基于氨基酸衍生物的配合物的合成、结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属有机配位聚合物在光学材料、磁性材料、催化等方面具有潜在的应用价值,近年来愈来愈受到人们的重视。在对氨基酸及其衍生物合成的配合物综述的基础上,设计合成了一系列基于氨基酸衍生物(+)-N-对甲苯磺酰-L-谷氨酸和L-O-磷酸丝氨酸为手性配体的配合物,并对其结构和性能及规律进行了研究。论文的主要研究内容如下: {Zn(tsgluO)(4,4’-bipy)(H_2O)}n(1)、{Zn(tsgluO)(bpe)0.5}n(2)、{Zn(tsgluO)(bpe)}n(3)、{Zn(tsgluO)(2,2’-bipy)(H_2O)}_2·2H_2O(4)、{Zn(tsgluO)(2,2’-bipy)(H_2O)}_2·2H_2O (5)、{[Zn(tsgluO)(bpp)]·0.5H_2O}n(6)、{Cd(tsgluO)(4,4’-bipy)(H_2O)}n(7)、{[Cd(tsgluO)(bpe)1.5]·H_2O}n(8)、{[Cd2(tsgluO)2(bpp)4]·2.5H_2O}n(9)、{[Mn(tsgluO)(bpe)(H_2O)2]·H_2O}n(10)、{Ag(HtsgluO)(bpp)}n(11)、{Co(tsgluO)(bpp)}n (12)、{Cu(OPSer)(phen)(H_2O)}·3H_2O(13) (H2tsgluO = (+)-N-对甲苯磺酰-L-谷氨酸;OPSer =L-O-磷酸丝氨酸;4,4’-bipy = 4,4’-联吡啶;2,2’-bipy = 2,2’-联吡啶;bpe=1,2-联(4-吡啶基)乙烷;bpp=1,3-联(4-吡啶基)丙烷;phen=邻菲啰啉)用X-射线单晶衍射、元素分析、红外光谱、热重分析对配合物的性质进行了表征,对配合物1-9、11的荧光性质进行了研究。
     配合物1、6、7、11都是手性P2_1空间群。配合物1、7、11具有二维层状结构,并进一步通过氢键构成了三维超分子结构。配合物1和7的晶体结构相似,可能与金属离子属于同一副族元素有关。配合物6具有二维层状结构,沿a轴方向有无限的一维右手螺旋双链结构。配合物2、3、8、9都是中心对称的P2_1/c空间群。配合物2具有三维微孔结构,沿b轴方向的一维孔道孔径约为5.8×7.7(?),孔道中并没有被其它的客体分子占据。配合物3、8、9具有二维层状结构,配合物3进一步通过氢键构成了三维超分子结构。配合物4、5、10都是中心对称的P-1空间群。配合物4和5都是双核小分子配合物,配合物4进一步通过氢键和π-π堆积作用构成了二维层状超分子结构,而配合物5则进一步是通过氢键和π-π堆积作用构成了三维超分子结构。配合物10具有一维双链结构,进一步通过氢键作用连接成了三维超分子结构。配合物12和13都是手性P2_12_12_1空间群。配合物12具有二维层状结构,沿a轴有无限的一维右手螺旋链。配合物13属于单核配合物,通过氢键和π-π堆积作用构成三维超分子结构。
     配体H_2tsgluO采用多种配位模式与金属离子配位,其采用的配位模式可能与金属离子的种类有关。含氮的辅助配体刚性的4,4’-联吡啶和柔性的bpe、bpp都易以桥联配体的形式构成维数较高的配合物,而含氮的螯合配体2,2’-联吡啶易形成维数较低的配合物。柔性的辅助配体bpe、bpp等可以微调其构型以满足金属离子配位数的要求。溶剂对配体tsgluO~(2-)的配位模式也有一定的影响。
     用水热法合成的配合物中只有配合物1和7结晶在手性P21空间群,其余的则是中心对称结构的配合物。这可能与第二配体及温度有关。用溶液法合成的4种配合物都结晶在手性空间群,这可能是由于溶液法的温度低,有利于配体手性的保持。
     在室温下对固态配合物1、2、7、8的荧光性质进行了研究。配合物1、2、7、8在365nm的激发波长下,分别在440nm、422nm、442nm、428nm处出现强的荧光发射峰。室温下对配合物3、4、5、6、9、11在无水乙醇中的荧光性质进行了研究,配合物分别在336nm和290nm(λex = 227 nm)、336nm(λex =256 nm)、334nm(λex = 257 nm)、336nm和290nm(λex = 227 nm)、290nm(λex = 267 nm)、326nm和303nm(λex = 227 nm)处出现强的荧光发射峰,表明配合物具有潜在的荧光应用价值。
     此外,对配合物2的氮气吸附性质进行研究发现其与氮气的作用力很弱。
Owing to their potential applications in luminescence, magnetism, catalysis, etc., metal-organitic coordination polymers have received more and more attention. This paper summarizes the research advances of coordination polymers based on amino acid and their derivatives. A series coordination compounds constructed by (+)-N-Tosyl-L-glutamic acid and L-O-Phosphoserine were synthesized and their crytal structures and properties were determined. In this paper, the main results are as follows: {Zn(tsgluO)(4,4’-bipy)(H_2O)}n(1)、{Zn(tsgluO)(bpe)0.5}n(2)、{Zn(tsgluO)(bpe)}n(3)、{Zn(tsgluO)(2,2’-bipy)(H_2O)}2·2H_2O(4)、{Zn(tsgluO)(2,2’-bipy)(H_2O)}2·2H_2O (5)、{[Zn(tsgluO)(bpp)]·0.5H_2O}n(6)、{Cd(tsgluO)(4,4’-bipy)(H_2O)}n(7)、{[Cd(tsgluO)(bpe)1.5]·H_2O}n(8)、{[Cd2(tsgluO)2(bpp)4]·2.5H_2O}n(9)、{[Mn(tsgluO)(bpe)(H_2O)2]·H_2O}n(10)、{Ag(HtsgluO)(bpp)}n(11)、{Co(tsgluO)(bpp)}n (12)、{Cu(OPSer)(phen)(H_2O)}·3H_2O(13) (H2tsgluO = (+)-N-Tosyl-L-glutamic acid, OPSer=L-O-Phosphoserine, bipy= bipyridine, bpe= 1,2-bis(4-pyridyl)methane, bpp= 1,3-bis(4-pyridyl)propane, phen= 1,10-phenanthroline) have been synthesized and characterized by X-ray diffraction analysis, elemental analysis, IR, thermal analysis, and their fluorescent properties were also studied.
     Compounds 1,6,7,11 crystallize in the chiral space group P21. The 2D architecture of compounds 1,7,11 are further connected by hydrogen bonds interactions to form 3D supramolecular network. Crystal structure of compound 1 is similar to compound 7, which may be due to that they belong to the same subgroup. Compound 6 crystallize in the chiral space group P21 and is giving 2D layer structure containing right handed helical double-chains. Compounds 2,3,8,9 show the centrosymmetric space group P2_1/c. Compound 2 is giving 3D microporous architecture with a channels’aperture about 5.8×7.7 along b direction . It is noticeable that the channels are not occupied by the guest molecular. Compounds 3,8,9 present a 2D network structure and compound 3 is further connected by hydrogen bonding to form three-dimensional supramolecular network. Compounds 4,5,10 crystallize in the centrosymmetric space group P-1. Cmpound 4 are further self-assembled through the non-covalent interactions of hydrogen bond andπ-πstacking to form pseudo-2D supramolecular structures, but compound 5 are further self-assembled through the non-covalent interactions of hydrogen bonding andπ-πstacking to form pseudo-3D supramolecular structures. Compound 10 is giving 1D double-line structure which further cnnected by hydrogen bonding to form three-dimensional supramolecular network.
     Compounds 12 and 13 both crystallize in the chiral space group P212121 and compound 12 presents 2D layer structure with right handed helical chains along a direction. Compound 13 is self-assembled through the non-covalent interactions of hydrogen bonding andπ-πstacking to form pseudo-3D supramolecular structures.
     The ligand H2tsgluO adopts versatile coordination modes to coordinate with metal ions, which may be in correlation with the kinds of the metal ions. The N-donor ancillary rigid 4,4’-bipyridine ligand and flexible bpe,bpp ligands tend to act as birdging-ligand to form high dimentional complexes. The flexible ancillary ligand bpe,bpp meet the coordination number of the metal ions by subtle manipulation their modes.The solvent has some influence on the H2tsgluO ligand coordination mode.
     Among the compounds hydrothermally synthesized, only compounds 1 and 7 crystallize in chiral space group P21, while the rest is centrosymmetric, which may be in correlation with the ancillary ligand and temperature. Four compounds synthesized at room temperature all crystallize in chiral space group, which may due to the low temperature is conductive to the maintenance of chiral ligand.
     Fluorescent properties of compounds 1,2,7,8 in solid state at room temperature were studied. When excited with 365nm compounds 1,2,7,8 show emissions at about 440, 422, 442, 428nm, respectively. Results of luminescent studies of compounds 3, 4, 5, 6, 9, 11 in ethanol solution indicate that they are all potential fluorescent materials. The adsorption properties of compound 2 for N2 have been meatured, which show that there are weak interaction between the microporous materials and N_2.
引文
[1] Mahata P, Natarajan S, Panissod P, et al. Quasi-2D XY Magnetic Properties and Slow Relaxation in a Body Centered Metal Organic Network of [Co4] Clusters [J]. J. Am. Chem. Soc., 2009, 131(29), 10140-10150.
    [2] Morris R E, Wheatley P S. Gas storage in nanoporous materials [J]. Angew. Chem. Int. Ed. 2008, 47(27): 4966-4981.
    [3] Furukawa H, Kim J, Ockwig N W, et al. Control of Vertex Geometry, Structure Dimensionality, Functionality, and Pore Metrics in the Reticular Synthesis of Crystalline Metal-Organic Frameworks and Polyhedra [J]. J. Am. Chem. Soc., 2008, 130(35): 11650-11661.
    [4] Horike S, Dinca M, Tamaki K, et al. Size-Selective Lewis Acid Catalysis in a Microporous Metal-Organic Framework with Exposed Mn2+ Coordination Sites [J]. J. Am. Chem. Soc., 2008, 130(18): 5854-5855.
    [5] Mahata P, Ramya K V, Natarajan Srinivasan. Pillaring of CdCl2-like layers in lanthanide metal-organic frameworks: synthesis, structure, and photophysical properties [J]. Chem. Eur. J., 2008, 14(19):, 5839-5850.
    [6] Maji T K, Matsuda R, Kitagawa S. A flexible interpenetrating coordination framework with a bimodal porous functionality [J]. Nature Materials, 2007, 6(2): 142-148.
    [7] Moon H R, Kim J H, Suh M P. Redox-active porous metal-organic framework producing silver nanoparticles from AgI ions at room temperature [J]. Angew. Chem. Int. Ed., 2005,44(8): 1261-1265.
    [8] Kitagawa S, Kitaura R, Noro S. Functional porous coordination polymers [J]. Angew. Chem. Int. Ed., 2004, 43(18): 2334-2375.
    [9] Dybtsev D N, Chun H, Kim K. Rigid and flexible: A highly porous metal-organic framework with unusual guest-dependent dynamic behavior [J]. Angew. Chem. Int. Ed., 2004, 43(38): 5033-5036.
    [10] Zhao X, Xiao B, Fletcher A J. et al.Adsorption and Desorption of Hydrogen byNanoporous Metal-Organic Frameworks [J].Science, 2004, 306(5698): 1012-1015.
    [11] Rosi N L, Eckert J, Eddaoudi M. et al. Hydrogen Storage in Microporous Metal-Organic Frameworks [J].Science, 2003, 300(5622): 1127-1130.
    [12] Rao C. N. R., Natarajan S, Vaidhyanathan R. Metal carboxylates with open architectures [J]. Angew. Chem. Int. Ed., 2004, 43(12): 1466-1496.
    [13] Rowsell J L C, Yaghi O M. Strategies for hydrogen storage in metal-organic frameworks [J]. Angew. Chem. Int. Ed., 2005, 44(30): 4670-4679.
    [14] Seo J S, Whang D, Lee H, et al. A homochiral metal-organic porous material for enantioselective separation and catalysis [J]. Nature, 2000, 404(6781): 982-986.
    [15] Han H, Zhang S, Hou H, Fan Y, et al. Fe(Cu)-containing coordination polymers: syntheses, crystal structures, and applications as benzyl alcohol oxidation catalysts [J]. Eur. J. Inorg. Chem., 2006, (8): 1594-1600.
    [16] Davis M E. Ordered porous materials for emerging applications [J]. Nature, 2002, 417(6891): 813-821.
    [17] Eddaoudi M, Moler D B, Li H, et al. Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks [J]. Acc. Chem. Res., 2001, 34(4): 319-330.
    [18] Bunz U H F. Poly(aryleneethynylene)s: Syntheses, Properties, Structures, and Applications [J]. Chem. Rev., 2000, 100(4): 1605-1644.
    [19] Murray L J, Dinca M, Long J R, et al. Hydrogen storage in metal-organic frameworks [J]. Chem. Soc. Rev., 2009, 38(5): 1294-1314.
    [20] Allendorf M D, Bauer C A, Bhakta R K, et al. Luminescent metal-organic frameworks [J]. Chem. Soc. Rev., 2009, 38(5): 1330-1352.
    [21] Kurmoo M. Magnetic metal-organic frameworks [J]. Chem. Soc. Rev., 2009, 38(5): 1353-1379.
    [22] Lee J Y, Farha O K, Roberts J, et al. Metal-organic framework materials as catalysts [J]. Chem. Soc. Rev., 2009, 38(5): 1450-1459.
    [23] Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks [J]. Chem. Soc. Rev., 2009, 38(5): 1477-1504.
    [24] Maspoch D, Ruiz-Molina D, Veciana J. Old materials with new tricks:multifunctional open-framework materials [J]. Chem. Soc. Rev., 2007, 36(5): 770-818.
    [25] Kitagawa S, Uemura K. Dynamic porous properties of coordination polymers inspired by hydrogen bonds [J]. Chem. Soc. Rev., 2005, 34(2): 109-119.
    [26] Chae H K, Siberio-Perez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals [J]. Nature ,2004, 427(6974): 523-527.
    [27] Dybtsev D N, Yutkin M P, Peresypkina E V, et al. Isoreticular Homochiral Porous Metal-Organic Structures with Tunable Pore Sizes [J]. Inorg. Chem., 2007, 46(17): 6843-6845.
    [28]王方阔.合成温度、配体和溶剂对配位聚合物结构的影响[D].优秀硕士论文,2008年5月.
    [29] Seo J S, Whang D, Lee H, et al. A homochiral metal-organic porous material for enantioselective separation and catalysis [J]. Nature, 2000, 404(6781): 982-986.
    [30] Wu C D, Hu A, Zhang L, et al. A Homochiral Porous Metal-Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis [J]. J. Am. Chem. Soc., 2005, 127(25): 8940-8941.
    [31] Huang Q, Yu J, Gao J, et al. Two Chiral Nonlinear Optical Coordination Networks Based on Interwoven Two-Dimensional Square Grids of Double Helices [J]. Cryst. Growth Des., 2010, 10(12): 5291-5296.
    [32] Abrahams B F, Egan S J, Robson R. A Very Large Metallosupramolecular Capsule with Cube-like 43 Topology Assembled from Twelve Cu(II) Centers and Eight Tri-Bidentate Tri-Anionic Ligands Derived from 2,4,6-Triphenylazo-1,3,5-tri- hydroxybenzene [J]. J. Am. Chem. Soc., 1999, 121(14):3535-3536.
    [33] Blake A J, Champness N R, Khlobystov A N, et al. Controlled assembly of dinuclear metallacycles into a three-dimensional helical array [J]. Angew. Chem. Int. Ed., 2000, 39(13):2317-2320.
    [34] Kumagai H, Inoue K. A chiral molecular based meta-magnet prepared from manganese ions and a chiral triplet organic radical as a bridging ligand [J]. Angew. Chem. Int. Ed., 1999, 38(11): 1601-1603.
    [35] Kepert C J, Rosseinsky M J. A porous chiral framework of coordinated1,3,5-benzenetricarboxylate: quadruple interpenetration of the (10,3)-a network [J]. Chem. Commun., 1998, (1): 31-32.
    [36] Dai F, He H, Zhao X, et al.1D zigzag chain vs. 1D helical chain: the role of the supramolecular interactions on the formation of chiral architecture [J]. CrystEngComm, 2010, 12(2): 337-340.
    [37]王锡森,宋玉梅,叶琼,唐云志,瞿燕,游效曾,熊仁根.手性及非中心对称配位聚合物的组装[J].科学通报,2005,50(21):2317-2340.
    [38] Dong L J, Chu W, Zhu Q L, et al. Three Novel Homochiral Helical Metal-Organic Frameworks Based on Amino Acid Ligand: Syntheses, Crystal Structures, and Properties [J]. Cryst. Growth Des., 2011, 11(1): 93-99.
    [39] Dong Z, Zhao L, Liang Z, et al. [Zn(HPO3)(C11N2O2H12)] and [Zn3(H2O)(PO4) (HPO4)(C6H9N3O2)2(C6H8N3O2)]: homochiral zinc phosphite/phosphate networks with biofunctional amino acids [J]. Dalton Trans., 2010, 39(23): 5439-5445.
    [40] Wu S P, Lee C H. Infinite chiral single-helical structures formed by the self-assembly of Cu(II)-N-(2-pyridylmethyl)-aspartate complexes [J]. CrystEngComm, 2009, 11(2): 219-222.
    [41] Biswas C, Drew Michael G B, Estrader M, et al. Copper(II) complexes of mono-anionic glutamate: anionic influence in the variations of molecular and supramolecular structures [J]. Dalton Trans., 2009, (25): 5015-5022.
    [42] Ma L F, Wang L Y, Huo X K, et al. Chain, Pillar, Layer, and Different Pores: A N-[(3-Carboxyphenyl)-sulfonyl]glycine Ligand as a Versatile Building Block for the Construction of Coordination Polymers [J]. Cryst. Growth Des., 2008, 8(2), 620-628.
    [43] Lee H Y, Park J, Lah M S, et al. One-dimensional double helical structure and 4-fold type [2 + 2] interpenetration of diamondoid networks with helical fashion [J]. Cryst. Growth Des., 2008, 8(2): 587-591.
    [44] Fox S, Buesching I, Barklage W, et al. Coordination of Biologically Important -Amino Acids to Calcium(II) at High pH: Insights from Crystal Structures of Calcium–Aminocarboxylates [J]. Inorg. Chem., 2007, 46(3): 818-824.
    [45] Dan M, Rao C. N. R. Metal aminocarboxylate coordination polymers with chain and layered structures[J]. Chem. Eur. J., 2005, 11(23), 7102-7109.
    [46] Anokhina E V, Jacobson A J. [Ni2O(L-Asp)(H2O)2]? 4H2O: A Homochiral 1D Helical Chain Hybrid Compound with Extended Ni-O-Ni Bonding [J]. J. Am. Chem. Soc., 2004, 126(10): 3044-3045.
    [47] Gordon L E, Harrison W T. A. Amino Acid Templating of Inorganic Networks: Synthesis and Structure of L-Asparagine Zinc Phosphite, C4N2O3H8 ? ZnHPO3 [J]. Inorg. Chem., 2004, 43(6): 1808-1809.
    [48] Xie Y R, Xiong R G, Xue X, et al. Two Chiral Coordination Polymers: Preparation and X-ray Structures of Mono(4-sulfo-L-phenylalanine)(diaqua) Zinc(II) and Copper(II) Complexes [J]. Inorg. Chem., 2002, 41(12): 3323-3326.
    [49] Nomiya K, Yokoyama H. Syntheses, crystal structures and antimicrobial activities of polymeric silver(I) complexes with three amino-acids [aspartic acid (H2asp), glycine (Hgly) and asparagine (Hasn)] [J]. J. Chem. Soc., Dalton Trans., 2002, (12): 2483-2490.
    [50] Torres J, Kremer C, Kremer E, et al. Sm(III) Complexation with amino acids. Crystal structures of [Sm2(Pro)6(H2O)6](ClO4)6 and [Sm(Asp)(H2O)4]Cl2 [J]. J. Chem. Soc., Dalton Trans., 2002: 4035–4041
    [51] Weng J, Hong M, Shi Q, et al. Chiral supramolecular assemblies derived from the insertion of a segmental ligand into a copper-tyrosine framework [J]. Eur. J. Inorg. Chem., 2002, (10): 2553-2556.
    [52] Ranford J D, Vittal J J, Wu D, et al. Thermal conversion of a helical coil into a three-dimensional chiral framework [J]. Angew. Chem. Int. Ed., 1999, 38(23): 3498-3501.
    [53] Corradi A B, Lusvardi G, Menabue L, et al.Coordination properties of N-p-tolylsulfonyl-L-glutamic acid toward metalII Part 1. Crystallographic study on ZnII and CdII complexes [J]. Polyhedron, 1999, 18(14): 1975-1982.
    [54] Mekhatria D, Rigolet S, Janiak C, et al. A New Inorganic-Organic Hybrid Zinc Phosphate Prepared with L-Histidine with an Unusual Stability in Water [J]. Cryst. Growth Des., 2011, 11(2): 396-404.
    [55] Weng Z, Chen Z, Liang F. Glycine-Templated Manganese Sulfate with New Topology and Canted Antiferromagnetism [J]. Inorg. Chem., 2009, 48(18):8703-8708.
    [56] Zhao L, Li J, Chen P, et al. (C6H10N3O2)Zn2(HPO4)(PO4)H2O: an inorganic network with biofunctional amino acid DL-histidine molecules [J]. CrystEngComm, 2008, 10(5): 497-501.
    [57] Xie Y, Yu Z, Huang X, et al. Rational design of MOFs constructed from modified aromatic amino acids [J]. Chem. Eur. J., 2007, 13(33): 9399-9405.
    [58] Chen L, Bu X. Histidine-Controlled Two-Dimensional Assembly of Zinc Phosphite Four-Ring Units [J]. Chem. Mater., 2006,18(7): 1857-1860.
    [59] Luo F, Yang Y, Che Y, et al. Construction of Cu(II)-Gd(III) metal-organic framework by the introduction of a small amino acid molecule: hydrothermal synthesis, structure, thermostability, and magnetic studies [J]. CrystEngComm, 2008, 10(11): 1613-1616.
    [60] Luo T T, Hsu L Y, Su C C, et al. Deliberate Design of a 3D Homochiral CuII/L-met/AgI Coordination Network Based on the Distinct Soft-Hard Recognition Principle [J]. Inorg. Chem., 2007, 46(5): 1532-1534.
    [61] An H Y, Wang E B, Xiao D R, et al. Chiral 3D architectures with helical channels constructed from polyoxometalate clusters and copper- amino acid complexes [J]. Angew. Chem. Int. Ed., 2006, 45(6): 904-908.
    [62] Vaidhyanathan R, Bradshaw D, Rebilly J N, et al. A family of nanoporous materials based on an amino acid backbone [J]. Angew. Chem. Int. Ed., 2006, 45(39): 6495-6499.
    [63] Anokhina E V, Go Y B, Lee Y, et al. Chiral Three-Dimensional Microporous Nickel Aspartate with Extended Ni-O-Ni Bonding [J]. J. Am. Chem. Soc., 2006, 128(30): 9957-9962.
    [64] Shi X, Zhu G, Qiu S, et al. Zn2[(S)-O3PCH2NHC4H7CO2]2: A homochiral 3D zinc phosphonate with helical channels [J]. Angew. Chem. Int. Ed., 2004, 43(47): 6482-6485.
    [65] Imai H, Inoue K, Kikuchi K, et al. Three-dimensional chiral molecule-based ferrimagnet with triple-helical-strand structure [J]. Angew. Chem. Int. Ed., 2004: 43(42), 5618-5621.
    [66] Qu Z R, Zhao H, Wang X S, et al. Homochiral Zn and Cd Coordination Polymers Containing Amino Acid -Tetrazole Ligands [J]. Inorg. Chem., 2003, 42(24): 7710-7712.
    [67] Hartman S J, Todorov E, Cruz C, et al. Frameworks of amino acids:synthesis and characterization of two zinc phosphono-amino-carboxylates with extended structures [J]. Chem. Commun., 2000, (13): 1213-1214.
    [68] Corradi A B, Lusvardi G, Menabue L, et al. Coordination properties of N-p-tolylsulfonyl-L-glutamic acid toward metal II Part 1. Crystallographic study on Zn II and Cd II complexes [J].Polyhedron, 1999, 18(14): 1975-1982.
    [69] Liang F P, Chen M Sh, Hu R X, et al. A one-dimensional double-chain coordination polymer: [Mn(C12H13NO6S)(C10H8N2)]n [J]. Acta Cryst., Section C: Crystal Structure Communications, 2004, C60(6): m269-m271.
    [70]陈满生,梁福沛,胡瑞祥,马运声,宋丽华.对甲苯磺酰谷氨酸桥联的一维双链锰配合物的合成、表征与晶体结构[J].无机化学学报,2005,21(5),689-692.
    [71] He R, Song H H, Wei Z. Manganese(II) and zinc(II) compounds via amino acid derivatives: Effects of temperature and solvents [J]. Inorg. Chim. Acta., 2010, 363(11): 2631-2636.
    [72] He R, Song H H, Wei Z, et al. Coordination polymers with the chiral ligand N-p-tolylsulfonyl-L-glutamic acid: Influence of metal ions and different bipyridine ligands on structural chirality [J]. J. Solid. State. Chem., 2010, 183(9): 2021-2026.
    [73]何蓉,宋会花,魏珍.配合物[Mn(4,4’-bipy)2(H2O)4](tsgluO)2?2H2O.的合成及性能研究[J].无机化学学报,2010,26(9),1715-1718.
    [74] Marinho M V, Yoshida M I, Guedes K J, et al. Synthesis, Crystal Structure, and Spectroscopic Characterization of trans-Bis[(-1,3-bis(4-pyridyl)propane) (-(3-thiophe neacetate-O))(3-thiopheneacetate-O)]dicopper(II),{[Cu2(O2CCH2C4H3S)4-(BPP)2]}n: From a Dinuclear Paddle-Wheel Copper(II) Unit to a 2-D Coordination Polymer Involving Monatomic Carboxylate Bridges [J]. Inorg. Chem., 2004, 43(4): 1539-1544.
    [75] Carlucci L, Ciani G, Proserpio D M, et al. New polymeric networks from the self-assembly of silver(I) salts and the flexible ligand 1,3-bis(4-pyridyl)propane (bpp).A systematic investigation of the effects of the counterions and a survey of the coordination polymers based on bpp [J]. CrystEngComm, 2002, 4(22):121-129.
    [76] Han L, Valle H, Bu X. Homochiral Coordination Polymer with Infinite Double-Stranded Helices [J]. Inorg. Chem., 2007, 46(5): 1511-1513.
    [77] de la Pinta N, Madariaga G, Lezama L, et al. Weak Ferromagnetism Caused by a 2D Effect in Two New Cobalt(II)- and Nickel(II)-1,2-Bis(4-pyridyl)- ethane (bpa) Polynuclear Compounds[J]. Eur. J. Inorg. Chem., 2010, (22): 3491-3497.
    [78] Tabellion F M, Seidel S R, Arif A M, et al. A Novel, Tunable Manganese Coordination System Based on a Flexible "Spacer" Unit: Noncovalent Templation Effects [J]. J. Am. Chem. Soc., 2001, 123(48): 11982-11990.
    [79] Marivel S, Shimpi M R, Pedireddi V R. Novel Supramolecular Assemblies of Coordination Polymers of Zn(II) and Bis(4-nitrophenyl)phosphoric Acid with Some Aza-Donor Compounds [J]. Cryst. Growth Des., 2007, 7(9): 1791-1796.
    [80] Danylyuk O, Lesniewska B, Suwinska K, et al. Structural Diversity in the Crystalline Complexes of para-Sulfonato-calix[4]arene with Bipyridinium Derivatives [J]. Cryst. Growth Des., 2010, 10(10): 4542-4549.
    [81] Wang H, Wang Y Y, Yang G P, et al. A series of intriguing metal-organic frameworks with 3,3',4,4'-benzophenonetetracarboxylic acid: structural adjustment and pH-dependence [J]. CrystEngComm, 2008, 10(11): 1583-1594.
    [82] Ma L F, Wang L Y, Wang Y Y, et al. Synthesis, structures and properties of Mn(II) coordination frameworks based on R-isophthalate (R = -CH3 or -C(CH3)3) and various dipyridyl-type co-ligands [J]. CrystEngComm, 2009, 11(1): 109-117.
    [83] Jin J C, Wang Y Y, Zhang W H, et al. New types of di-, tetra-, hexa- and octanuclear Ag(I) complexes containing 1,3-adamantanedicarboxylic acid [J]. Dalton Trans., 2009, (46): 10181-10191.
    [84] Ma L Fa, Li C P, Wang L Y, et al. Zn(II) and Cd(II) Coordination Polymers Assembled from a Versatile Tecton 5-Nitro-1,2,3-benzenetricarboxylic Acid and N,N'-Donor Ancillary Coligands [J]. Cryst. Growth Des., 2010, 10(6): 2641-2649.
    [85] Yang G P, Wang Y Y, Zhang W H, et al. A series of Zn(II) coordination complexes derived from isomeric phenylenediacetic acid and dipyridyl ligands:syntheses, crystal structures, and characterizations [J]. CrystEngComm, 2010, 12(5): 1509-1517.
    [86] Sun J K, Yao Q X, Ju Z F, et al. 2D self-catenated coordination polymer constructed by triple- and double-helical chains [J]. CrystEngComm, 2010, 12(6): 1709-1711.
    [87] Sheldrick G M. SHELXS-97, a Program for X-Ray Crystal Structure Solution, and SHELXL-97, a Program for X-ray Structure Refinement. University of G?ttingen, Germany. 1997.
    [88] Sheldrick G M. SADABS, A Program for Empirical Absorption Correction of Area detector Data, University of G?ttingen, Germany, 1997.
    [89] Sun D, Zhang N, Huang R B, et al. Series of Ag(I) Coordination Complexes Derived from Aminopyrimidyl Ligands and Dicarboxylates: Syntheses, Crystal Structures, and Properties [J]. Cryst. Growth Des., 2010, 10(8): 3699-3709.
    [90]Wang X, Qin C, Wang E, et al. Syntheses, Structures, and Photoluminescence of a Novel Class of d10 Metal Complexes Constructed from Pyridine-3,4-dicarboxylic Acid with Different Coordination Architectures [J]. Inorg. Chem., 2004,43(6): 1850-1856.
    [91] Wong P T, Brewer D J. Nature of the coordination bond in metal complexes of substituted pyridine derivatives. IV. Skeletal vibration spectra and the substituent effect upon the coordination bond of the pyridine complex of zinc(II) ion [J] Can. J. Chem., 1969, 47(24): 4589-4597.
    [92] Song J L, Zhao H H, Mao J G, et al. New Types of Layered and Pillared Layered Metal Carboxylate-Phosphonates Based on the 4,4'-Bipyridine Ligand [J]. Chem. Mater., 2004, 16(10): 1884-1889.
    [93] Zhang X M, Tong M L, Gong M L, et al. Supramolecular organisation of polymeric coordination chains into a three-dimensional network with nanosized channels that clathrate large organic molecules [J]. Eur. J. Inorg. Chem., 2003, (1): 138-142.
    [94] Amiri M G, Mahmoudi G, Morsali A, et al. Zinc(II) nitrite coordination polymers based on rigid and flexible organic nitrogen donor ligands [J].CrystEngComm, 2007, 9(8): 686-697.
    [95] Bai H Ye, Ma J Fang, Yang J, et al. Effect of Anions on the Self-Assembly of Cd(II)-Containing Coordination Polymers Based on a Novel Flexible Tetrakis(imidazole) Ligand [J]. Cryst. Growth Des., 2010, 10(2): 995-1016.
    [96] Zang S, Su Y, Li Y, et al. Assemblies of a New Flexible Multicarboxylate Ligand and d10 Metal Centers toward the Construction of Homochiral Helical Coordination Polymers: Structures, Luminescence,and NLO-Active Properties [J]. Inorg. Chem., 2006, 45(1): 174-180.
    [97] Wen L, Lu Z, Lin J, et al. Syntheses, Structures, and Physical Properties of Three Novel Metal-Organic Frameworks Constructed from Aromatic Polycarboxylate Acids and Flexible Imidazole-Based Synthons [J]. Cryst. Growth Des., 2007, 7(1): 93-99.
    [98] Su Y, Zang S, Li Y, et al. Four d10 Metal Coordination Polymers Containing Isomeric Thiodiphthalic Ligands: Crystal Structures and Luminescent Properties [J]. Cryst. Growth Des., 2007, 7(7): 1277-1283.
    [99] Shao K Z, Zhao Y H, Xing Y, et al. Assembly of a Chiral Bikitaite Zeolite Metal-Organic Framework Based on the Asymmetrical Tetrahedral Building Blocks [J]. Cryst. Growth Des., 2008, 8(8): 2986-2989.
    [100] Hao X R, Wang X L, Su Z M, et al. Two unprecedented porous anionic frameworks: organoammonium templating effects and structural diversification [J]. Dalton Trans., 2009, (40): 8562-8566.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700