai S. Characterization of acetone-washed yeast biomass functional groups involved in lead biosorption. Biotechnology and Bioengineering,1997,55(1):1-10
    [53]Brady S A, Duncan J R. Biosorption of heavy metal cations by nonviable yeast biomass [J]. Environmental Technology,1994,15(5):429-438.
    [54]袁红莉,李志建,王能飞,等.一株红酵母的抗镉机制[J].中国科学D辑,2005,35(增刊):219-225.
    [55]李志东,李娜,邱峰,等.影响啤酒酵母菌吸附铅离子条件的研究[J].化学与生物工程,2006.23(10):37~39.
    [56]代淑娟,魏德洲,白丽梅,等.生物吸附-沉降法去除电镀废水中镉[J].中国有色金属学报,2008,18(10):1945-1950.
    [57]Dong S K, Byoung Y P. Effects on the removal of Pb2+ from aqueous solution by crab shell [J]. Journal of chemical Technology and Biotechnology,2001,76:1179-1184
    [58]Kleinubing S J, da Silva E A, da Silva M G C, et al. Equilibrium of Cu(Ⅱ) and Ni(Ⅱ) biosorption by marine alga Sargassum filipendula in a dynamic system:Competitiveness and selectivity [J]. Bioresource Technology,2011,102(7):4610-4617.
    [59]Choi S B, Yun Y S. Lead biosorption by waste biomass of Corynebacterium glutamicum generated from lysine fermentation process [J]. Biotechnology Letters,2004,26(4):331-336.
    [60]Tunali S, Akar T, Ozcan A S, et al. Equilibrium and kinetics of biosorption of lead(Ⅱ) from aqueous solutions by Cephalosporium aphidicola [J]. Separation and Purification Technology,2006,47(3): 105-112.
    [61]SelatniaA, Boukazoula A, Kechid N, et al. Biosorption of lead (Ⅱ) from aqueous solution by a bacterial dead Streptomyces rimosus biomass [J]. Biochemical Engineering Journal,2004,19(2): 127-135.
    [62]Luo F, Liu Y H, Li X M, et al. Biosorption of lead ion by chemically-modified biomass of marine brown algae Laminaria japonica [J]. Chemosphere,2006,64(7):1122-1127.
    [63]Puranik P R, Paknikar K M. Influence of co-cations on biosorption of lead and zinc-a comparative evaluation in binary and multimetal systems [J]. Bioresource Technology,1999,70(3):269-276.
    [64]Hawari A H, Mulligan C N. Biosorption of lead(Ⅱ), cadmium(Ⅱ), copper(Ⅱ) and nickel(Ⅱ) by anaerobic granular biomass [J]. Bioresource Technology,2006,97(4):692-700.
    [65]Lu W B, Shi J J, Wang C H, et al. Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp J1 possessing high heavy-metal resistance [J]. Journal of Hazardous Materials,2006, 134(1/2/3):80-86.
    [66]Sawalha M F, Peralta-videa J R, Romero-gonzalez J, et al. Biosorption of Cd(Ⅱ), Cr(Ⅲ), and Cr(VI) by saltbush (Atriplex canescens) biomass:thermodynamic and isotherm studies [J]. Journal of Colloid and Interface Science,2006,300(1):100-104.
    [67]Deng S B, Ting Y P. Characterization of PEI-modified biomass and biosorption of Cu(Ⅱ), Pb(Ⅱ) and Ni(II) [J]. Water Research,2005,39(10):2167-2177.
    [68]Ozer A, Ozer D. Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S-cerevisiae:determination of biosorption heats [J]. Journal of Hazardous Materials,2003, B100: 219-229.
    [69]Pagnartelli F, Esposito A, Toro L, et al. Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans:Langmuir-type empirical model [J]. Water Research,2003, 37(3):627-633.
    [70]刊润平,蒋海涛.酵母菌对Cr(Ⅵ)的生物吸附作用[J].环境保护科学,2001,27(104):28-33.
    [71]Kedari C S, Das S K, Ghosh S. Biosorption of long lived radionuclides using immobilized cells of Saccharomyces cerevisiae [J]. World Journal of Microbiology & Biotechnology,2001,17:789-793.
    [72]Liu N, Luo S Z. Biosorption of a mericium-241 by Saccharomyces cerevisiae [J]. Journal of Radioanalytical and Nuclear Chemistry,2002,252(1):187-191.
    [73]Goksungur Y, Uren S, Guvenc U. Biosorption of cadmium and lead ions by ethanol treated waste baker's yeast biomass [J]. Bioresource Technology,2005,96 (1):103-109.
    [74]Bag H, Lale M, Turker AR. Determination of Cu, Zn and Cd in water by FAAS after preconcentration by baker's yeast (Saccharomyces cerevisiae) immobilized on sepiolite [J]. Fresenius Journal of Analytical Chemistry,1999,363 (3):224-230.
    [75]Vianna L N L, Andrade M C, Nicoli J R. Screening of waste biomass from Saccharomyces cerevisiae, Aspergillus oryzae and Bacillus lentus fermentations for removal of Cu, Zn and Cd by biosorption [J]. World Journal of Microbiology,2000,16 (5):437-440.
    [76]Naeem A, Woertz J R, Fein J B. Experimental measurement of proton, Cd, Pb, Sr, and Zn adsorption onto the fungal species Saccharomyces cerevisiae [J]. Environmental Science & Technology,2006, 40(18):5724-5729.
    [77]Han R P, Li H K, Li Y H, et al. Biosorption of copper and lead ions by waste beer yeast [J]. Journal of Hazardous Materials,2006,137(3):1569-1576.
    [78]Zhang Y S, Liu W G, Xu M, et al. Study of the mechanisms of Cu2+ biosorption by ethanol/caustic-pretreated baker's yeast biomass. Journal of Hazardous Materials,2010,178(1-3):1085-1093.
    [79]代群威,董发勤,张伟.干废弃啤酒酵母菌对铅离子的吸附及FTIR分析[J].光谱学与光谱分析,2009,29(7):1788-1792.
    [80]代群威,董发勤,张伟.酵母菌对不同液相体系中锌离子的吸附行为[J].环境工程学报,2010.4(2):453-457.
    [81]代群威,董发勤,Noonan M J灭活面包酵母菌对Pb(Ⅱ)和Cd(11)单双离子体系的吸附效果[J].安全与环境学报,2009,9(4)54-58.
    [82]代群威,NOONAN M J,董发勤,等.灭活面包酵母菌对溶液中铅离子的吸附研究[J].安全与环境学报,2008,8(4):49-53.
    [83]Dai Q W, Dong F Q, Zhang W. The Biosorption Effect and Mechanism of Pb(II) on Waste Beer Yeast [A]. In:Proc. of 2009 International Conference on Energy and Environment Technology [C], Guilin, 2009, Los Vaqueros Circle:ICEET Computer Society,2009:827-830.
    [84]代群威,董发勤,Noonan M J,等.酵母菌在铅铜模拟废水中的动力学生物吸附行为[J].中国有色金属学报.2010,20(4):788-794.
    [85]代群威,董发勤,Noonan M J,等.单双离子体系中酵母菌对Pb2+的吸附动力学[J].安全与环境学报,2009,9(3):15-19.
    [86]黄民生,施华丽,郑乐平.曲霉对水中重金属的吸附去除[J].上海环境科学,2002,21(2):89-92.
    [87]Zhang X Z, Luo S G, Yang Q, et al. Accumulation of uranium at low concentration by the green alga Scenedesmus obliquus 34 [J]. Journal of Applied phycology,1997,9:65-71.
    [88]陈勇生.重金属的生物吸附技术的研究[J].上海环境科学,1998,17(7):14-23.
    [89]Esteves A J P, Valdman E, Leite S G D. Repeated removal of cadmium and zine from and industrial effluent by waste biomass sargassum sp [J]. Biotechnology Letters,2000,22:499-502.
    [90]刘月英,傅锦坤,李仁忠等.细菌吸附Pd2+的研究[J].微生物学报,2000,20(5):535-539.
    [91]王磊,范立梅,周琪等.不同生长期的Pseudomonas putida5-x细胞对工业废水中Cu2+的吸附[J].环境科学学报,2001,21(2):208-212.
    [92]Prasad B B, Pandey U C. Separation and preconcentration of copper and cadmiumions frommulti elemental solution using Nostoc muscorum-based biosorbents [J]. World Journal of Microbiology & Biotechnology,2000,16:819-827.
    [93]王建龙.耐辐射基因工程菌Deinococcus radiodurans及其在环境修复中的应用[J].辐射研究与辐射工艺学报,2004,22(5):257-260.
    [94]Zhang Y Q, Sun C H, Li W J, et al. Deinococcus yunweiensis sp. nov., a gamma- and UV-radiation-resistant bacterium from China [J]. International Journal of Systematic and Evolutionary Microbiology,2007,57(Pt2):370-375.
    [95]Haruta N, Yu X, Yang S, et al. A DNA pairing-enhanced conformation of bacterial RecA proteins [J]. Journal of Biological Chemistry,2003,278:52710-52723.
    [96]Bonacossa A C, Coste G, Sommer S, et al. Quantification of recA protein in Deinococcus radiodurans reveals involvement of recA, but not LexA, inits regulation [J]. Molecular Genetics and Genomics, 2002,268:28-41.
    [97]Satoh K, Narumi I, Kikuchi M, et al. Characterization of recA424 and recA670 proteins from Deinococcus radiodurans [J]. Journal of Biochemistry (Tokyo),2002,131(1):121-129.
    [98]盛多红.耐辐射球菌中RecA调控蛋白的研究[D].博士学位论文.浙江大学,2005.
    [99]Garry W. Buchko, Shuisong Ni, Stephen R. Holbrook, et al. Solution Structure of Hypothetical Nudix Hydrolase DR0079 from Extremely Radiation-Resistant Deinococcus radiodurans Bacterium [J]. PROTEINS:Structure, Function, and Bioinformatics,2004,56:28-39.
    [100]Makarova K S, Aravind L, Wolf Y I, et al. Genome of the Extremely Radiation-Resistant Bacterium Deinococcus radiodurans Viewed from the Perspective of Comparative Genomics [J]. Micorobiology and molecular reviews,2001,65(1):44-79.
    [101]高冠军,华跃进.耐辐射奇球菌recA基因的克隆、表达及其对recA缺损大肠杆菌辐射抗性的影响[J].微生物学报,2004,44(1):41-44.
    [102]Michael J D. Engineering radiation-resistant bacteria for environmental biotechnology [J]. Current Opinion in Biotechnology,2000,11:280-285.
    [103]Ravindranath S, Jayant R B. Deinococcus mumbaiensissp.nov.,a radiation-resistant pleomorphic bacterium isolated from Mumbai, India [J]. FEMS Microbiology Letters,2006,254:275-280.
    [104]Rainey F A, Ray K, Ferreira M, et al. Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample [J]. Apply Environment Microbiology,2005,71:5225-5235.
    [105]Groot A, Chapon V, Servant P, et al. Deinococcus deserti sp. nov., a gammaradiation tolerant bacterium isolated from the Sahara desert [J]. International Journal of Systematic and Evolutionary Microbiology,2005,55:2441-2446.
    [106]Jalali-Rad R, Ghafourian H, Asef Y, et al. Biosorption of cesium by native and chemically modified biomass of marine algae:introduce the new biosorbents for biotechnology applications [J]. Journal of Hazardous Materials,2004 (B116):125-134.
    [107]Pan X L, Meng X L, Zhang D Y, et al. Biosorption of strontium ion by immobilised Aspergillus niger [J]. International Journal of Environment and Pollution,2009,37(2-3):276-288.
    [108]Gonzilez-Muiioz M T, Merroun M L, Ben O N, et al. Biosorption of Uranium by Myxococcus Xanthus [J]. International Biodeterioration and Biodegradation,1997,40 (24):107-114.
    [109]Kuber C. Bhainsa, Stanislaus F, et al. Biosorption of uranium (VI) by Aspergillus fumigatus [J]. Biotechnology Techniques,1999,13:695-699.
    [110]Nakajima A, Tsuruta T. Competitive biosorption of thorium and uranium by Micrococcus luteus [J]. Journal of Radioanalytical and Nuclear Chemistry,2004,260(1):13-18.
    [111]Yang J B, Bohumil V. Biosoption of uranium on Savgassum biomass [J]. Water Research,1999,33, (15):3357-3363.
    [112]Hafez M B, Ibrahim M K. Abdel-Razek A S, et al. Biosorption of some ions on different bacterial species from aqueous and radioactive waste solutions [J]. Journal of Radioanalytical and Nuclear Chemistry,2002,252 (1):179-185.
    [113]夏良树.谭凯旋,邓帛辉,等.四种生物吸附剂对铀的吸附性能研究[J].化学工程,2008,36(2):9-12.
    [114]王翠苹,孙红文,徐伟昌,等.生物对铀的吸附研究[J].环境科学与技术,2008,31(3):23-25.
    [115]刘宁,罗顺忠,杨远友,等.啤酒酵母吸附放射性核素241Am的研究[J].环境科学学报,2002,22(4):469-472.
    [116]Chakraborty D, Maji S, Bandyopadhyay A, et al. Biosorption of cesium-137 and strontium-90 by mucilaginous seeds of Ocimum basilicum [J]. Bioresource Technology,2007,98(15):2949-2952.
    [117]Chen C, Wang J L. Removal of Pb2+. Ag+, Cs+ and Sr2+ from aqueous solution by brewery's waste biomass [J]. Journal of Hazardous Materials,2008,151(1):65-70.
    [118]Ji Y Q, Hu Y T, Tian Qing, et al. Biosorption of strontium ions by magnetically modified yeast cells [J]. Separation Science and Technology,2010,45(10):1499-1504.
    [119]张伟,董发勤,代群威.啤酒酵母菌对溶液中锶离子的吸附行为[J].环境污染与防治,2009,31(8):11-15.
    [120]陈灿,王建龙.酿酒酵母对放射性核素铯的生物吸附[J].原子能科学技术,2008,42(4):308-313.
    [121]Satvatmanesh D, Siavoshi F, Beitollahi M M, et al. Biosorption of 226Ra in high level natural radiation areas of Ramsar, Iran [J]. Journal of Radioanalytical and Nuclear Chemistry,2003,258 (3): 483-486.
    [122]王海雷,孔凡晶,郑绵平.不同钾浓度培养条件对栖热菌TibetanG6菌株吸附铯的影响[J].中国科学C辑生命科学,2005,35(6):513-518.
    [123]王海雷,孔凡晶,郑绵平.菌株Thermus sp. TibetanG7对铯的吸附:热泉铯硅华形成过程中生物成矿作用的征兆[J].科学通报,52(17):2043-2048.
    [124]Heredia M A, ZaPieo R, Gareia-Sanehez M J, et al. Effeet of calcium, sodium and pH on biosorption of radiocesium by Riccia Fluftans [J]. Aquatie Botanym,2002,74:245-256.
    [125]Nakajima A. Effect of selenium on uranium biosorption [J]. Journal of Radioanalytical and Nuclear Chemistry,2001,247(2):347-350.
    [126]李利,叶勤,梁贵春等.改性少根根霉对针(Ⅳ)的吸附研究[J].四川环境,2006,25(6):9-12.
    [127]Jalali-Rada R, Ghafouriana H, Asefa Y, et al. Biosorption of cesium by native and chemically modified biomass of marine algae:introduce the new biosorbents for biotechnology applications [J]. Journal of Hazardous Materials,2004, B116:125-134.
    [128]王宝娥,徐伟昌,谢水波,等.啤酒酵母菌固定化凝胶颗粒吸附铀的研究[J].铀矿冶,2005,24(1):34-37.
    [129]Avery S V, Smith S L, Ghazi A M. Stimulation of Strontium Accumulation in linoleate enriched saccharomyces cerevisiae is a result of reduced Sr2+ efflux [J]. Applied and Environmental Microbiology,1999,65(3):1191-1197.
    [130]金玉仁,李冬梅,张海涛,等.磁性壳聚糖对钚、镅、锔的吸附性能研究[J].原子能科学技术,1998,32(增刊):136-140.
    [131]闵茂中,彭新建,王金平,等.铀的微生物成矿作用研究进展[J].铀矿地质,2003,19(5):257-263.
    [132]胡恋,谢水波,张晓健,等.微生物吸附处理低浓度含铀废水的效能[J].安全与环境学报,2007,7(2):57-60.
    [133]Tsezos M, Georgousis Z, Remoudaki E. Mechanism of aluminum interference on uranium biosorption by rhizopus arrhizus [J]. Biotechnology and bioengineering,1997,55(1):16-27.
    [134]王建龙,陈灿.微生物还原放射性核素研究进展[J].核技术,2006,29(4):286-290.
    [135]Lloyd J R, Leang C,Hodges M, et al. Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in geobacter sulfurreducens [.I]. Biochemical Journal,2003,369(1): 153-161.
    [136]Merrounm, Nedlkovam, Bernhardg, et al. Transmissionelectron microscope analysis of U(VI) accumulated by differentbacterial isolates from extreme habitats [R]. Germany:Institute of Radiochemistry, Annual Report,2005:28.
    [137]Li P F, Mao Z Y, Rao X J, et al. Biosorption of uranium by lake-harvested biomass from a cyanobacterium bloom [J]. Bioresource Technology,2004,94:193-195.
    [138]王传耀,高美须,蒋梦月.大肠杆菌、肠炎沙门氏菌、金黄色葡萄球菌及酿酒酵母菌的辐照致死剂量[J].核农学通报,1994,15(4):171-174.
    [139]陈剑,刘芬菊.γ-射线对抗辐射菌抗氧化酶活性的影响[J].苏州大学学报(医学版),2004,24(1):15-17.
    [140]Chen J P. Batch and continuous adsorption of strontium by plant root tissues [J]. Bioresource Technology,1997,60(3):185-189.
    [141]Nikovskaya G N, Ul'berg Z R, Borisova E N, et al. Sorption of copper and strontium ions and fulvinate and citrate complexes from aqueous solutions by flocculating microbocenosis [J]. Kolloidnyj Zhurnal,2004,66(5):623-628.
    [142]刘峰,杨枝,刘和连,等.Fe3O4纳米磁性微粒对钴和锶的吸附[J].核化学与放射化学,2008, 30(1):56-60.
    [143]张帅,程吴.固定化啤酒废酵母对Cr(Ⅵ)的吸附[J].环境工程学报,2009,3(3):489-492.
    [144]刘月英,李仁忠,张秀丽,等.固定化地衣芽孢杆菌R08吸附Pd2+的研究[J].微生物学报,2002.42(6):700-705.
    [145]谢丹丹.刘月英,吴成林,等.固定化啤酒酵母废菌体吸附pt4+特性的研究[J].厦门大学学报(自然科学版),2003,42(6):800-804.
    [146]徐雪芹,李小明,杨麒,等.丝瓜瓤固定简青霉吸附废水中Pb2+和Cu2+的机理[J].2008,28(1):95-100.
    [147]庞翠,刘云海,李敏,等.海藻酸钠固定化桔青霉微球对铀的吸附研究[J].化学研究与应用,2010,22(11):1440-1445.
    [148]Tsekova K, Todorova D, Dencheva V, et al. Biosorption of copper(Ⅱ) and cadmium(Ⅱ) from aqueous solutions by free and immobilized biomass of Aspergillus niger [J]. Bioresource Technology,2010, 101(6):1727-1731.
    [149]Akar T, Kaynak Z, Ulusoy S, et al. Enhanced biosorption of nickel(Ⅱ) ions by silica-gel-immobilized waste biomass:Biosorption characteristics in batch and dynamic flow mode [J]. Journal of Hazardous Materials,2009,163(2-3):1134-1141.
    [150]Mashitah M D, Yus A Y, Bhatia S. Biosorption of cadmium (Ⅱ) ions by immobilized cells of Pycnoporus sanguineus from aqueous solution [J]. Bioresource Technology,2008,99(11): 4742-4748.
    [151]Kao W C, Wu J Y, Chang C C, et al. Cadmium biosorption by polyvinyl alcohol immobilized recombinant Escherichia coli [J]. Journal of Hazardous Materials,2009,169(1-3):651-658.
    [152]Liao J L, Yang Y Y, Luo S Z, et al. Biosorption of americium-241 by immobilized Rhizopus arrihizus [J]. Applied Radiation and Isotopes,2004,60(1):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700