磁性Fe_3O_4纳米微粒介导TRAIL基因治疗涎腺腺样囊性癌的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腺样囊性癌(Adenoid cystic carcinoma,ACC)是最常见的涎腺恶性肿瘤之一,约占涎腺上皮肿瘤的~10%。其发生率在口腔颌面部肿瘤中占第二位。与其他涎腺恶性肿瘤相比,生长速度较慢,但预后相对较差。然而,现有的治疗方法包括手术、放疗、化疗及联合治疗均不能提高患者的生存率。为此,国内外的学者正试图寻找新的更有效的治疗方法。目前为止,恶性肿瘤仍然是导致人类死亡的主要问题,而他的治疗一直以来困扰人们。过去的几十年来,随着基因治疗的发展,恶性肿瘤的转基因治疗也开始兴起。转基因治疗是指将外源性基因导入体细胞以纠正遗传或后天获得的基因缺陷,经过20余年的探索与研究,转基因治疗在遗传性疾病、代谢性疾病、恶性肿瘤的治疗领域己经取得很大进步,个别己应用于临床。这一治疗方法具有巨大的潜力,但是安全有效的应用于人体之前,仍有很多问题需要解决,例如特异性、转染效率、毒副作用等等。在目前的研究中,我们努力开发一种新的纳米微粒系统达到特异的、高效的转染效率、低毒副作用的癌症转基因治疗。
     肿瘤坏死因子相关凋亡诱导配体TRAIL属于肿瘤坏死因子超家族。TRAIL可以诱导很多肿瘤细胞系凋亡。TRAIL的杀伤作用是肿瘤特异性的,对正常细胞及组织几乎没有副作用。虽然对于这种肿瘤特异性杀伤性作用的机制几乎不知道,但是TRAIL仍被认为是肿瘤治疗可能的有效的治疗肿瘤的有效基因,能为肿瘤治疗提供新的思路。人端粒酶逆转录酶(hTERT)在85-90%的恶性肿瘤中高表达,而在正常体细胞中几乎没有表达。所以hTERT被认为是肿瘤转基因治疗的特异性启动子。许多研究都将hTERT启动子使抗肿瘤基因在肿瘤细胞中靶向表达,对正常细胞没有杀伤作用,减少了其副作用。我们之前的研究表明,腺病毒载体编码TRAIL基因,并由hTERT启动子介导在体内可以有效杀伤ACC。本实验中我们设计使用质粒载体pACTERT-TRAIL。
     近年来,纳米技术飞速发展,并在很多医学领域有广泛的应用,尤其是多功能的纳米微粒的医学应用。纳米或者微米颗粒的表面可以与许多分子结合,例如DNA分子。磁性纳米微粒是一类特殊的纳米微粒,已经被用于药物输送、快速生物分离等方面。一些以前的研究表明DNA分子能通过共价键与磁性纳米微粒复合,在外加磁场作用下可以提高转染效率。
     在国家自然科学基金的资助下(30672338、30740420551、30830108),我们将转基因治疗与纳米技术联合开发了一种新的治疗方法。合成了以人端粒酶逆转录酶为启动子,表达肿瘤坏死因子相关凋亡诱导配体TRAIL的质粒载体pACTERT-TRAIL。此外合成了带正电的聚合物PEI修饰Fe_3O_4纳米微粒,使其与带负电的质粒载体复合,形成了Fe_3O_4-PEI-质粒复合物(FPP)。我们在碱性共沉淀方法里面加入了分枝状聚合物PEI,合成了PEI修饰Fe_3O_4纳米微粒作为载体。纳米微粒表面的胺基可以与质粒DNA的磷酸根通过静电作用复合形成含DNA的FPP。非病毒载体系统更加安全具有更小的副作用。它可以局部靶向输送DNA。溶酶体内聚合物PEI通过质子海绵效应保护DNA不被降解。并且FPP带正电可以与带负电的细胞膜复合,从而更快的进入细胞。研究表明:与带负电和中性的粒子相比,带正电的粒子可以与细胞结合从而更快的被细胞吞噬。
     PEI修饰的Fe_3O_4磁性纳米微粒组在Nd-Fe-B外加磁场作用下,将pACTERT-TRAIL转染SACC-83细胞,通过MTT、流式细胞仪等技术,观察其对SACC-83增殖和凋亡作用;体内以腺样囊性癌裸鼠移植瘤模型为研究对象,外加磁场作用下磁转染pACTERT-TRAIL,测量肿瘤的大小、检测目的基因的表达以及观察裸鼠脏器形态学和血液学等改变,探讨pACTERT-TRAIL对实验动物体内腺样囊性癌的治疗作用。结果发现,体外转染实验中,PEI修饰的Fe_3O_4磁性纳米微粒组在Nd-Fe-B外加磁场作用下,获得了更高的转染效率。MTT实验及Annexin V-FITC/PI双染测定SACC-83细胞的凋亡比率结果表明,PEI修饰的Fe_3O_4磁性纳米微粒组在Nd-Fe-B外加磁场作用下更加有效的杀伤靶细胞。体内实验中,磁性纳米载体组在外加磁场作用下,能显著抑制腺样囊性癌裸鼠移植瘤生长,并且荷瘤裸鼠的心脏、肝脏、肾脏、肺脏,未见明显的形态学改变,全血中红细胞、白细胞、血小板数目,血红蛋白含量也未见明显变化。
     人TRAIL具有选择性的肿瘤特异性杀伤活性,而对大多数正常细胞和组织几乎没有杀伤作用。然而以往的研究结果表明,高浓度的TRAIL在体外可诱发肝细胞和人脑细胞的毒性。TRAIL的毒性还包括对正常组织具有潜在的缺血性和出血性反应。为了尽量减少对TRAIL潜在的副作用,并限制在正常细胞中的表达,我们选择了hTERT启动子作为恶性肿瘤特异性启动子。我们以前的研究曾显示,hTERT启动子选择性介导的TRAIL在SACC-83中表达并有效杀伤了癌细胞。这些细胞的特异性杀伤肿瘤细胞作用中,我们使用的PEI修饰的氧化铁纳米粒子输送质粒进入靶细胞,通过在外加的Nd-Fe-B磁场作用下,可以将纳米质粒复合微粒进一步限制在肿瘤细胞。因此,PEI修饰的Fe_3O_4磁性纳米微粒在Nd-Fe-B磁场作用下与腺病毒载体相比更加简单,具体,高效,低毒性的转染方法。
     总之,这项研究表明,我们能够创建一个有效的PEI修饰的Fe_3O_4磁性纳米微粒,它可以连接质粒DNA,在磁场作用下可以有效地转染ACC的肿瘤细胞SACC-83,体内外均取得了较好的抑制肿瘤的作用。PEI修饰的Fe_3O_4磁性纳米微粒治疗具有很大的临床应用潜力。
ACC is one of the most common malignant neoplasms in the human salivary gland,representing~10%of salivary gland tumors. Adenoid cystic carcinoma is the second mostcommon malignant tumor in the salivary gland.The ACC grows relatively slowly and has a poorprognosis compared to other malignant tumors in salivary glands. However, the currenttreatments for ACC,including surgery, radiation therapy, chemotherapy and combinationsthereof,still could not improve overall mortality rates. To efficiently and successfully treatACC, new treatments are needed. To date, cancer is still one of major lethal diseases inhuman for which treatment can be problematic. Over decade ago, cancer gene therapy startedto develop with the gene therapy developing. This novel treatment has great potential, butmany issues need to be solved before cancer patients can be safely and efficiently treated. Thoseissues like specific, efficient transfection/transduction, toxicity and so on. Gene therapymeans transfer the extenal gene to cells,corret the heredity and get impairment of gene.After20-year research, there was great progression to treat the heredity disease,metabolism diseaseand malignant tumor using gene therapy,and some treatments have been used in clinical case.In the current study, we tried to use our novel developed nanoparticale system to addressspecific, efficient transfection/transduction and toxicity issues during cancer gene therapy.
     TRAIL belongs to the tumor necrosis factor (TNF)-cytokine superfamily. TRAIL inducesapoptosis in a wide variety of transformed cell lines. The killing activity of TRAIL iscancer-specific and has little or no effect on most normal cells and tissues. Although themechanism for this cancer-specific action of TRAIL is poorly understood, it is recognized thatTRAIL has the potential to become a promising antitumor therapy reagent and may provide anovel approach for cancer treatment.The human telomerase reverse transcriptase (hTERT) ishighly active in85–90%of human cancer, while its activity is lower or undetactable in mosthuman normal somatic cells. The hTERT promoter was considered as a tumor specific promoter.Many studies have used the hTERT promoter to drive antitumor gene expression selectively incancer cells, without or little affecting normal cells to restrict or limit unwanted side effects.Our previous study demonstrated that adenoviral vector encoded human TRAIL, driven by the hTERT promoter, could efficiently mediate apoptosis of an ACC tumor model in vivo. Weused the plasmid pACTERT-TRAIL.
     Recently medical nanotechnology has developed quickly and is already employed in manyclinical applications. These multifunctional nanoparticles become very promising for manyapplications. Nano-or micro-particles provide specific surface for many kind of molecules tobind, such as chemical compounds or DNA molecules (on the surface or in the center, bothmethods are exit). Magnetic nanoparticle are a special kind of nanoparticle, which has beenused in drug delivery and rapid biological separation. Several previous studies demonstrated thatDNA molecules could bind to magnetic nanoparticles by non-covalent bonds and used this toincrease transduction efficiency by applying a magnetic field around tumor.
     To overcome treatment limitations, we developed a novel treatment combining genetherapy and nanotechnology. In this study, we created a plasmid pACTERT-TRAIL, whichused the human telomerase reverse transcriptase promoter,a tumor specific promoter,to drivea TRAIL. A Fe_3O_4-PEI-plasmid complex (FPP) was generated, in which the Fe_3O_4nanoparticles modified by positive charge polyethylenimine to be able to carry the negativecharge plasmid.We used polymer modified Fe_3O_4nanoparticles as vector,which is prepared byalkaline coprecipitation in the presence of the cationic polymer PEI. The amine groups on thesurface of nanoparticles can combine with the phosphate radical of plasmid DNA,pACTERT-TRAIL, by electrostatic interaction to form nanocomposite particles. This non-viraldelivery system could be more safe with less side effects. The magnetism of nanocompositeparticles could locally target the DNA delivery. The PEI polymer can protect the DNA fromdigesting in endosome due to their buffer capacity so-called―proton sponge mechanism‖. FPPinteract with the negative charges of the cell membrane facilitating entry into the cells. A studysuggested that positive molecules interact with cells strongly leading to faster cellular uptakecompared to neural and negative molecules.
     pACTERT-TRAIL transfected with the PEI modified iron oxide nanoparticles with aNd-Fe-B magnet into SACC-83cells,the proliferation and apoptosis of SACC-83weredetected by MTT,FCM techniques. In vivo, after FPP was injected into tumors of ACC innude mice,the tumor volumes,the morphology of organs and elements of blood in nude mousewere detected, in order to illuminate the function of the pACTERT-TRAIL.The grouptransfected with the PEI modified iron oxide nanoparticles with a Nd-Fe-B magnet had the highest transfection efficiency. The results from MTT assay and Annexin V-FITC assayindicated that the PEI modified iron oxide nanoparticles with a Nd-Fe-B magnet couldefficiently deliver functional plasmids into the target cells. The group of PEI modified ironoxide nanoparticles with a Nd-Fe-B magnet inhibit the tumor growth of adenoid cysticcarcinoma and there were no obviously change of morphology of organs and elements of bloodin the nude mice.
     Human TRAIL has a selective tumor-specific killing activity and little or no effect on mostnormal cells and tissues.Previous studies, however, showed that high concentration ofTRAIL could induce toxicity of hepatocytes and human brain cells in vitro. The TRAIL toxicitieshave potential ischemic and hemorrhagic reaction in normal tissues. To minimize the TRAILpotential side effects and restrict the expression of TRAIL in the cancer cells, we selected thehTERT promoter as a cancer specific promoter. Our previous study had shown that the hTERTpromoter selectively mediated the expression of TRAIL in SACC-83tumor cells resulting in thespecific killing of these cells in vitro. In present study, we used the PEI modified iron oxidenanoparticles to deliver therapeutic plasmid into target cells and employed a Nd-Fe-B magnetaround the target at the same time to further restrict the transfection occurred in the target side.Therefore, the PEI modified iron oxide nanoparticles with a Nd-Fe-B magnet provides asimple, specific, efficient and less toxic transfection method in vitro and in vivo compared tothe adenoviral vector.
     In summary, this study demonstrated that we were able to create a useful PEI modifiediron oxide nanoparticles, which could link plasmid DNA and efficiently transfected thetherapeutic plasmid into the ACC tumor cells, SACC-83, in vitro and in vivo in a specificmanner using a Nd-Fe-B magnet around the target site. This PEI modified iron oxidenanoparticles show the possible clinical potential to treat the ACC in near future.
引文
[1] Blaese RM, Culver KW, Miller AD T,et al. lymphocyte-directed gene therapy forADA/SCID: Initial trial result after4years. Science,1995,270(5235):475-480.
    [2] Baum BJ, O’Connell BC. The impact of gene therapy on dentistry. J Am Dent Assoc.1995,126(2):179-189.
    [3] Baum BJ, O’Connell BC. In vivo gene transfer to salivary glands. Crit Rev Oral BiolMed.1999,10(3):276-283.
    [4] Hoque AT, Yamano S, Baccaglini L, et al. Using salivary glands as a tissue target for genetherapeutics. J Drug Target.2001,9(6):485-494.
    [5] Vitolo JM, Baum BJ. The use of gene transfer for the protection and repair of salivaryglands. Oral Dis.2002,8(4):183-191.
    [6]王松灵,朱宣智,吉野教夫等.正常口腔颌面组织放射生物学研究概况.中华口腔医学杂志.1994,29:57-59.
    [7] Wang SL, Zou ZJ, Yu SF, et al.Recurrent swelling of parotid glands and Sjogren’ssyndrome. Int J Oral Maxillofac Surg.1993,22(6):362-365.
    [8] Wang SL, Zhao ZT, Li J, et al.Investigation of the clinical value of total saliva flowrates.Arch Oral Biol.1998,43(1):39-43.
    [9] Denker BM, Smith BL, Kuhajda FP, et al. Idenntification, purification, and partialcharacterization of a novel Mr28,000integral membrane protein from erythrocytes andrenal tubules. J Biol Chem.1988,263(30):15634-15642.
    [10]Agre P, Brownn D, Nielsen S. Aquaporin water channels: unanswered questions andunres olved controversies. Curr Opin Cell Biol.1995,7(4):472-483.
    [11]Delporte C, O’Connell BC, He X, et al. Adenovirus-mediated expression of aquaporin-5in epithelial cells. J Biol Chem.1996,271(36):22070-22075.
    [12]Greenlee RT, Hill-Harmon MB, Murray T, et al. Cancer statistics,2001. CA Cancer JClin.2001,51(1):15-36.
    [13]Klein RS, Harris CA, Small CB, et al. Oral candidiasis in high risk patients as the initialmanifestation of the acquired immunodeficiency syndrome. N Engl J Med.1984,311(6):354-358.
    [14]Georgopapadakon NH, Walsh TJ. Human mycoses:drugs and targets for emergingpathogens.Science.1994,264(5157):371-373.
    [15]Baum BJ, Bird JL, Miller DB, et al. Studies on hitidine-rich polypeptides from humanparotid saliva. Arch Biochem Biophys.1976,177:447-456.
    [16]Edgerton M, LoT, Raj PA.Salivary histatine5exhibit specific binding to yeast cellmembranes. J Dent Res.1996,75:358.
    [17]O’Connell BC, Xu T, Walsh TJ, et al.Transfer of a gene encoding the anticandidal prteinhistatin3to salivary glands. Human G ene Therapy.1996,7(18):2255-2261.
    [18]Fellowes R, Etheridge CJ, Coade S, et al. Amelioration of established collagen inducedarthritis by systemic IL-10gene delivery. Gene Ther.2000,7(11):967-977.
    [19]Kagami H, O’Connell BC, Baum BJ. Evidence for the systemic delivery of a transgeneproduct from salivary glands. Human Gene Therapy.1996,7(17):7177-7184.
    [20]Gold fine ID, German MS, Tseng HC, et al. The endocrine secretion of human insulinand growth hormone by ex ocrine glands of thegastrointestinal tract. Nat Biotechnol.1997,15(13):1378-1383.
    [21]He XJ, Goldsmith C, Mammary Y, et al. Systemic action of human growth hormonefollowing adenovirus-mediated gene transfer to rat submandibular glands. Gene Therapy.1998,5(4):537-541.
    [22]Alves FA, Pires FR, De Almeida OP, et al. PCNA, Ki67and p53expressions insubmandibular salivary gland tumours. Int J Oral Maxillofac Surg.2004,33(6):593-597.
    [23]Weber A, Langhank iL, Schutz A, et al. Expression prof iles of p53, p63and p73inbenign salivary gland tumors. Virchows Arch.2002,441(5):428-436.
    [24]王洁,董福生,雍平,等.涎腺多形性腺瘤p53基因突变的聚合酶链式反应-单股构型多态分析研究.现代口腔医学杂志.2000,14(2):84-86.
    [25]Fujita S, Shibat a Y, Takah ash iH, et al. Apoptosis induced and suppres sedcells insalivary gland adenoid cystic carcinoma: correlation with histological growth patterns.Oral Dis.1999,5(2):117-122.
    [26]Yanez M, Roa I, Garcia M, et a l.Bcl-2gene protein expression in salivary glandtumors[J]Rev Med Chi.1999,127(2):139-142.
    [27]Mantesso A, Loducca SV, Bend it I, et al. Mdm2mRNA expression in salivary glandtumur cell lines. J Oral Pathol Med.2004,33(2):96-101.
    [28]Federico C, Luisa B, Elisa F, et al. Combined HSV-TKIL-2gene therapy inpatients withrecurrent gioblastoma multiforme:biological and clinical results. Cancer Gene Therapy.2005,12(10):835-848.
    [29]Maatta AM, Tenhunen A, Pasanen T, et al. Nonsmall cell lung cancer as a target diseasefor herpes simplex type1thym idine kinase gan ciclovir gene therapy. Int Jon col.2004,24(4):943-949.
    [30]Hoggarth J H, Jones E, Ensser A, et al. Functional expression of thymidine kinase inhuman leukaemic and colorectal cells, delivered as EGFP fusion protein by herpesvirussaim iribased vector. Cancer Gene Ther.2004,11(7):512-518.
    [31]Song X, Varker H, Eichelbaum M, et al.Treatment of lung cancer patients andconcomitant use of drugs interacting with cytochrome P450isoenzymes.Lung Cancer.2011,74(1):103-111.
    [32]Palmer DH,mautner V,Hull D, et al. Virus-directed enzyme prodrug therapy(VDEPT):A clinical trial of adenovirus-delivered nitroreductase(NTR)in combinationwith CB1954in patients with primary of secondary liver cancer. J Clin Oncol.2005,23(16):31-57.
    [33]O’Malley BW, LiD. Combination gene therapy for salivary gland cancer. Ann NY Acad Sci.1998,842:163-170.
    [34]孙春晓,何荣根,张志愿,等.涎腺腺样囊性癌自杀基因治疗的实验研究.中华口腔医学杂志.2000,35(1):34-37.
    [35]McNeish IA,Bell SJ,Lemoine NR. Gene therapy progress and Prospects: cancer genetherapy using tumour suppressor genes.Gene Therapy.2004,11(6):497-503.
    [36]Peng Z.Current status of gendicine in China:recombinant human Ad-P53agent fortreatment of cancers. Hum Gene Ther.2005,16(9):1026-1027.
    [37]Roth JA. Adenovirus P53gene therapy. Expert Opin Biol Ther.2006,6(1):55-61.
    [38]Moon WC.Clinical study on intraarterial p53gene therapy for liver cancer. Chung AngUniversity.1999,16(3):43-46.
    [39]Nishizaki M,Fujiwara T,Tanida T,et al.Recombinant adenovirus expression wild-typyp53is antiangiogenic:A proposed mechanism for bystander effect. Clin Cancer Res,1999,5(5):1015-1023.
    [40]Asaumi J,Higuchi Y,Murakami J. Thermorad in therapy combined with p53genetherapy of human salivary gland adenocarcinoma cell line. Onco lRep.2003,10(1):71-74.
    [41]温玉明,李文,王昌美,等.m23-h1基因导入对腺样囊性癌分化的影响.临床口腔医学杂志.2001,17(3):163-164.
    [42]Seki M,Iwakawa J,Cheng H, et al.p53and PTEN/MMACI/TEP1gene therapy ofhuman prostate PC-3carci-noma xenograft,using transferrin-facilitated lipofection genedelivery strategy.Hum Gene Ther.2002,13(6):761-773.
    [43]Parney IF,Chang LJ.Cancer immunogene therapy: a review. J Biomed Sci.2003,10(1):37-43.
    [44]Niederman TM,Ghogawala Z,Carter BS, et al. Antitumor activity of cytotoxic Tlymphocytes engineeredto target vascular endothelial growth factor receptors.Proc NatlAcad Sci USA.2002,99(10):7009-7014.
    [45]Croci S, Nicoletti G,Landuzzi L.Immunological prevention of amulti gene cancersyndrome.Cancer Res.2004,64(22):8428-8434.
    [46]Fire A,Xu S,Montgomery MK.Potent and specific genetic interference by doublestranded RNA in Caenorh abditis elegans.Nature.1998,391(6669):806-811.
    [47]SuZZ,Lebedeva IV,Gopalkrishnan RV,et al.A combinatorial approach for selectivelyinducing pro-grammed cell death in human pancreatic cancer cell.Proc Natl Acad SciUSA.2001,98(18):10332-10337.
    [48]王石光,司徒镇强,吴军正.c-myc反义寡核苷酸对黏液表皮样癌细胞生长的抑制作用.实用口腔医学杂志,2000,16(5):391-393.
    [49]Ashihara E, Kawata E, Maekawa T. Future Prospect of RNA Interference for CancerTherapies. Curr Drug Targets.2010,11(3):345-360.
    [50]Meng-Tsai Wum, Wen-Hui Tsai, Wen-Tsan Chang, et al.Simple and effcient DNAvector based RNAi systems in mammalian cells. Biochem Biophys Res Commun.2005,330(1):53-59.
    [51]Ulmer JB,Donnelly JJ,Parker SE,et al. Heterologous protection against influenza byinjection of DNA encoding a viral protein.Science.1993,259(5102):1745-1749.
    [52]McM Urty MS.Gene therapy targeting surviving selectively induces pulmonaryvascularapoptosis and reverses pulmonary arterial hypertension.J Clin Invest.2005,115(6):1479-1491.
    [53]Suzuki R,Namai E,Oda Y,et al.Cancer gene therapy by IL-12gene delivery usingliposomal bubbles and tumoral ultrasound exposure.J Control Release.2010,142(2):245-250.
    [54]Wivel NA,Wilson JM. Methods of gene delivery. Hematol Oncol Clin North Am.1998,12(3):483-501.
    [55]Lanuti M, Gao GP,Force SD,et al.Evaluation of an E1E4-deleted adenovirusexpressing the herpes simplex thymidine kinase suicide gene in cancer genetherapy.Human Gene Therapy.1999,10(3):463-475.
    [56]Ferry N,Heard JM. Liver-directed gene transfer vectors.Human Gene Therapy.1998,9(14):1975-1981.
    [57]Smith RH, Spano AJ, Kotin RM. The Rep78gene product of adeno-associated virus(AAV) self-associates to form a hexameric complex in the presence of AAV orisequences. J Virol.1997,71(6):4461-4471.
    [58]Wagner JA,Moran ML, Messner AH, et al. A phase I/II study of tgAAV-CF for thetreatment of chronic sinusitis in patients with cystic fibrosis.Human GeneTherapy.1998,9(6):889-909.
    [59]Kulic L,Walter J,Multhaup G,et al. Separation of presenilin function in amyloid beta-peptide generation and endoproteolysis of Notch.Proc Natl Acad Sci USA.2000,97(11):5713-5718.
    [60]Nakano MY, Greber UF. Quantitative microscopy of fluorescent adenovirus entry. JStruct Biol.2000,129(1):57-68.
    [61]Chirmule N, Xiao W,Truneh A, et al. Humoral immunity to adeno-associated virustype2vectors following administration to murine and nonhuman primate muscle. JVirol.2000,74(5):2420-2425.
    [62]Miao CH, Snyder RO, Schowalter DB, et al. The kinetics of rAAV integration in theliver. Nat Genet.1998,19(1):13-15.
    [63]Braddon VR, Chiorini JA, Wang S,et al. Adeno-associated virus-mediated transferof a functional water channel into salivary epithelial cells in vitro and in vivo. HumGene Ther.1998,9(18):2777-2785.
    [64]Yan Z,Zhang Y, Duan D,et al. From the cover: trans-splicing vectors expand the utilityof adeno-associated virus for gene therapy. Proc Natl Acad Sci U.S.A.2000,97(12):6716-6721.
    [65]Nakai H,Storm TA,Kay MA. Increasing the size of rAAV-mediated expressioncassettes in vivo by intermolecular joining of two complementary vectors. NatBiotechnol.2000,18(5):527-532.
    [66]Cavazzana-Calvo M,Hacein-Bey S, de Saint BG,et al. Gene therapy of human severecombined immunodeficiency (SCID)-X1disease. Science.2000,288(5466):669-672.
    [67]Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turninginfectious agents into vehicles of therapeutics. Nat Med.2001,7(1):33-40.
    [68]Andreadis ST, Roth CM, Le Doux JM,et al. Large-scale processing of recombinantretroviruses for gene therapy. Biotechnol Prog.1999,15(1):1-11.
    [69]Vigna E, Naldini L. Lentiviral vectors: excellent tools for experimental gene transferand promising candidates for gene therapy. J Gene Med.2000,2(5):308-316.
    [70]Takeuchi Y, Pizzato M. Retrovirus vectors. Adv Exp Med Biol.2000,465:23-35.。
    [71]Kawakami S, Higuchi Y,Hashida M.Nonviral a ppro aches for targeted deliver y ofplasmid DNA and oligonucleotide.J Pharm Sci.2008,97:726-745.
    [72]Lis D,Huang L.Non-viral is superior to viral gene delivery.J Control Release.2007,123(3):181-183.
    [73]Liu D, Ren T, Gao X. Cationic transfection lipids.Curr Med Chem.2003,10:1307-1315.
    [74]Neu M, Fischer D, Kissel T.Recent advances in rational gene transfer vector designbased on poly (ethylene imine) and itsderivatives.J Gene Med.2005,7(8):992-1009.
    [75]Muramatsu T, Ito N, Tamaoki N, et al. In vivo gene electroporation confersnutritionally-regulated foreign gene expression in the liver. Int J Mol Med.2001,7(1):61-66.
    [76]Rizzuto G, Cappelletti M, Maione D, et al. Efficient and regulated erythropoietinproduction by naked DNA injection and muscle electroporation. Proc Natl Acad SciU.S.A.1999,96(11):6417-6422.
    [77]Mahato RI, Smith LC, Rolland A. Pharmaceutical perspectives of nonviral gene therapy.Adv Genet.1999,41:95-156.
    [78]Han S,Mahato RI,Sung YK,et al. Development of biomaterials for gene therapy. MolTher.2000,2(4):302-317.
    [79]Bisht S, Bhakta G, Mitra S, et al.pDNA loaded calcium phosphate nanoparticles: highlyefficient non-viral vector for gene delivery. International Journal of Pharmaceutics.2005,288:157–168.
    [80]Olbrich C,Bakowsky U,Lehr CM,et al. Cationic solid-lipid nanoparticles canefficiently bind and transfect plasmid DNA. J Control Release.2001,77(3):345-355.
    [81]Parker AL, Oupicky D, Dash PR,et al. Methodologies for monitoring nano particalesformation by self-assembly of DNA with poly(L-Lysine). An Biochem.2002,302(1):75.
    [82]Read ML, Singh S, Ahmed Z, et a l. A versatile reducible polycation based system forefficient delivery of abroad range of nucleicacids. Nucleic Acids Res.2005,33(9):86
    [83]Jain T, Morales M, Sahoo S, et al.Iron oxide nanoparticles for sustained delivery ofanticancer agents. Mol Pharm.2005,2(3):194-205.
    [84]Son S, Reichel J, He B, et al.Magnetic nanotubes for magnetic-field-assistedbioseparation, biointeraction and drug delivery. J Am Chem Soc.2005,127(20):7316-7317.
    [85]Moore A,Marecos E,Bogdanov A Jr,et al.Tumoral distribution of long-circulatingdextran-coated iron oxide nanoparticles in a rodent model.Radiology.2000,214(2):568-574.
    [86]李和平,阮建明,黄伯云,等.磁性壳聚糖药物载体纳米粒子的制备和性能.生物学研究生命科学研究中国博士后生命科学研讨会暨院士论坛.北京,2003:292.
    [87]刘俊,刘选明,肖苏尧,等.基于超声波下淀粉纳米颗粒作载体的基因转导[J].高等学校化学学报.2004,26(4):634.
    [88]Morteza M, Abdolreza S, Mohammad I,et al.Superparamagnetic iron oxide nanoparticles with rig id cross-linked polyethylene glycol fumarate coating for application inimaging and drug delivery. J Phys Chem.2009,113(19):8124-8131.
    [89]Kamau W,Hassa P,Steitz B, et al. Enhancement of the efficiency of non-viral genedelivery by application of pulsed magnetic field. Nucleic Acids Research.2006,34(5):e40.
    [90]Kadota S,Kanayama T,Miyajima N,et al. Enhancing of measles virus infection bymagnetofection. Journal of Virological Methods.2005,128(1-2):61–66.24.
    [91]Morishita N, Nakagami H, Morishita R, et al.Magnetic nanoparticles withsurfacemodification enhanced gene delivery of HVJ-E vector. Biochem BiophysResCommun.2005,334(4):1121-1126.
    [92]Kamei K, Mukai Y, Kojima H, et al.Direct cell entry of gold/iron-oxide magneticnanoparticles in adeno virus mediated gene delivery.Biomaterials.2009,30(9):1809-1814.
    [93]Hultman KL, Raffo AJ, Grzenda AL, et al.Magnetic resonance imaging of majorhistocompatibility class Ⅱexpr ession in the renal medulla using immunotargeted superparamagnetic iron oxide nanoparticles.ACS Nano.2008,2(3):477-484.
    [94]Janes KA,Calvo P,Alonso MJ. Polysaccharide colloidal particles as delivery systemsfor macromolecules. Adv Drug Deliv Rev.2001,47(1):83-97.
    [95]Scherer U,Manton,Schillinner L, et al. Magnifection: enhancing an target gene deliveryby magnet-enforce in vitro and in vivo.Gene therapy.2002,9:102-109.
    [96]Grief A, Richardson G.Mathematical modelling of magnetically targeted drug delivery.JMagn Magn Mater.2005,293(1):455-463.
    [97]Davis SS. Biomedical applications of nanotechnology-implications for drug targetingand gene therapy. Trends Biotechnol.1997,15(6):217-224.
    [98]Abou-Jawde R, Choueiri T, Alemany C,et al. An overview of targeted treatments incancer.Clin Ther.2003,25(8):2121-2137.
    [99]刘晓波,蔡美英.人肝癌免疫毫微粒的制备及体外免疫学性质的鉴定.中国免疫学杂志.2000,16(5):262-265.
    [100]Urs O H feli, Gayle J Pauer.In vitro and in vivo toxicity of magnetie microspheres.JMagn Magn Mater.1999,194(1):76-82.
    [101]Wang GB,Xia ZF,Tao KX,et al.Experimental studies on acute toxicology of Fe3O4nano-magnetic ferrofluid.J HuazhongUniv Sci Tech (Health Sci).2004,33(4):452-454.
    [102]Lee H,Lee E, Kim do K,et al.Antibiofouling polymer-coated superparamagnetic ironoxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancerimaging. J Am Chem Soc.2006,128(22):7383-7389.
    [103]A. Natarajan, C. Gruettner, R. Ivkov, et al.NanoFerrite Particle BasedRadioimmunonanoparticles: Binding Affinity and In Vivo Pharmacokinetics.Bioconjugate Chem.2008,19(6),1211–1218.
    [104]Hu L,Mao Z, Gao C. Colloidal particles for cellular uptake and delivery.J. Mater.Chem.2009.19,3108-3115.
    [105]Zahr AS, Davis CA, Rishko MV.Macrophage Uptake of Core Shell NanoparticlesSurface Modified with Poly(ethylene glycol). Langmuir.2006,22,8178-8185.
    [106]Walther W,Stein U. Viral vectors for gene transfer: a review of their use in thetreatment of human diseases. Drugs.2000,60:249–271.
    [107]Edelstein ML,Abedi MR,Wixon J, et al.Gene therapy clinical trials worldwide1989-2004an overview. J Gene Med.2004,6(6):597-602.
    [108]Navarro J, Oudrhiri N, Fabrega S,et al. Gene delivery systems: Bridging the gapbetween recombinant viruses and artificial vectors.Adv Drug Deliv Rev.1998,30(1-3):5-11.
    [109]Truong-Le VL, Walsh SM, Schweibert E, et al. Gene transfer by DNA-gelatinnanospheres.Arch Biochem Biophys.1999,361(1):47-56.
    [110]Al-Dosari MS,Gao X.Nonviral gene delivery: principle, limitations and recentprogress. AAPS J.2009,11(4):671-81.
    [111]Sanvicens N,Marco MP. Multifunctional nanoparticles--properties and prospects fortheir use in human medicine. Trends Biotechnol.2008,26(8):425-433.
    [112]Nehilla BJ,Allen PG,Desai TA. Surfactant-free, drug-quantum-dot coloaded poly(lactide-co-glycolide) nanoparticles: towardsMultifunctional nanoparticles. ACSNano.2008,2(3):538–544.
    [113]Wang L,Luo J,Schadt MJ, et al. Thin film assemblies of molecularly-linked metalnanoparticles and multifunctional properties. Langmuir.2010,26(2):618–632.
    [114]Pellegrino T, Kudera S,Liedl T,et al. On the development of colloidal nanoparticlestowards multifunctional structures and their Possible use for biological applications.Small.2005,1(1):48–63.
    [115]Olivier JC.Drug transport to brain with targeted nanoparticles. NeuroRx.2005,2(1):108-119.
    [116]Lee MH, Thomas JL, Ho MH, et al. Synthesis of magnetic molecularly imprintedpoly (ethylene-co-vinyl alcohol) nanoparticles and their uses in the extraction andsensing of target molecules in urine. ACS Appl. Mater. Interfaces.2010,2(6):1729–1736.
    [117]Mahmoudi M, Simchi A, Imani M, et al. Superparamagnetic iron oxidenanoparticles with rigid cross-linked polyethylene glycol fumarate coating forapplication in imaging and drug delivery. J. Phys. Chem. C.2009,113(19):8124–8131.
    [118]Williams PS,Carpino F,Zborowski M. Magnetic nanoparticle drug carriers and theirStudy by quadrupole magnetic field-flow fractionation. Mol. Pharmaceutics.2009,6(5):1290–1306.
    [119]Liong M,Lu J,Kovochich M,et al.Multifunctional inorganic nanoparticles forimaging,targeting and drug delivery.ACS Nano.2008,2(5):889–896.
    [120]Sun C, Du K, Fang C, et al.PEG-mediated synthesis of highly dispersivemultifunctional superparamagnetic nanoparticles: their physicochemical properties andfunction in vivo. ACS Nano.2010,4(4):2402–2410.
    [121]Son S,Reichel J,He B,et al. Magnetic nanotubes for magnetic-field-assistedbioseparation, biointeraction, and drug delivery. J Am Chem Soc.2005,127(20):7316-7317.
    [122]Kamau W, Hassa P, Steitz B,et al. Enhancement of the efficiency of non-viral genedelivery by application of pulsed magnetic field. Nucleic Acids Research.2006,34(5):e40.
    [123]Kadota S,Kanayama T,Miyajima N,et al. Enhancing of measles virus infection bymagnetofection. Journal of Virological Methods.2005,128(1-2):61–66.
    [124]Morishita N, Nakagami H, Morishita R, et al.Magnetic nanoparticles withsurfacemodification enhanced gene delivery of HVJ-E vector. Biochem BiophysResCommun.2005,334(4):1121-1126.
    [125]Plank C,Anton M,Rudolph C,et al.Enhancing and targenting nucleic acid deliveryby magnetic force.Expert. Opin.Biol. Ther.2003,3:745-758.
    [126]Namgung R,Singha K,Yu MK,et al. Hybrid superparamagnetic iron oxidenanoparticle-branched polyethylenimine magnetoplexes for gene transfection ofvascular endothelial cells. Biomaterials.2010,31(14):4204-4213.
    [127]Zheng X,Lu J,Deng L,et al. Preparation and characterization of magnetic cationicliposome in gene delivery. Int J Pharm.2009,366(1-2):211-217.
    [128]Kievit FM,Veiseh O,Fang C,et al. Chlorotoxin labeled magnetic nanovectors fortargeted gene delivery to glioma. ACS Nano.2010,4(8):4587-4594.
    [129]Boussif O, Lezoualc'h F, Zanta MA, et al.A versatile vector for gene andoligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc NatlAcad Sci U S A.1995,92(16):7297-301.
    [130]J.萨姆布鲁克,D.W.拉赛尔著,黄培堂等译。分子克隆实验指南。第三版,北京:科学技术出版社,2003,96-99.
    [131]Ma H,Diamond S L. Nonviral gene therapy and its delivery systems.Curr PharmBiotechn.2001,2(1):1-17.
    [132]Sauer A M,de Bruin K G, Ruthardt N, et al. Dynamics of magnetic lipoplexes studiedby single particle tracking in living cells.J Control Release.2009,137(2):136-145.
    [133]De Bruin K, Ruthardt N,von Gersdorff K,et al. Cellular dynamics of EGFreceptor-targeted synthetic viruses.Mol Ther.2007,15(7):1297-1305.
    [134]Ang D,Nguyen QV,Kayal S,et al. Insights into the mechanism of magnetic particleassisted gene delivery. Acta Biomater.2011,7(3):1319–1326.
    [135]van der Wal JE,Becking AG,Snow GB,et al. Distant metastases of adenoid cysticcarcinoma of the salivary glands and the value of diagnostic examinations duringfollow-up. Head Neck.2002,24(8):779–783.
    [136]Barrett AW, Speight PM. Perineural invasion in adenoid cystic carcinoma of thesalivary glands: a valid prognostic indicator? Oral Oncol.2009,45(11):936-940.
    [137]Shirasaki T, Maruya S, Mizukami H, et al. Effects of small interfering RNAtargeting thymidylate synthase onsurvival of ACC-3cells from salivary adenoid cysticcarcinoma. BMC Cancer.2008,26;8:348.
    [138]Zang G,Miao L,Mu Y,et al.Adenoviral mediated transduction of adenoid cysticcarcinoma by human TRAIL gene driven with hTERT tumor specific promoter inducesapoptosis.Cancer biology and therapy.2009,8(10):966-972.
    [139]Haviv YS,Curiel DT. Conditional gene targeting for cancer gene therapy.Adv DrugDeliv Rev.2001,53(2):135–154.
    [140]Hodes R. Molecular targeting of cancer: telomeres as targets. Proc Natl Acad SciUSA.2001,98(14):7649-7651.
    [141]Song MS,Lee SW. Cancer-selective induction of cytotoxicity by tissue-specificexpression of targeted trans-splicing ribozyme. FEBS Letters.2006,580(21):5033-5043.
    [142]Su CQ,Wang XH,Chen J, et al. Antitumor activity of an hTERT promoter-regulatedtumor-selective oncolytic adenovirus in human hepatocellular carcinoma. World JGastroenterol.2006,12(47):7613-7620.
    [143]苏涛,孙宏晨,欧阳喈.腺样囊性癌端粒酶活性的免疫组化检测及其临床病理学意义.口腔医学研究.2004,20(4):362-363.
    [144]Kim K, Fisher MJ, Xu SQ, et al. Molecular determinants of response to TRAIL inkilling of normal and cancer cells. Clin Cancer Res.2000,6(2):335-346.
    [145]Armeanu S, Lauer UM, Smirnow I, et al. Adenoviral gene transfer of tumornecrosis factor-related apoptosis-inducing ligand overcomes an impaired response ofhepatoma cells but causes severe apoptosis in primary human hepatocytes. Cancer Res.2003,63(10):2369-2372.
    [146]Jacob D, Davis J, Zhu H, et al. Suppressing orthotopic pancreatic tumor growthwith a fiber-modified adenovector expressing the TRAIL gene from the humantelomerase reverse transcriptase promoter. Clinical Cancer Research.2004,10(10):3535–3541.
    [147]Kim CY,Jeong M,Mushiake H,et al. Cancer gene therapy using a novel secretabletrimeric TRAIL. Gene Therapy.2006,13(4):330–338.
    [148]Argiris K,Panethymitaki C,Tavassoli M. Naturally occurring, tumor-specific,therapeutic proteins. Exp Biol Med (Maywood).2011,236(5):524-536.
    [149]苏涛,孙宏晨,臧光祥等.靶向转基因抑制涎腺腺样囊性癌增殖的实验研究.中华口腔医学杂志,2007,42(3):184-185.
    [150]Schillinger U, Brill T, Rudolph C,et al. Advances in magnetofection-magneticallyguided nucleic acid delivery. Journal of Magnetism and Magnetic Materials.2005,293(1):501–508.
    [151]Bisht S, Bhakta G, Mitra S,et al. pDNA loaded calcium phosphate nanoparticles:highly efficient non-viral vector for gene delivery. International Journal ofPharmaceutics.2005,288(1):157-168.
    [152]Armeanu S, Lauer UM, Smirnow I,et al.Adenoviral gene transfer of tumor necrosisfactor-related apoptosis-inducing ligand overcomes an impaired response of hepatomacells but causes severe apoptosis in primary human hepatocytes. Cancer Res.2003,63(10):2369-2372.
    [153]Jacob D, Davis J, Zhu H, et al. Suppressing orthotopic pancreatic tumor growthwith a fiber-modified adenovector expressing the TRAIL gene from the humantelomerase reverse transcriptase promoter. Clinical Cancer Research.2004,10(10):3535–3541.
    [154]Volkmann X, Fischer U, Bahr MJ,et al. Increased hepatotoxicity of tumor necrosisfactor-related apoptosis-inducing ligand in diseased human liver. Hepatology2007;46(5):1498-1508.
    [155]Debs RJ, Fuchs HJ, Philip R,et al. Immunomodulatory and toxic effects of free andliposome-encapsulated tumor necrosis factor alpha in rats. Cancer Res1990;50(2):375–380.
    [156]Tracey KJ,Cerami A. Metabolic response to cachectin/TNF. A brief review. Ann N YAcad Sci1990;587:325–331.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700