简单阴离子及谷氨酸插层LDHs功能材料的理论计算模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
层状双金属氢氧化物(Layered Double Hydroxides,简写为LDHs),又称阴离子粘土或水滑石类化合物,是一种具有特殊层状构型的功能材料。由于该材料主体层板元素的可调控性和层间客体的可交换性,为此类材料的迅速发展提供了广阔的空间,使其在离子交换、吸附、催化、医药、光、电、磁等多个领域展现出广阔的应用前景。
     简单无机阴离子插层水滑石的密度泛函理论研究:通过模拟简单无机阴离子F~-, Cl~-, Br~-, I~-, OH~-, NO_3~-, IO_3~-, Cl_O4~-插层水滑石的微观结构,深入讨论客体阴离子与主体层板的相互作用、成键、态密度、电子性质等。层板的金属阳离子与羟基之间不仅存在离子键作用也存在共价键作用。LDHs-X主客体间存在着较强的超分子作用,主要包括静电和氢键作用。当层间阴离子为简单的卤素阴离子时,主客体相互作用力强度与卤素阴离子的电负性强度变化方向相一致,体系的LUMO轨道弥散在整个层间区域。当层间阴离子为较为复杂的阴离子时,该顺序与层间阴离子的中心原子及与其结合的原子,两者之间电负性差值的绝对值大小相一致,体系的LUMO轨道几乎定域在层间阴离子上。金属阳离子的p轨道和客体阴离子的s轨道对整个体系的离子键部分贡献较大,而金属阳离子的s轨道和客体阴离子的p轨道对体系的共价键部分贡献较大。LDHs-X体系中存在多重氢键,单个普通氢键的强度强于单个多重氢键,但多个多重氢键会使层间阴离子与层板羟基间产生较单个普通氢键更强的作用。
     镁铝水滑石限域空间中Cl~-与H_2O的超分子作用研究:通过模拟简单无机阴离子插层水滑石的微观结构,在层间加入不同个数的水分子,深入讨论客体阴离子、层间水分子以及主体层板三者之间的相互作用、成键、氢键分布、电子性质等。随着水分子数的增加,LDHs-Cl~-的层间距逐渐增大后趋于平衡。水合过程中氢键作用比静电作用更占优势,Layer-Water型氢键要略强于Anoin-Water型氢键。当n=1,2时,Cl~-与水分子所在平面以平行层板的方式存在于LDHs层板间,并且与两层板的距离基本相等;当n=3,4时,Cl~-与水分子则以偏向某一层的方式随机地存在于LDHs层板间。随着层间水分子增加,LDHs-Cl-nH_2O由离子型晶体向分子型晶体转化,LDHs-Cl~-的水合具有饱和量。
     层间水含量对插层水滑石力学特性的影响:通过模拟不同层间水含量的简单无机阴离子插层水滑石体系,深入研究层间水分子含量对材料各个力学特性,如:弹性常数,切变模量,杨氏模量,泊松比等的影响。层间水分子含量(n)对材料的力学性质有很大的影响。层间水分子能提高体系总体的抗压性能,当n=1时,材料的抗压性能最好;当n=2时,材料抵抗剪切变形的能力最差,体系最柔软。层间水分子对材料杨氏模量的影响较大,对泊松比的影响并不明显。且层间水分子对材料横向的力学性能起到平均化作用,最终使材料在x轴和y轴方向上的抗压性能和膨胀率趋于一致。
     谷氨酸插层锌铝水滑石的分子动力学模拟研究:优化模拟及确认Glu-Zn3Al-LDHs功能材的超分子结构和水合膨胀性能。当Nw≤8时,Glu-LDHs体系的层间距dc保持基本恒定,当Nw≥8时,层间距逐渐增大,符合dc = 0.432 Nw + 8.837 (8≤Nw≤52, R2 = 0.9983)线性方程。水合能逐渐增大,当Nw=36时,趋于平衡,Glu-LDHs在水环境或湿度很高的条件下能够持续吸水不会发生剥离。Glu-LDHs的水合过程如下:首先水分子同步与层板和阴离子形成氢键;当阴离子趋于饱和后,水分子继续与层板形成氢键,并逐步发生Layer-Water型氢键取代Layer- Anoin型氢键,驱使阴离子向层中央迁移,与层板发生隔离;最后水分子在水滑石羟基表面形成结构化水层。较低的平衡水合能,以及即使在高含水量情况下Layer-Anoin型氢键的数目也不会降低为0,这两点可能是造成Glu-LDHs在模拟胃液下进行缓释实验室出现缓释率不高的微观原因。
anionic clays have been attracting attention of scientists and academe as a kind of materials with special structure and properties. Because the layer-sheets and interlayer anions are flexibly controllable, and the structure and properties of LDHs are changeable, it is widely used in the fields of anion exchange and adsorption materials, catalysis, medicine, electrochemistry.
     Density functional theory study of various simple anions intercalated LDHs material: Microscopic structures and electronic properties of LDHs containing F~-, Cl~-, Br~-, I~-, OH~-, NO_3~-, IO_3~-, Cl_O4~- have been investigated in this paper. Both electrovalent bonds and covalent bonds were found in the layer. For halogen anions, the strength of interaction was accorded with electronegative intensity. And the LUMOs dispersed throughout the interlayer region. While for complicated anions, the strength was accorded with the discrepancy of electronegative intensity between center atom and bonding atoms, the LUMOs almost localized in interlayer anions. The p orbital of metal cations and s orbital of anions provided major contributions to electrovalent parts of system, while s orbital of metal cations and p orbital of anions provided major contributions to covalent parts. Multiple hydrogen bonds were existed in LDHs-X system. The more the number of multiple hydrogen bonds formed, the weaker the strength of single multi-hydrogen bonds was. Multiple hydrogen bonds will bring stronger interaction between interlayer guest anion and host LDHs-layer than single hydrogen bond.
     Super-Molecular interaction between Cl~- and H_2O with the restricted space of LDHs: The distribution of hydrogen bond, electronic properties and supra-molecular interaction between the guest anions, H_2O and the host layers have been investigated with different numbers of H_2O. In the system of LDHs-Cl-nH_2O, the interlayer distance increased gradually then tended to invariableness. And in the process of hydration of LDHs-Cl~-, hydrogen bonding was superior to electrostatic interaction, and Layer-Water type hydrogen bonding was a little stronger than Anion-Water type hydrogen bonding between H_2O and the rest of the structure. When n was 1 or 2, Cl~- and the plane of water were parallel to the layer; while n was 3 or 4, distribution of Cl~- and water was random. Moreover, the LDHs-Cl-nH_2O would change from ionic crystal to molecular crystal with the increase of number of water molecule. The hydration of LDHs-Cl? would achieve a definite saturation state.
     Influence of interlayer water content on the mechanical properties of LDHs: The influence of interlayer water content on the mechanical properties of the materials was investigated by analyzing the elastic constants, shear modulus, Young’s modulus and Poisson’s ratio, etc. Results indicated that the interlayer water content (n) greatly impacted the mechanical properties of the materials. Interlayer water can enhance the compression properties of the overall system. When n=1, the compression properties of the material was best. When n=2, the capacity of the material to resist shear deformation was the worst and the system was most flexible. Interlayer water molecules greatly impacted the Young’s modulus of the material while the impact of Poisson’s ratio was not obvious. Interlayer water molecules played a horizontal role of averaging the mechanical properties of the materials. The compression performance and the expansion of the material tend to be the same.
     Molecular dynamics simulation of anionic clays containing glutamic acid: Supra-molecular structure, hydration and swelling properties of Glu-Zn3Al LDHs have been investigated. The rate of change of interlayer spacing dc was found to be very slow, when Nw < 8. While Nw≥8, increases of dc followed the linear equation dc = 0.432 Nw + 8.837 (R2 = 0.9983). Glu-LDHs exhibit a tendency to adsorb water continuously in aqueous suspensions. The hydration energy gradually increased as the water content increased until Nw=36. Hydration of Glu-LDHs occurred as follows: water molecules initially formed H-bond with layers and anions. While Glu anions gradually reached a saturation state and water molecules continued to form hydrogen bonds with the hydroxyls of the layers. The Layer-Water type H-bond gradually substituted the Layer-Anoin type H-bond and Glu anions moved to the center of an interlayer and then separated with the layers. Last, a well-ordered structural water layer was formed on the surface hydroxyls of Glu-LDH. The lower balance hydration energy and the existence of Layer- Anoin type H-bond in high regime may be the determinants of releasing content.
引文
[1] Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clay: preparation, properties and application [J]. Catalysis Today, 1991, 11 (2): 173-301
    [2] Vaccari A. Preparation and catalytic properties of cationic and anionic clays [J]. Catalysis Today, 1998, 41 (1-3): 53-71
    [3] Evans D G, Slade R C T. Structural aspects of layered double hydroxides [J]. Layered Double Hydroxides, 2006, 119: 1-87
    [4]杜以波, D. G. Evans,孙鹏, et al.阴离子型层柱材料研究进展[J].化学通报, 2000, (5):20-24
    [5] Kunert A, Zaborski M. The structure, properties and uses of layered minerals [J]. Przemysl Chemiczny, 2006, 85 (11): 1510-1517
    [6] Allmann, R. Double layer structures with layer ions [Me(II)(1-X)Me(III)(X)(OH)2] X+ of brucite type [J]. Chimia, 1970, 24: 99-108
    [7] De Roy, A, Forano, C, El Malki, K, Besse, J P. In expanded clays and other microporous materials Vol. 2 [M]. New York: Occelli, M. L., Robson, H. E., Eds.; Reinhold, 1992. 69-108
    [8] Leroux F, Taviot-Gueho C. Fine tuning between organic and inorganic host structure: new trends in layered double hydroxide hybrid assemblies [J]. Journal of Materials Chemistry, 2005, 15 (35-36): 3628-3642
    [9] Reichle W T. Catalytic reactions by thermally activated, synthetic, anionic clay minerals [J]. Journal of Catalysis, 1985, 94 (2): 547-557
    [10] Koch B C. Structures and properties of anionic clay minerals [J]. Hyperfine Interactions, 1998, 171 (1-4): 131-157
    [11] Velu S, Ramaswamy V, Sivasanker S. New hydrotalcite-like anionic containing Zr4+ in the layers [J]. Chemical Communications, 1997, (21): 2107-2108
    [12] Velu S, Suzuki K, Okazaki M, et al. Synthesis of new Sn-incorporated layereddouble hydroxides and their thermal evolution to mixed oxides [J]. Chemistry of Materials, 1999, 11 (8): 2163-2172
    [13] Simone M, Mariano L J, Piero P. Copper-Zinc-Cobalt-Aluminium-Chromium hydroxyl carbonates and mixed oxides [J]. Journal of Solid State Chemistry, 1996, 122 (2): 324-332
    [14] Li F, Zhang L, David G E, et a1. Structure and surface chemistry of manganese-doped copper-based mixed metal oxides derived from layered double hydroxides [J]. Colloid Surface A-Physicochemical and Engineering Aspects, 2004, 244 (1-3): 169-177
    [15] Nigamananda D, Amrendra S. Synthesis, characterisation and rehydration behaviour of titanium(IV) containing hydrotalcite like compounds [J]. Microporous and Mesoporous Materials, 2004, 72 (1-3): 219-225
    [16] Nagorny O V, Volkhin V V, Sokolova M M, et al. Anion-exchange properties of magnesium chromium(III) hydroxide[J]. Russian Journal of Inorganic Chemistry, 2005, 50 (3): 483-487
    [17] Lee J H, Rhee S W, Jung D Y. Step-wise anion-exchange in layered double hydroxides using solvothermal treatment [J]. Bulletin of the Korean Chemical Society, 2005, 26 (2): 248-252
    [18]雷立旭,张卫锋,胡猛, et al.层状复合金属氢氧化物:结构、性能及其应用[J].无机化学学报, 2005, 21(4): 451-463
    [19] Beres A, Palinko I, Bertrand J C, et a1. Dehydration-rehydration behaviour of layered double hydroxides: a study by X-ray diffractometry and MAS NMR spectroscopy [J]. Journal of Molecular Structure, 1997, 410: 13-16
    [20] Wong F, Buchheit R G. Utilizing the structural memory effect of layered double hydroxides for sensing water uptake in organic coatings [J]. Progress in organic Coatings, 2004, 51 (2): 91-102
    [21] Lehn J M. Supra molecular chemistry: concepts and perspectives [M]. Weinheim: VCH Verlagsgesellschaft mbH Press, 1995.
    [22] Miyata S. Gastric antacid and method for controlling Ph of gastric juice [P]. US,Patent: 4,5 14,389, 1985-04-30
    [23] Costantino U, Nocehetti M. Layered double hydroxides and their intercalation compounds in photochemistry and medicinal chemistry [M]. New York: Nova Sci Publish, 2001.
    [24] Choy J H, Choi S J, Oh J M, et al. Clay minerals and layered double hydroxides for novel biological applications [J]. Applied Clay Science, 2007, 36 (1-3): 122-132
    [25] Choy J H, Jung J S, Oh J M, et al. Layered double hydroxide as an efficient drug reservoir for folate derivatives [J]. Biomaterials, 2004, 25 (15): 3059-3064
    [26] Ambrogi V, Fardella G, Grandolini G, et al. Intercalation compounds of hydrotalcite-like anionic clays with antiinflammatory agents - I. Intercalation and in vitro release of ibuprofen [J]. International Journal of Pharmaceutics, 2001, 220 (1-2): 23-32
    [27] Khan A I, Lei L, Norquist A J, et al. Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide [J]. Chemical Communications, 2001, (22): 2342-2343
    [28]孙辉,张慧, David G E, et al.磁性药物-无机纳米复合材料的结构设计与表征[J].科学通报, 2004, 49 (24): 2525-2530
    [29]邢方方,倪哲明,王平, et al.超分子结构姜黄素插层镁铝水滑石的组装、结构及缓释性能[J].化学学报, 2007, 65 (23): 2738-2742
    [30]倪哲明,夏盛杰,王力耕, et al.诺氟沙星插层镁铝水滑石新型药物-无机复合材料的超分子结构、热稳定性和缓释性能[J].高等学校化学学报, 2007, 28 (7): 1214-1219
    [31] Xia S J, Ni Z M, Xu Q, et al. Layered double hydroxides as supports for intercalation and sustained release of antihypertensive drugs [J]. Journal of Solid State Chemistry, 2008, 181 (10): 2610-2619
    [32] Gasser M S. Inorganic layered double hydroxides as ascorbic acid (vitamin C) delivery system-Intercalation and their controlled release properties [J]. Colloids and Surfaces B: Biointerfaces, 2009, 73 (1): 103-109
    [33] Fogg M A, Dunn J S, Shyu S G, et a1. Selective ion-exchange intercalation of isomeric dicarboxylate anions into the layered double hydroxide [LiAl2(OH)6]Cl·H2O [J]. Chemistry Materials, 1998, 10 (1): 351-355
    [34] Fogg A M, Green V M, Harvey H G, et a1.New separation science using shape-selective ion exchange intercalation chemistry [J]. Advanced Materials, 1999, 11 (17): 1466-1469
    [35] Prevot V, Casal B, Ruiz-Hitzacy E. Intracrystalline alkylation of benzoate ions into layered double hydroxides [J]. Journal of Materials Chemistry, 2001, 11 (2): 554-560
    [36] Kim D H, Kang J S, Lee Y J, et al. Steam reforming of n-hexadecane over noble metal-modified Ni-based catalysts [J]. Catalysis Today, 2008, 136 (3-4): 228-234
    [37] Macala G S, Robertson A W, Johnson C L, et al. Transesterification catalysts from iron doped hydrotalcite-like precursors: Solid bases for biodiesel production [J]. Catalysis Letters, 2008 , 122 (3-4): 205-209
    [38] Chang C T, Liaw B J, Huang C T, et al. Preparation of Au/MgxAlO hydrotalcite catalysts for CO oxidation [J]. Applied Catalysis A-General, 2007, 332 (2): 216-224
    [39] Bergada O, Salagre P, Cesteros Y, et al. Effective catalysts, prepared from several hydrotalcites aged with and without microwaves, for the clean obtention of 2-phenylethanol [J]. Applied Catalysis A-General, 2007, 331: 19-25
    [40] Ribeiro N F P, Henriques C A, Schmal M. Copper-based catalysts for synthesis of methylamines: the effect of the metal and the role of the support [J]. Catalysis Letters, 2005, 104 (3-4) : 111-119
    [41] Abello S, Vijaya-Shankar D, Perez-Ramirez J. Stability, reutilization, and scalability of activated hydrotalcites in aldol condensation [J]. Applied Catalysis A-General, 2008, 342 (1-2): 119-125
    [42] Abello S, Medina F, Tichit D, et al. Nanoplatelet-based reconstructed hydrotalcites: towards more efficient solid base catalysts in aldol condensations [J]. Chemical Communications, 2005, (11): 1453-1455
    [43] Ni Z M, Xia S J, Wang L G, et al. Treatment of methyl orange by calcinedlayered double hydroxides in aqueous solution: Adsorption property and kinetic studies [J]. Journal of Coltoid and Interface Science, 2007, 316 (2): 284-291
    [44] Kobayashi, Naoya Honmyo, Torayuki Katamoto, Tsutomu Yamamoto, Akinori. Mg-Al based hydrotalcite-type particles, chlorine-containing resin stabilizer and process for producing the particles [P], US Patent: 6,413,639, 2002-06-02
    [45] Scavetta E, Berrettoni M, Nobili F, et a1. Electrochemical characterisation of electrodes modified with Co/AI hydrotalcite-like compound [J]. Electrochimica Acta, 2005, 50 (16-17): 3305-33ll
    [46]周彤,李峰,战可涛, et al.层状前体镍铁水滑石及磁性材料的制备及表征[J].化学学报, 2002, 60 (06): 1078-1083
    [47] Ogawa M, Kuroda K. Photofunctions of intercalation compounds [J]. Chemical Reviews, l995, 95 (2): 399-438
    [48] Heermann D W. Computer simulation methods in theoretical physics [M]. Heidelberg: Springer-Verlag Press, 1990. 387-439
    [49] Leach A R. Molecular modelling: principles and applications. 2rd ed [M]. England: Addison Wesley Longman Limited Press, 2001. 26-454
    [50]陈正隆,徐为人,汤立达.分子模拟的理论与实践[M].北京:化学工业出版社, 2007. 1-202
    [51] Masini P, Bernasconi M. Ab initio simulations of hydroxylation and dehydroxylation reactions at surfaces: amorphous silica and brucite [J]. Journal of Physics-Condensed Matter, 2002, 14 (16): 4133-4144
    [52] Trave A, Selloni A, Goursot A, et al. First principles study of the structure and chemistry of Mg-based hydrotalcite-like anionic clays [J]. Journal of Physical Chemistry B, 2002, 106 (47): 12291-12296
    [53]李蕾,刘石均,李保山, et al.有机紫外吸收剂插层锌铝水滑石的制备及表征[J].无机化学学报, 2007, 23(3): 407-414
    [54] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 98. Revision A.3. Pittsburgh, PA: Gaussian, Inc., 1998
    [55] Pu M, Zhang B F. Theoretical study on the microstructures of hydrotalcite lamellae with Mg/Al ratio of two [J]. Materials Letters, 2005, 59 (27): 3340-3347
    [56] Pu M, Wang Y L, Liu L Y, et al. Quantum chemistry and molecular mechanics studies of the lamella structure of hydrotalcite with Mg/Al ratio of 3 [J]. Journal of Physics and Chemistry of Solids, 2008, 69 (5-6): 1066-1069
    [57]刘亚辉,郭玉华,吴静怡, et al. n(Mg)/n(Al)=3的水滑石层板结构及层间距的阴离子调控[J].高等学校化学学报, 2008, 29(6): 1171-1175
    [58]罗青松,李蕾,王作新, et al.镁铝水滑石层板与层间阴离子相互作用的理论研究[J].无机化学学报, 2001, 17(6): 835-842
    [59] Yan H, Lu J, Wei M, et al. Theoretical study of the hexahydrated metal cations for the understanding of their template effects in the construction of layered double hydroxides [J]. Journal of Molecular Structure: THEOCHEM, 2008, 866(1-3): 34-45
    [60]倪哲明,潘国祥,王力耕, et al. LDHs主体层板与卤素阴离子超分子作用的理论研究[J].物理化学学报, 2006, 22(11): 1321-1324
    [61]潘国祥,倪哲明,李小年.类水滑石主体层板与客体CO32-、H2O间的超分子作用[J].物理化学学报. 2007, 23(8): 1195-1200
    [62]胥倩,倪哲明,潘国祥, et al.水滑石限域空间中Cl-与H2O的超分子作用[J].物理化学学报.2008, 24 (4): 611-616
    [63] Bhattacharjee S, Dines T J, Anderson J A. Comparison of Co with Mn and Fe in LDH-hosted sulfonato-salen catalysts for olefin epoxidation [J]. Journal of Physical Chemistry C, 2008, 112 (36): 14124-14130
    [64] Greenwell H C, Stackhouse S, Coveney P V, et al. A density functional theory study of catalytic trans-esterification by tert-butoxide MgAl anionic clays [J]. Journal of Physical Chemistry B, 2003, 107(15): 3476-3485
    [65] Wei M, Pu M, Guo J, et al. Intercalation of L-Dopa into Layered Double Hydroxides: Enhancement of Both Chemical and Stereochemical Stabilities of a Drug through Host-Guest Interactions [J]. Chemistry of Materials, 2008, 20(16): 5169-5180
    [66] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03. Revision B.04. Pittsburgh, PA: Gaussian, Inc., 2003
    [67] Brooks B R, Bruccoleri R E, Olafson B D, et al. CHARMM-A Program forMacromolecular Energy, Minimization, and Dynamics Calculations. Journal of Computational Chemistry, 1983, 4 (2): 187-217
    [68] Weiner S J, Kollman P A, Case D A. A New Force-Field for Molecular Mechanical Simulation of Nucleic-acids and Proteins [J]. Journal of the American Chemical Society, 1984, 106 (3): 765-784
    [69] Halgren A T, Huler E, Lifson S. Energy functions for peptides and proteins: I. Derivation of a consistent force field including the hydrogen bond from amide crystals [J]. Journal of the American Chemical Society, 1974, 96: 5319-5327
    [70] Lifson, A.; Warshel, S. Consistent Force Field for Calculations of Conformations Vibrational Spectra and Enthalpies of Cycloalkane and n-alkane Molecules [J]. Journal of Chemical Physics, 1968, 49: 5116-5129
    [71] Daura X, Mark A E, van Gunsteren W F. Parametrization of aliphatic CHn united atoms of GROMOS96 force field [J]. Journal of Computational Chemistry, 1998, 19 (5): 535-547
    [72] Fogg A M, Rohl A L, Parkinson G M, et al. Predicting guest orientations in layered double hydroxide intercalates [J]. Chemistry of Materials, 1999, 11 (5): 1194-1200
    [73] Hou X Q, Bish D L, Wang S L, et al. Hydration, expansion, structure, and dynamics of layered double hydroxides [J]. American Mineralogist, 2003, 88 (1): 167-179
    [74] King J, Jones W. The Attempted Simulation of Layered Double Hydroxide Intercalates through Lattice Energy Minimization [J]. Molecular Crystals and Liquid Crystals, 1992, 211: 257-269
    [75] Li H, Ma J, Evans D G, et al. Molecular dynamics modeling of the structures and binding energies of alpha-nickel hydroxides and nickel-aluminum layered double hydroxides containing various interlayer guest anions [J]. Chemistry of Materials, 2006, 18 (18): 4405-4414
    [76] Aicken A M, Bell I S, Coveney P V, et al. Simulation of layered double hydroxide intercalates [J]. Advanced Materials, 1997, 9 (6): 496-500
    [77] Newman S P, Williams S J, Coveney P V, et al. Interlayer arrangement ofhydrated MgAl layered double hydroxides containing guest terephthalate anions: Comparison of simulation and measurement [J]. Journal of Physical Chemistry B, 1998, 102 (35): 6710-6719
    [78] Boulet P, Greenwell H C, Stackhouse S, et al. Recent advances in understanding the structure and reactivity of clays using electronic structure calculations [J]. Journal of Molecular Structure: THEOCHEM, 2006, 762 (1-3): 33-48
    [79] Yan D P, Lu J, Wei M, et al. In situ polymerization of the 4-vinylbenzenesulfonic anion in Ni-Al-layered double hydroxide and its molecular dynamic simulation [J]. Journal of Physical Chemistry A, 2008, 112 (33): 7671-7681
    [80] Greenwell H C, Jones W, Newman S P, et al. Computer simulation of interlayer arrangement in cinnamate intercalated layered double hydroxides [J]. Journal of Molecular Structure, 2003, 647 (1-3): 75-83
    [81] Pisson J, Morel J P, Morel-Desrosier N, et al. Molecular modeling of the structure and dynamics of the interlayer species of ZnAlCl layered double hydroxide [J]. Journal of Physical Chemistry B, 2008, 112 (26): 7856-7864
    [82] Kumar P P, Kalinichev A G., Kirkpatrick R J. Hydration, swelling, interlayer structure, and hydrogen bonding in organolayered double hydroxides: Insights from molecular dynamics simulation of citrate-intercalated hydrotalcite [J]. Journal of Physical Chemistry B, 2006, 110 (9): 3841-3844
    [83] Hou X Q, Kalinichev A G, Kirkpatrick R J. Interlayer structure and dynamics of Cl--LiAl2- layered double hydroxide: Cl-35 NMR observations and molecular dynamics modeling [J]. Chemistry of Materials, 2002, 14 (5): 2078-2085
    [84]潘国祥,倪哲明,王芳, et al.二氟尼柳/水滑石插层组装结构、氢键及水合特性:分子动力学模拟研究[J].物理化学学报, 2009, 25(2): 223-228
    [85] Kirkpatrick R J, Kalinichev A G, Wang J. Molecular dynamics modelling of hydrated mineral interlayers and surfaces: structure and dynamics [J]. Mineralogical Magazine, 2005, 69 (3): 289-308
    [86] Lombardo G M, Pappalardo G C, Punzo F, et al. A novel integrated X-ray powder diffraction (XRPD) and molecular dynamics (MD) approach for modelling mixed-metal (Zn, Al) layered double hydroxides (LDHs) [J]. EurpeanJournal of Inorganic Chemistry, 2005, (24): 5026-5034
    [87] Lombardo G M, Pappalardo G C. Thermal effects on mixed metal (Zn/Al) layered double hydroxides: Direct modeling of the X-ray powder diffraction line shape through molecular dynamics simulations [J]. Chemistry of Materials, 2008, 20 (17): 5585-5592
    [88] Mohanambe L, Vasudevan S. Anionic clays containing anti-inflammatory drug molecules: Comparison of molecular dynamics simulation and measurements [J]. Journal of Physical Chemistry B, 2005, 109 (32): 15651-15658
    [89] Mohanambe L, Vasudevan S. Structure of a cyclodextrin functionalized anionic clay: XRD analysis, spectroscopy, and computer simulations [J]. Langmuir, 2005, 21 (23): 10735-10742
    [90] Toth R, Ferrone M, Miertus S, et al. Structure and energetics of biocompatible polymer nanocomposite systems: A molecular dynamics study [J]. Biomacromolecules, 2006, 7 (6): 1714-1719
    [91] Shichi T, Takagi K, Sawaki Y. Stereoselectivity control of [2+2] photocycloaddition by changing site distances of hydrotalcite interlayers [J]. Chemical Communications, 1996, (17): 2027-2708
    [92] Cerius 2, version 4.2. San Diego, CA: Accelrys, 2001; Material Studio Modeling, version 3.1.0.0. San Diego, CA: Accelrys Software Inc, 2004
    [93] Greenwell H C, Harvey M J, Boulet P, et al. Interlayer structure and bonding in nonswelling primary amine intercalated clays [J]. Macromolecules, 2005, 38 (14): 6189-6200
    [94] Katti D R, Schmidt S R, Ghosh P, et al. Modeling the response of pyrophyllite interlayer to applied stress using steered molecular dynamics [J]. Clays and Clay Minerals, 2005, 53 (2): 171-178
    [95] Coveney P V, Greenwell H C. Large-scale MD simulations for studying the interlayer structure in cationic and anionic clays and nanocomposite materials [J]. Geochimica et Cosmochimica Acta, Suppl. S, 2004, 68 (11): A106-A106
    [96] Plimpton S J. Fast Parallel Algorithms for Short-range Molecular-Dynamics [J]. Journal of Computational Physics, 1995, 117 (1): 1-19
    [97] Cygan R T, Liang J J, Kalinichev A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field [J]. Journal of Physical Chemistry B, 2004, 108 (4): 1255-1266
    [98] Thyveetil M A, Coveney P V, Suter J L, et al. Emergence of undulations and determination of materials properties in large-scale molecular dynamics simulation of layered double hydroxides [J]. Chemistry of Materials, 2007, 19 (23): 5510-5523
    [99] Loison C, Mareschal M, Kremer K, et al. Thermal fluctuations in a lamellar phase of a binary amphiphile-solvent mixture: A molecular-dynamics study [J]. Journal of Chemical Physics, 2003, 119 (24): 13138-13148
    [100] Suter J L, Coveney P V, Greenwell H C, et al. Large-scale molecular dynamics study of montmorillonite clay: Emergence of undulatory fluctuations and determination of material properties [J]. Journal of Physical Chemistry C, 2007, 111(23): 8248-8259
    [101] Thyveetil M A, Coveney P V, Greenwell H C, et al. Computer simulation study of the structural stability and materials properties of DNA-intercalated layered double hydroxides [J]. Journal of the American Chemical Society, 2008, 130 (14): 4742-4756
    [102] Thyveetil M A, Coveney P V, Greenwell H C, et al. Role of host layer flexibility in DNA guest intercalation revealed by computer simulation of layered nanomaterials [J]. Journal of the American Chemical Society, 2008, 130 (14): 12485-12495
    [103] Bravo-Suarez J J, Paez-Mozo E A, Oyama S T. Microtextural properties of layered double hydroxides: a theoretical and structural model [J]. Microporous Mesoporous Materials, 2004, 67 (1): 1-17
    [104] Ni Z M, Pan G X, Wang L G, et al. Structure and properties of hydrotalcite using electrostatic potential energy model [J]. Chinese Journal of Chemical Physics, 2006, 19 (3): 277-280
    [105]倪哲明,潘国祥,王力耕, et al.二元类水滑石层板组成、结构与性能的理论研究[J].无机化学学报, 2006, 22 (1): 91-95
    [106] Greenwell H C, Jones W, Coveney P V, et al. On the application of computer simulation techniques to anionic and cationic clays: A materials chemistry perspective [J]. Journal of Materials Chemistry, 2006, 16(8): 708-723
    [107] Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code [J]. Journal of Physics-Condensed Matter, 2002, 14 (11): 2717-2744
    [108] Perdew J P, Zunger A. Self-interaction Correction to Density-Functional Approximations for Many-electron Systems [J]. Physical Review B, 1981, 23 (10): 5048-5079
    [109] Perdew J P, Chevary J A, Vosko S H , et al. Atoms, Molecules, Solids, and Surfaces -Applications for Exchange and Correlation [J]. Physical Review B, 1992, 46 (11): 6671-6687
    [110] Bellotto M, Rebours B, Clause O, et al. A reexamination of hydrotalcite crystal chemistry [J] Journal of Physical Chemistry, 1996, 100 (20): 8527-8534
    [111] Zigan F, Rothbauer R. Neutron diffraction measurement on brucite [J]. Neues Jahrb. Mineral. Monatsh., 1967, 4: 137-143
    [112] Vanderbilt, D. Soft Self-consistent Psedupotentials in a Generalized Elgenvalue Formalism [J]. Physical Review B, 1990, 41 (11): 7892-7895
    [113] Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54 (16): 11169-11186
    [114] Materials Studio Modeling, version 3.1.0.0, Accelrys Software Inc., San Diego, CA, 2004.
    [115] Rives V, Ulibarri M A. Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates [J]. Coordination Chemistry Reviews, 1999, 181: 61-120
    [116] Mayo S L, Olafson B D, Goddard W A. Dreiding—A Generic Force-Field for Molecular Simulations [J]. Journal of Physical Chemistry, 1990, 94 (26): 8897-8909
    [117] Newman S P, Cristina T D, Coveney P V. Molecular dynamics simulation of cationic and anionic clays containing amino acids [J]. Langmuir, 2002, 18 (7): 2933-2939
    [118] Newman S P, Jones W. Synthesis, characterization and applications of layered double hydroxides containing organic guests [J]. New Journal of Chemistry, 1998, 22 (2): 105-115
    [119] Scheiner S. Hydrogen Bonding [M]. New York: Oxford University Press, 1997.
    [120] Jeffrey G A. An Introduction to Hydrogen Bond [M]. New York: Oxford University Press, 1997.
    [121] Desiraju G, Steiner T. The Weak Hydrogen Bond [M]. New York: Oxford University Press, 1999.
    [122]殷开梁,邹定辉,杨波, et al. Materials Studio软件涉及力场中氢键的研究[J].计算机与应用化学, 2006, 23 (12): 1335-1340
    [123] Toraishi T, Nagasaki S, Tanaka S. Uptake mechanism of IO3- to NO3--hydrotalcite [J]. Radiochimica Acta, 2002, 90 (9-11): 671–675
    [124] Xu Q, Ni Z M, Mao J H. First principles study of microscopic structures and layer-anion interactions in layered double hydroxides intercalated various univalent anions [J]. Journal of Molecular Structure: THEOCHEM, 2009, 915 (1-3): 122-131
    [125]苟国敬,马培华,褚敏雄.氯离子柱撑水滑石共沉淀法合成反应动力学[J].物理化学学报, 2004, 20 (11): 1357-1363
    [126] Wang J W, Kalinichev A G, Kirkpatrick R J, et al. Molecular modeling of the structure and energetics of hydrotalcite hydration [J]. Chem. Mater., 2001, 13 (1): 145-150
    [127] Ostanin S, Staunton J B, Razee S S, er al. Ab initio search for a high permeability material based on bcc iron [J]. Physical Review B, 2004, 69 (6): 064425
    [128] Xia X, Weidner D J, Zhao H. Equation of state of brucite: Single-crystal Brillouin spectroscopy study and polycrystalline pressure-volume-temperature measurement [J]. American Mineralogist, 1998, 83 (1-2): 68-74
    [129]曹根庭,张峰,李丹, et al.谷氨酸柱撑Zn/Al水滑石超分子材料的合成,表征及缓释[J].硅酸盐学报, 2007, 35 (11): 1546-1550
    [130] Sideris P J, Nielsen U G, Gan Z H, et al. Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy [J]. Science, 2008, 321 (5885): 113-117
    [131] Kumar P P, Kalinichev A G, Kirkpatrick R J. Molecular dynamics simulation of the energetics and structure of layered double hydroxides intercalated with carboxylic acids [J]. J. Phys. Chem.C, 2007, 111 (36): 13517-13523
    [132] Nose S. A molecular dynamics method for simulations in the canonical ensemble [J]. Mol. Phys., 1984, 52: 255-268
    [133] Parrinello M., Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method [J]. J. App. Phys., 1981, 52: 7182-7185

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700