微波信号的磁光调制及其光学处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在磁光薄膜波导中,在外加偏置磁场作用下,微波信号激发的静磁波与入射导波光作用会引起导波光的Bragg衍射效应并发生模式转换。利用这种效应可以实现微波信号的光学处理,可以作为研究微波光子学一种新的途径。与声光作用原理相似,基于静磁波的磁光作用可以实现微波信号的光调制和在光域实现微波信号相关处理,而且磁光Bragg器件具有简单的换能器结构设计,更大的带宽,更高的工作频率范围(0.5~40GHz),更高的调制速度等优势,在RoF系统、雷达、扩频通信等方面具有非常诱人的应用前景。
     目前研究较多的是连续静磁波与连续导波光的作用,而对磁光信息处理研究比较少。本文分析了载有信息的微波信号激发的静磁前向体波与导波光相互作用的过程,并在此基础上研究了基于微波静磁波的磁光调制特性和空间积分磁光相关处理。
     主要工作内容与创新点有:
     1.通过微扰理论推导了静磁波脉冲与导波光作用的耦合模方程,并介绍了该方程的数值解法,利用数值法计算的衍射光脉冲与实验结果基本一致。在慢变包络的近似下,推导出相位匹配时衍射光的复振幅解析式,并提出了一种简单分析小信号情形下磁光调制的解析方法,分析表明在相位失配很小时采用数值法与解析法可以得到相同的衍射光脉冲。
     2.利用解析法研究了矩形静磁波脉冲对导波光的调制特性,研究表明:衍射光脉冲近似成梯形;衍射光脉冲的脉冲宽度和平顶时间分别等于静磁波脉冲宽度与渡越时间的之和和之差;在上升时间范围内,衍射光脉冲的强度呈抛物分布;静磁波脉冲的占空比小于0.5时可以获得较高的调制速率。这为磁光调制器的设计提供了参考。
     3.描述了空间积分磁光相关器的工作原理,利用磁光耦合理论分析了磁光相关器的输出光场,并在此基础上分析了一次衍射光相关检测和二次衍射光相关检测过程,其中一次衍射光检测的信噪比大于二次衍射光检测,二次衍射光相关的检测系统比一次衍射光的检测系统较简单些。
     4.研究了巴克码的磁光相关输出特性,分析了微波信号强度对空间积分磁光相关性能的影响。结果表明:空间积分磁光相关输出宽度是一般相关输出的一半;在小信号范围内,相关输出的归一化包络的峰值较小,近似与RF驱动功率成正比,此时可实现严格的磁光相关,其处理增益可达20dB。
In magneto-optic (MO) film waveguides, the interaction between guided-optical waves (GOWs) and magnetostatic waves (MSWs) excited by the RF signal within microstrip line under external bias magnetic field may lead to the Bragg diffraction effect and mode conversion of the GOWs. The microwave signal can be processed in optical-domain by the MO Bragg diffraction effect, which can be used as a new approach for studying microwave photonics. Similar to acoustooptic (AO) devices, the MO Bragg modulator and correlator can be realized by the MO effects induced by magnetostatic waves. Besides, the MO Bragg devices have advantages on much simpler design of the transducer, larger bandwidth, higher operating frequency (0.5~40GHz) and faster modulation speeds, which have a very attractive prospect in RoF systems, radar and spread spectrum communications.
     The interaction between continuous MSWs and continuous GOWs is very well researched, but MO information processing has hardly been quantitatively analyzed until now. In this article, the characteristics of the MO pulse modulation induced by magnetostatic forward volume waves (MSFVWs) pulses and the MO correlation processing are analyzed.
     The main contents and innovations are as follows:
     1. The coupled-mode equations for the GOWs modulated by MSFVW pulse is deduced through the perturbation theory and the numerical method for the equations is introduced in detail. The diffracted pulse obtained from the numerical solution is basically agreement with the experimental result. In the slow-varying envelope approximation, the complex amplitude of diffracted light pulse is given under the phase-matching conditions and a simple analytical method for analyzing the MO modulation is proposed in the small signal case. It is shown that, the diffracted pulses, respectively obtained by the two methods in the case of small phase mismatch, are in agreement with each other.
     2. According to the analytical method, the MO Bragg modulation by using rectangular pulses is theoretically studied in detail. It is shown that, the diffracted light pulses approximate to an isosceles trapezoid, and the duration time and the flat-top response time are equal to the sum and difference between the width and transit time of the rectangular MSFVW pulse, respectively; the rise or fall edge of diffracted light pulse is the parabolic distribution; when the MSW duty factor is less than 0.5, the modulating data rate can be improved, but the relative peak intensity of the diffracted light pulse is reduced. The conclusions are very useful for designing MO Bragg modulators.
     3. The operating principle of MO space-integrating correlators is described and the analytic expressions of heterodyne detection for the single and double diffracted light are given. It is shown that the detection of the single diffracted light has a larger signal to noise ratio than the double diffracted light detection, but the the former is more complicated.
     4. Taking barker code as an example, the output characteristics of MO space-integrating correlators and the performance influenced by the intensity of microwave RF signals are discussed. It is shown that, the output width of MO correlators is a half of that of the general; in the range of small signals, the peak value of normalized envelope is approximately proportional to the RF-driven power and the MO correlation can be strictly realized with the processing gain of 20dB or more.
引文
[1]李英.微波、毫米波光子学.电子科技导波,1997,4:17-21
    [2]余显斌.光纤光栅在微波信号处理中的应用研究:[博士学位论文].杭州:浙江大学,2005:1-12
    [3] N.F Xavier, B.S abu.Adaptive Asymmetric Linearization of Radio Over Fiber Links for Wireless Access. IEEE Transactions on vehicular Technology,2002,51(6):1576-1586
    [4] N. Nakajima. ROF Technologies Applied for Cellular and Wireless Systems Microwave in: 2005 International Topical Meeting on Microwave Photonics: 11~14
    [5]杨湘云,胡薇薇,徐安士.毫米波ROF光通信系统中信号传输色散影响的研究.北京大学学报,42(3):401-405
    [6]廖丰卓.射频信号的光学处理方法:[硕士毕业论文].成都:电子科技大学,2007:1-3
    [7]J. Capmany, D. Pastor, B. Ortega ,etal. Optical Processing of Microwave Signals. MWP,2000:241-244
    [8] J S Alwyn.Microwave photonics.IEEE Trans. On Microwave Theo.and Tech.,2002,50(3):877-887.
    [9]周波,张汉一,郑小平等.微波光子学发展动态.激光红外. 2006,36(2):81-84.
    [10]王亚雄.声光互作用研究:[硕士学位论文].西安:陕西师范大学,2006:1-3
    [11] A. Yariv.现代通信光电子学.北京:电子工业出版社.2004:248-273.
    [12]C. S. Tsai Integrated Acoustooptic and Magnetooptic Devices for Optical Information Processing. Proc. of the IEEE.1996,84(6):853-868.
    [13]Damon R W, Eshbach J R. Magnetostatic modes of a ferromagnetic slab. J. Phys. Chem. Solids.1961,19:308-320
    [14]张克潜,李德杰.微波电子学中的电磁理论.北京:电子工业出版社,2001:555-568
    [15]M. Dan.Acoustooptical Pulse Modulators, IEEE JOURAL of quantum Electronics. 1970, QE-6(1):15-24
    [16]V. E Yury, N. U. Victor. New space-integrating acousto-optic correlator operating mode:line filtering and forming of video-signals. Optical information processing.1993,2051:46-53
    [17]李阳.声光互作用研究及其在声光波导开关中的应用: [硕士学位论文].西安:中国科学院研究生院, 2004,1-9
    [18]程乃平,江修富,邵定蓉.声光信号处理及应用.北京:国防工业出版社,2004:13-25.
    [19]Fisher A D, Lee J N, Gaynor E S et al. Optical guided-wave interactions with magnetostatic waves at microwave frequencies. Appl. Phys. Lett., 1982,41(9):779-781
    [20]杨青慧,刘盈利,张怀武.静磁波器件研究进展.磁性材料及器件, 2003,34(6): 30-33
    [21]陈戈林,申忠明,张可潜.静磁前向体波-导光波的相互作用研究.清华大学学报,1995,35(1):99-106
    [22]A. Prabhakar and D. D. Stancil, Wideband optical modulation via the magneto–optic interaction in a bismuth-lutetium-iron garnet film, Appl.Phys.Lett. 1997 (71):151~153 Physics, Vol. 29, pp.539, 1958
    [23]C. D. Reeve, J.F. Wombwell.Novel space-integrating acousto-optic correlator :amplitude and phase information from intensityonly measurements. IEEE Proceedings,1989,136(4):185-190
    [24]程乃平,邵定蓉.一种新型的相关接收技术.通信学报,1997,18(4):80-83
    [25]C.S. Tsai. Integrated acousto-optic and magneto-optic Bragg cell modulators and their applications. Optical Engineering. 1999,38(7):1136-1142
    [26]S.E. Irvine, A.Y. Elezzabi. Multigigahertz guided wave magnetooptic modulator.IEEE Photonics Technology Letters,2002,14(6):798-800
    [27]C.L. Wang, C.S. Tsai. Integrated magnetooptic Bragg cell modulation in tapered waveguide and applications to RF spectral analysis at X-band and light beam scanning.IEEE Ultrasonics Symposium,1992:165-168
    [28]Scott E.I, Abdulhakem Y.E. Modeling of high-speed magnetooptic beam deflection. IEEE Journal of Quantum Electronics,2002,38(10):1428-1435
    [29]Y. Pu, C.S. Tsai. Wideband integrated magnetooptic frequency shifter and modulator at X-band. IEEE Ultrasonics Symposium, 1992:161-164
    [30] C.S. Magnetostatic waves-based integrated magnetooptic Bragg cell devices and applications. IEEE Transactions on magnetics, 1996, 32(5):4118-4123
    [31]陈戈林,申忠明,李鸿庆,静磁前向体波(MSFVW)激励特性研究,声学学报,1993 ,18(1):1-10
    [32]刘公强,乐志强,沈德芳.磁光学.上海:上海科学技术出版社,2001:120-151
    [33]J.P. Parekh, K.W. Chang and H.S. Tuan. Propagation characteristics of magneostatic waves, Circuits Syst. Signal Process., 1985,14(1/2):9-40
    [34]C.V. Smith, J.M. Owens, T.J. Mears, etal. Induction probing of magnetostatic delay line fields, IEEE Trans. Magn.,1979,mag-15(6):1738-1740
    [35]Baojian Wu,Kun Qiu.An effective method for improving diffraction performance ofmagnetostatic backward volume wave-based magneto-optic Bragg cells by using an appropriately tilted bias magnetic field in YIG film plane, J. Magn. Magn. Mater.2006,303(1):227-231
    [36]苏均.层状介质材料中的静磁波及其与光相互作用的研究[博士学位论文]。武汉:华中科技大学,1990:5-7
    [37]陈戈林,申忠明,李鸿庆等.静磁前向体波激励特性的初步研究,微波学报,1992,2:9-17
    [38]武保剑.静磁波与导波光的相互作用:[博士学位论文].上海:上海交通大学,1999:1-60
    [39]武保剑.磁光Bragg衍射中的相位失配分析.物理学报,2006,55(6):3095-3099
    [40]Jun Su, C.S. Tsai.Nonlinear characteristics of magnetooptic Bragg diffraction in bismuth substituted yttrium iron garnet films. Jour.Appl. Phys.2000, 87(3):1474-1481
    [41]C.L. Wang,C.S. Tsai.Integrated Magnetooptic Bragg Cell Modulator in Yttrium Iron Garnet-Gadolinium Gallium Garnet Taper Waveguide and Applications.Journal of lightwave technology,1997, 15(9):1708-1715
    [42]文峰.金属覆层波导结构的微波磁光特性研究:[硕士学位论文].成都:电子科技大学,2008:1-65
    [43]武保剑,解宝祥,罗成友.基于空间积分的磁光相关处理性能分析.光子学报,2009,(已录用)
    [44]C.S. Tsai, and D. Young. Magnetostatic-forward-volume-wave-based guided-wave magneto-optic magneto-optic Bragg cells and applications to communications and signal processing, IEEE Trans. Microwave Theory Tech., vol. MTT-38, no.5, pp. 560-570, May 1990.
    [45]Bao-Jian Wu, Cheng-You Luo, and Kun Qiu. Characteristics of microwave magneto-optic modulation based on magnetostatic waves. Opt. Commun. 2009,282(9):1724-1727
    [46]Cheng-You Luo, Bao-Jian Wu,and Kun Qiu.Microwave magneto-optic Bragg modulators with rectangular MSFVW pulses.2009,JESTC ,(已录用)
    [47]B.-J. Wu. Analysis of phase mismatch in magneto-optic Bragg diffraction, Chin. Phys.Soc, 2006, 55(06): 3095-05
    [48]罗成友,武保剑.基于微波磁光效应的射频相关处理研究.磁性材料及器件,2009,40(1): 16-21
    [49]Rhodes W T. Acousto-Optic Signal Processing: Convolution and Correlation. Proc IEEE, 1981, 69(1): 65-79.
    [50]杨祥林.光纤通信系统.北京:国防工业出版社,2002:207-210
    [51]Y. David, and C.S. Tsai, X-band mangneto-optic Bragg cells using bismuth-doped yttrium iron garnet waveguides, Appl.Phys.Lett., 1989,55(21) :2242-2244

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700