基于碳纳米管修饰电极的电化学传感技术在环境分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用混酸纯化处理后的碳纳米管(CNTs)修饰玻碳电极(GCE),并在CNTs/GCE基础上构建了DNA修饰电极,和用层层组装技术(LBL)制备磁性Fe_3O_4-CNTs纳米复合物。对所制备的修饰电极用透射电镜(TEM)、扫描电镜(SEM)、傅利叶红外光谱(FTIR)、紫外-可见光谱分析(UV-Vis)、电化学分析等各种方法进行表面形貌、结构以及电化学性能表征研究。并利用CNTs良好的电子传输性能、高催化活性和大比表面等特性将这些CNTs及其复合物修饰电极成功地用于环境有机物的分析检测,为环境分析提供了灵敏、快速、低成本的检测方法。主要研究结果如下:
     (1)TEM结果表明纯化后的CNTs直径为20nm左右,且此纳米管为多壁结构。CNTs的存在大大增强了GC电极的电容,[Fe(CN)_6]~(3-)/[Fe(CN)_6]~(4-)在CNTs/GCE表面的电子传递速率是裸GCE的54.5倍,CNTs极大地促进了电子传递速率。CNTs/GCE在空白缓冲溶液中的电化学反应为表面控制过程。CNTs/GCE比裸金电极、裸铂电极和玻碳电极的电位窗口更宽,且中性条件下的电位窗口比酸性和碱性条件下的更宽。
     (2)CNTs/GCE对色氨酸(L-Trp)的氧化反应表现出显著的电催化活性。L-Trp的氧化过程受扩散步骤控制,氧化峰与pH的关系表明有质子参与反应,且参与反应的质子数和电子数相等;温度在16~35℃范围内,色氨酸在CNTs/GCE上的响应电流与温度成线性关系,温度系数为0.695μA/℃。氧化峰电流与Trp浓度在1.0×10~(-6)~1.0×10~(-4)mol/L范围内呈良好线性关系。通过改变电解质的酸度,实现了在酪氨酸(Tyr)存在下色氨酸(Trp)的选择性检测。并对复方氨基酸注射液中的色氨酸进行了检测,所测结果与标示值很接近。回收实验说明了此方法的准确性。
     (3)相对于GCE,草酸在CNTs/GCE上有更好的电流响应。分散剂和CNTs的量对草酸的响应有一定的影响。电位与pH的关系曲线的拐点在4.5附近,这和草酸的pKa(4.2)较接近。草酸在CNTs/GCE上的电极过程为扩散控制的不可逆过程。根据峰电位和扫描速率之间的关系可知在此氧化过程中有2个电子和2个质子参与。通过计时电量法测得草酸在电极表面的覆盖率为7.17×10~(-9)mol/cm,在溶液中的扩散系数为1.16×10~(-4)cm/s。氧化峰电流和草酸的浓度在5.0×10~(-5)~1.5×10~(-2)mol/L范围内呈良好的线性关系。将此方法用于检测菠菜中的草酸,测得草酸浓度为3.24±0.19mg/g。而用高锰酸钾滴定法得到的结果为3.45±0.22mg/g,两种方法得出的结果很接近。
     (4)CNTs/GCE对2,4-DNP、对氯酚和对甲酚的电化学行为均有增敏效果。富集2min时吸附基本达到饱和。在pH3.6~9.5范围内,这三种酚的氧化电位与pH呈线性关系。三种酚在修饰电极上的氧化过程均为吸附控制过程。在一定浓度范围内,3种酚的氧化峰电流与其浓度呈线性关系。另外又研究了苯骈三氮唑(BTA)及甲基苯骈三氮唑(TTA)在修饰电极上的还原行为。电子探针实验可估算出CNT/GCE和GCE的电活性面积分别为0.0235cm~2和0.0113cm~2。相对于GC电极,BTA在CNTs/GCE上的还原电位正移,电流为GC电极上的15.5倍。其中CNTs对BTA的吸附起了很大的作用。CNTs的量为3μL和吸附2min时,BTA的电流基本稳定。pH的影响最显著,酸性条件下的电流响应明显比中性和碱性条件下的大,这可能归因于BTA质子化的程度不同。BTA的还原过程受扩散控制。BTA在电极表面的覆盖率为2.05×10~(-8)mol/cm,扩散系数为2.67×10~(-2) cm/s。还原电流与其浓度在3.0×10~(-6)~1.6×10~(-4)mol/L范围内呈线性关系。甲基衍生物TTA与BTA的电化学性质相似,反应机理是一致的。TTA的还原电流与浓度在5.0×10~(-6)~7.5×10~(-5)mol/L范围内呈线性关系。不同pH条件下的紫外吸收光谱差别较大,酸性和中性条件下出现2个吸收峰,而碱性条件下只有一个较强的吸收峰,可能原因是酸性和中性条件下质子化BTA导致新的吸收峰出现,而碱性条件下不能质子化因此只有一个吸收峰。
     (5)通过静电吸附和物理吸附将DNA固定于CNTs/GCE上,得到DNA生物传感器。研究了此传感器制备过程中的各种条件对DNA直接电化学行为的影响;制备传感器的最佳条件为:CNTs的量为20μL,DNA溶液的浓度为0.3mg/mL,缓冲溶液采用0.25mol/L醋酸-醋酸钠(pH4.8),吸附电位选择0.3V,电吸附时间为5min,其中CNTs的量影响显著。研究了苯酚、间甲酚和邻苯二酚与DNA的作用,结果表明其对DNA有损伤作用,且存在剂量效应关系,一定浓度范围内,DNA的峰电流与酚的浓度呈线性下降关系。R%D_(50)值分析结果表明这三种酚污染物中间甲酚最容易损伤DNA。
     (6)采用层层组装(LBL)和原位化学沉积法制备了负载Fe_3O_4磁性粒子的CNTs(Fe_3O_4-CNTs),TEM结果表明Fe_3O_4粒径为6nm~11nm之间,且LBL法制备的复合物上Fe_3O_4沿着CNTs致密地分布,结合力比原位沉积法得到的复合物强得多。Fe_3O_4-CNTs和Fe_3O_4修饰玻碳电极的电容分别为1.69mF/cm~2和1.29mF/cm~2。以在复合物上吸附性能较好的对氯酚和对甲酚为模型物,将磁性复合物用于对溶液中的两种酚进行固相萃取和电化学检测,由于CNTs的存在增强了Fe_3O_4对酚的吸附和电催化氧化,因此Fe_3O_4-CNTs复合物的吸附检测效果比Fe_3O_4的检测效果好。通过伏安法研究了吸附剂的量、CTAB的量、pH和时间对吸附效果的影响。对氯酚的氧化电流与其浓度在5.0×10~(-6)~1.1×10~(-4)mol/L范围内呈线性关系,对甲酚的氧化电流与其浓度在5.0×10~(-6)~7.5×10~(-5)mol/L范围内呈线性关系。
Acid treated carbon nanotubes (CNTs) was used to modify glassy carbon electrode(GCE).DNA modified CNTs/GCE was fabricated.The Fe_3O_4-CNTs complex wassynthesized by layer-by-layer assembling.Transmission Electron Microscope (TEM),scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR),ultraviolet-visible spectroscopy (UV-vis) analysis, and electroanalysis were employed tostudy the morphology structure and the electrochemical performances of modifiedelectrodes.Series of environmental organics were detected based on the CNTs'characteristics of favorable electron transmission, high catalysing activity, and large ratiosurface.The CNTs-based electrode offered sensitive, fast, and low cost determination methodsfor environmental analysis.The main contents are listed as following:
     (1) Diameter of purified CNTs was about 20 nm and multi-wall obtained by TEM.CNTs enhanced greatly the capacitance of GCE, the electron transfer kinetics of[Fe(CN)_6]~(3-)/[Fe(CN)_6]~4 on the CNTs/GCE was 53.5 fold than that obtained on GCE,indicating that the CNTs accelerated greatly the electron transfer.The electrode process ofCNTs/GCE in blank buffer solution was diffusion-controlled.The potential window of theCNTs/GCE was wider than those of bare gold, bare platinum and bare glassy carbonelectrodes, and it was broader in neutral solution than in acidic or alkaline solutions.
     (2) CNTs/GCE catalyzed greatly the Trp oxidation.The electrode process of Trpoxidation is diffusion-controlled.The relationship between potential and pH indicated thatproton participated in the reaction, and equal electron and proton were involved in theoxidation process.The current of Trp was linear with the temperature in the range of16~35℃with temperature coefficient 0.695μA/℃.The peak current is linearlyproportional to the concentration of Trp in the range from 1.0×10~(-6)~1.0×10~(-4) mol/L with aregression coefficient of 0.995.Via changing pH, selective detection of Trp at presence ofTyr was achieved.The method was applied to the detection of Trp in 17AA compoundamino acid injection.The result was consistent with the tagged value.Recoveryexperiment proved the accuracy of the method.
     (3) The oxidation of oxalic acid was greatly improved at the CNTs/GCE as comparedwith the bare GCE.Dispercant and amount of CNTs affected the response of oxalic acid. The inflection point of the plot between oxidation potential and pH was near pH 4.5,which was consistent with the pKa (4.2).The irreversible oxidation process of oxalic acidwas diffusion-controlled.Two electrons and two protons were involved in the process.Thesurface concentration and diffusion coefficient of oxalic acid at the CNTs/GCE wereestimated to be 7.17×10~(-9) mol/cm~2 and 1.16×10~(-4) cm/s by chronocoulometry.ThisCNTs/GCE presented a wide linear response range from 5.0×10~(-5)~1.5×10~(-2) mol/L foroxalic acid.The method was applied to detect the oxalic acid content in spinach, the resultwas 3.24±0.19 mg/g close to the 3.45±0.22 mg/g obtained by the potassium permanganatetitration.
     (4) The electrochemical behaviors of 2,4-DNP, p-CP and p-cresol on CNTs/GCEwere all strengtherned as compared with those on GCE.After 2 min the adsorptionreached saturation.A linear relationship existed between the potential and pH in the rangeof pH 3.6~9.5.The oxidation processes were all adsorption-controlled.The currents wereproportional with the concerntrations of the three phenols in some ranges.Theelectrochemical behavior of BTA and TTA on CNTs/GCE were investigated.The activearea of CNT/GCE and GCE were evaluated respectively 0.0235 cm~2 and 0.0113 cm~2 viaelectron probe experiment.The reduction current of BTA on CNTs/GCE was 15.5 foldthan that obtained on GCE and potential shifted positively.The adsorption of BTA byCNTs played an important role.The current reached the maximum with 3μL CNTs and 2min adsorption.The current was larger in acidic buffer than those at neutral and alkalineconditions, which was due to the different protonation degree.The reduction process wasdiffusion-controlled.The surface concentration and diffusion coefficient of BTA on theCNTs/GCE were estimated to be 2.05×10~(-8) mol/cm~2 and 2.67×10~(-2) cm/s.Theelectrochemical properties and reaction mechanism of TTA were same with those of BTA.The currents were linearly proportional with the concerntrations in the range of3.0×10~(-6)~1.6×10~(-4) mol/L for BTA and 5.0×10~(-6)~7.5×10~(-5) mol/L for TTA.The UV-Vis wasdifferent at various pH.There were two adsorption peaks under neutral and acidicconditions and only one under alkaline conditions, the possible reason was that BTAprotonates easily in acidic solution, which results in a new adsorption peak, whereas itcouldn't happen in alkaline conditions.
     (5) The DNA was electrostaticly and physically adsorbed onto the CNTs/GCE,denoted as DNA/CNTs/GCE.The preparation conditions for the DNA sensor were studied,results indicated that the optimal preparation conditions were: 20μL CNTs, 0.3 mg/mLDNA solution, 0.25 mol/L HAC-NaAC buffer (pH4.8), applied potential of 0.3 V for 5 min, among which the amount of CNTs enfluenced most.The interactions between phenol,m-cresol or catechol with DNA sensor were analyzed, results indicated that the threephenols damaged DNA.The direct oxidation peaks of DNA were decreased linearly withthe phenols concemtrations.R%D_(50) values showed that the m-cresol damnified DNA mosteasily.
     (6)The CNTs-Fe_3O_4 compound was fabricated by LBL assembling and in situchemical deposition methods.TEM indicated that the particle diameter of Fe_3O_4 wasabout in the range of 6 nm~11 nm.The Fe_3O_4 nanoparticle adhered compactly on CNTsmade by LBL assembling, the binding force was stronger than that obtained by in situdeposition.The capacitances of Fe_3O_4-CNTs and Fe_3O_4 modified GCE were 1.686 mF/cm~2and 1.286 mF/cm~2.Due to the good adsorption of p-CP and p-cresol on CNTs, thesimultaneous solid phase extraction and electrochemical detection of them on theCNTs-Fe_3O_4 and Fe_3O_4 were investigated.The result indicated that the adsorption anddetection result of Fe_3O_4-CNTs was better than that of Fe_3O_4, due to the enhancement ofadsorption and electrocatalysis by CNTs.The effects of the adsorbant amount, CTABamount, pH and time on the adsorption of p-CP and p-cresol were studied by voltammetry.The oxidation currents were linearly proportional with the concerntrations in the rangefrom 5.0×10(-6)~1.1×10(-4) mol/L for p-CP and from 5.0×10(-6)~7.5×10(-5) mol/L for p-cresol.
引文
[1] Odom T., Huang J., Kim R., et al. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 1998, 391: 62-64.
    [2] 罗红霞,施祖进,李南强,等.羧基化单层碳纳米管修饰电极的电化学表征及其电催化作用.高等学校化学学报,2000,21(9):1372-1374.
    [3] Ago H., Kugler T., Cacialli F., et al. Work Fenctionand Surface Functional Groups of Multiwall Carbon Nanotube. J Phys Chem.B, 1999, 103:8116-8119.
    [4] 蔡称心,陈静,鲍建春,等.碳纳米管在分析化学中的应用.分析化学,2004,32:38-40.
    [5] Iijima S.. Helical microtubules of graphitic carbon. Natrue, 1991, 354: 56-58.
    [6] Thess A., Lee R., Nikolaev P., et al. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273 (5274): 483-487.
    [7] Thomas W. E.. Carbon Nanotubes. Phys Today, 1996, 49 (6): 26-32.
    [8] Iijima S., Ichihashi T.. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363 (6430):603-605.
    [9] Bethune D. S., Klang C. H., de Vries M. S., et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 1993, 363 (6430):605-607.
    [10] Zen J. M., Kumar A. S., Tsai D. M. Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis, 2003, 15(13): 1073-1087.
    [11] Bakker E. Electrochemical sensors. Anal. Chem., 2004, 76(12):3285-3298.
    [12] 梁文平,庄乾坤.分析化学的明天-学科发展前沿与挑战.北京:科学出版社,2003.12-18.
    [13] Liang R.P., Qiu J.D., Cai P.X.. A novel amperometric immunosensor based on three-dimensional sol-gel network and nanoparticle self-assemble technique. Anal Chim Acta, 2005, 534(2):223-229.
    [14] Saito R., Fujita M., Dresselhaus G., et al. Electronic-structure and growth-mechanism of carbon tubules. Mat.Sci. Eng., 1993, 19(1-2): 185-191.
    [15] Wong E. W., Sheehan P.E., Lieber C. M.. Nanobeam mechanics:elasticity, strength, and .toughness of nanorods and nanotubes. Science; 1997, 277(5334): 1971-1975.
    [16] Ovemey G., Zhong W., Tomanek D.. Structural digidity and low-frequency vibrational-modes of long carbon tubules. Z. Phys.D, 1993, 27(1): 93-96.
    [17] Yakobson B. I., Brabec C. J., Bernholc J.. Nanomechanics of carbon tubes instabilities beyond linear response. Phys.Rev.Lett., 1996, 76(14):2511-2514.
    [18] 徐甲强,陈玉萍,李亚栋等.一维纳米材料在气体传感器中的应用.传感器技术,2005,24(1):4-6
    [19] Jing K., Franklin N. R., Zhou C. W., et al. Nanotube molecular wires as chemical sensors. Science, 2000, 287(5453): 622-625.
    [20] Comini E., Faglia G., Sberveglieri G., et al. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett., 2002, 81(10): 1869-1871.
    [21] 刘华平,程国安,彭宜斌,等.碳纳米管负载Ni催化剂制备碳纳米管的研究.北京师范大学学报(自然科学版),2005,41(1):38-41.
    [22] De Heer W. A., Chatelain A., Ugarte D.. A carbon nanotubes field-emission electron source. Science, 1995,270(5239): 1179-1180.
    [23] Collins P.G., Zettl A.. Unique characteristics of cold cathode carbon- nanotube -matrix field emitters. Phys.Rev.B, 1997, 55(15): 9391-9399.
    [24] Zhu W., Bower C., Zhou O., et al. Large current density from carbon nanotube field emitters. Appl.Phys.Lett., 1999, 75(6): 873-875.
    [25] Cao A., Ci L., Li D., et al. Vertical aligned carbon nanotubes grown on Au film and reduction of threshold field in field emission. Chem.Phys.Lett., 2001,335 (3-4): 150-154.
    [26] Cao A., Zhang X., Wu C., et al. Thinning and diluting aligned carbon nanotube films for uniform field emission. Appl.Phys.A-Mater., 2002, 74(3): 415-418.
    [27] Haufler R. E.. Efficient production of C_(60) (buckminsterfullerene), C_(60)H_(36), and the solvated buckide ion. J. Phys. Chem. B, 1990, 94: 8634-8636.
    [28] Ebbesen T., Ajayan P.. Large-scale sythesis of carbon nanotube. Nature, 1992, 358(6283): 220-222.
    [29] Journet C., Maser W. K., Bernier P., et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 1997, 388(6644):756-758.
    [30] Yacaman M. J., Yoshida M., Rendon L.. Catalytic growth of carbon microtubules with full erenestructure. Appl. Phys. Lett., 1993, 62(2): 202-204.
    [31] Dai H., Wong W., Lu Y., et al. Synthesis and characterization of carbide nanorods.Nature, 1995, 375(6534): 769-772.
    [32] Endo M., Takeuchi K., Kroto H., et al. The production and structure of pyrolytic carbon nanotubes(PCNT). Phys. Chem. Solid., 1993, 54(12): 1841-1848.
    [33] Guo T., Nikolaev P., Thess A., et al. Catalytic growth of single-walled nanotubes by laser vaporization.Chem.Phys.Lett., 1995, 243(1-2): 49-54.
    [34] Guo T., Nikolaev P., Rinzler A. G, et al. Self-assembly of tubular fullerenes.J.Phys. Chem., 1995, 99(27): 10694-10697.
    [35] Munoz E., Maser W. K., Benito A. M., et al. Gas and pressure effects on the production of single-walled carbon nanotubes by laser ablation. Carbon, 2000,38(10):1445-1451.
    [36] Yudasaka M., Komatsu T., Ichihashi T., et al. Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal.Chem. Phys.Lett, 1997, 278(1-3): 102-106.
    [37] Cho W. S., Hamada E., Kondo Y, et al. Synthesis of carbon nanotubes from bulk polymer. Appl. Phys. Lett., 1996, 69(2): 278-283.
    [38] Sen R., Govindaraj A., Rao C. N. R.. Carbon nanotubes by the metalocene route.Chem. Phys. Lett., 1997, 267(3-4): 276-280.
    [39] Richter H., Hernadi K., Caudano R., et al. Formation of nanotubes in low pressure hydrocarbon flames. Carbon, 1996, 34(3): 427-429
    [40] Chowdhury K. D., Howard J. B., Vandersande J. B.. Fullerenic nanostructures in flames. J. Mater. Res., 1996, 11(2): 341-347
    [41] Dai H., Rinzler A. G, Nikolaev P., et al. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide.Chem.Phys.Lett., 1996,260 (3-4): 471-475
    [42] Kong J., Cassell A. M., Dai H.. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem.Phys.Lett., 1998, 292(4-6): 567-574.
    [43] Kong J., Soh H. T., Cassell A. M., et al. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature, 1998, 395(6705): 878-881.
    [44] Cheng H. M., Li F., Sun X., et al. Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chem.Phys.Lett., 1998, 289(5-6): 602-610.
    [45] Su M., Zheng B., Liu J.A.. Scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chem. Phys. Lett., 2000, 322(5): 321-326.
    [46] Chemozatonskii L. A., Kosakovskaja I. J., Fedorov E. A., et al. New carbon tube literdered film stucture of multilayer nanotubes. Phys. Lett. A., 1995, 197(1):40-43.
    [47] Zhang Y., Gu H., Iijima S.. Single-wall carbon nanotubes synthesized by laser ablation in a nitrogen atmosphere. Appl.Phys.Lett., 1998, 73 (26):3827-3829.
    [48] Cassell A. M., Raymakers J. A., Kong J., et al. Large scale CVD synthesis of single-walled carbon nanotubes. J.Phys.Chem.B, 1999, 103(31): 6484-6492.
    [49] An L., Owens J. M., McNeil L. E., et al. Synthesis of nearly uniform single-walled carbon nanotubes using identical metal-containing molecular nanoclusters as catalysts. J.Am.Chem.Soc., 2002, 124(46): 13688-13689.
    [50] Herrera J. E., Resasco D. E.. Role of Co-W interaction in the selective growth of single-walled carbon nanotubes from CO disproportionation. J.Phys.Chem.B, 2003, 107(16): 3738-3746
    [51] Herrera J. E., Balzano L., Pompeo F., et al. Raman characterization of single-walled carbon nanotubes of various diameters obtained by catalytic disproportionation of CO. J.Nanosci.Nanotech., 2003, 3 (1-2): 133-138.
    [52] Maruyama S., Miyauchi Y., Murakami Y., et al. Optical characterization of single-walled carbon nanotubes synthesized by catalytic decomposition of alcohol. New J.Phys., 2003, 5:1491-1492.
    [53] Maruyama S., Kojima R., Miyauchi Y., et al.Low-temperature synthseis of high-purity single-walled carbon nanotubes from alcohol. Chem.Phys.Lett., 2002, 360(3-4): 229-234.
    [54] Dai H.. Carbon nanotubes:synthesis, integration, and properties. Acc.Chem. Res., 2002, 35(12): 1035-1044.
    [55] Huang W. J., Lin Y., Taylor S., et al. Sonication-assisted functionalization and solubilization of carbon nanotubes. Nano. Lett., 2002, 2(3):231-234.
    [56] 张登松,施利毅,方建慧等.纳米碳管纯化处理的研究进展.化工矿物与加工,2005,7:34-36.
    [57] 杨占红,吴浩青,李晶等.碳纳米管的纯化-电化学氧化法.高等学校化学学报,2001,22(3):446-449.
    [58] 时巧翠.碳纳米管及其复合材料在电分析化学中的应用研究:[博士学位论文].杭州:浙江大学图书馆,2006.
    [59] Chen S., Kucernak A., Fabrication of carbon microelectrodes with an effective radius of 1 nm. Electrochem. Commun., 2002, 4(1): 80-85.
    [60] Penner R. M., Heben M. J., Longin T. L., et al. Fabrication and use of nanometer-sized electrodes in electrochemistry. Science, 1990, 250(4984):1118-1121.
    [61] Chen S. L., Kucernak A.. Overestimation of heterogeneous rate constants of hexacyanoferrate at nanometer-sized ultramicroelectrodes. Electrochem.Commun., 2002, 4(1): 24-29.
    [62] Chow R. H., Von Ruden L., Near E.. Delay in vesicle fusion revealed by electrochemical monitoring monitoring of singl secretory events in adrenal chromaffin cells. Nature, 1992, 365(6364): 60-63.
    [63] McNally M., Wong D. K. Y. An in vivo probe based on mechanically strong but structurally small carbon electrodes with an appreciable surface area. Anal. Chem.,2001, 73(20): 4793-4800.
    [64] Fan F. R. F., Bard A. J.. Electrochemical detection of single molecules. Science,1995,267(5199): 871-874.
    [65] Liu C. Y., Bard A. J., Wudl F., et al. Electrochemical characterization of films of single -walled carbon nanotubes and their possible application in supercapacitors.Electrochem.Solid St., 1999, 2(11): 577-578.
    [66] Luo H. X., Shi Z. J., Li N. Q., et al. Investigation on the electrochemical and electrocatalytic behavior of chemically modified electrode of single wall carbonnanotube functionalized with carboxylic acid group. Chem.J.Chinese U.,2000,21(9): 1372-1374.
    [67] Luo H., Shi Z., Li N., et al. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal. Chem., 2001, 73(5): 915-920.
    [68] Britto P. J., Santhanam K. S. V., Rubio A., et al. Improved charge transfer at carbon nanotube electrodes. Adv.Mater., 1999, 11(2): 154-157.
    [69] Wang J., Musameh M.. Carbon-nanotubes doped polypyrrole glucose biosensor.Anal.Chim.Acta., 2005, 539(1-2): 209-213.
    [70] Wu K., Hu S.. Deposition of a thin film of carbon nanotubes onto a glassy carbon electrode by electropolymerization. Carbon, 2004, 42(15): 3237-3242.
    [71] Gong K., Zhang M., Yan Y, et al. Sol-gel-derived ceramic-carbon nanotube nanocomposite electrodes :tunable electrode dimension and potential electrochemical applications. Anal.Chem., 2004, 76(21): 6500-6505.
    [72] Banerjee S., Benny T. H., Stanislaus S. W.. Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater, 2005, 17(1): 17-26.
    [73] Fu K. R, Huang W. J., Liu Y., et al. Defunctionalization of functionalized carbon nanotubes. Nano Lett, 2001, 1(4): 439-443.
    [74] Chen J., Hamon M. A., Hu H., et al. Solution properties of single-walled carbon nanotubes. Science, 1998, 282(1): 95-97.
    [75] Hamon M. A., Chen J., Hu H., et al. Dissolution of single-walled carbon nanotubes. Adv Mater, 1999, 11(2): 834-838.
    [76] Pomper F, Resasco D. E.. Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine. Nano Lett, 2002, 2(2): 369-372.
    [77] Eitan A., Jiang K. Y, Dukes D., et al. Surface modification of multiwalled carbon nanotubes: toward the tailoring of the interface in polymer composites. Chem Mater, 2003, 15(12): 3198-3204.
    [78] Ichia L.S.H., Basnar B., Willner I.. Efficient generation of photocurrents by using CdS carbon nanotube assemblies on electrodes. Angew Chem, 2005, 117(1):80-85.
    [79] Azamian B. R., Coleman K. S., Davis J. J., et al. Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes. Chem. Commun.,2002, 2(3): 366-367.
    [80] Bottini M., Tautz L., Huynh H., et al. Covalent decoration of multi-walled carbon nanotubes with silica nanoparticles. Chem. Commun., 2005, 4(2): 758-760.
    [81] Banerjee S., Wong S. S.. Synthesis and characterization carbon nanotube-nanocrystal heterostructures. Nano Lett, 2002, 2(2): 195-197.
    [82] Hazani M., Naaman R., Hennrich R, et al. Confocal fluorescence imaging of DNA-functionalized carbon nanotubes. Nano Lett, 2003, 3(2): 153-155.
    [83] Sarah E. B., Cai W., Lasseter T. L., et al. Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes synthesis and hybridization. Nano Lett, 2002, 2(12): 1413-1417.
    [84] Nguyen C. V., Delzeit L., Cassell A. M., et al. Preparation of nucleic acid functionalized carbon nanotube arrays. Nano Lett, 2002, 2(10): 1079-1081.
    [85] Kam N. W S., Jessop T. C, Wender P. A., er al. Nanotube molecular transporters:internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc, 2004, 126(22): 6850-6851.
    [86] Matarredona O., Rhoads H., Li Z. R., et al. Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. J Phys Chem B, 2003, 107: 13357-13367.
    [87] Wang J., Musameh M., Lin Y., et al. Solubilization of carbon nanotubes by nation toward the preparation of amperometric biosensors. J Am Chem Soc, 2003, 125(14): 2408-2409.
    [88] Riggs J. E., Walker D. B., Carroll D. L., et al. Optical limiting properties of suspended and solubilized carbon nanotubes. J Phys Chem B, 2000, 104(7): 7071-7076.
    [89] Czerw R., Guo Z. X., Ajayan P. M., et al. Organization polymers onto carbon nanotubes a route to assembly of nanoscale. Nano Lett, 2001, 1(2): 423-426.
    [90] Chen J. R., Zhang Y. G., Wang D., et al. Noncovalent side-wall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc, 2001, 123(15): 3838-3839.
    [91] Chambers G., Carroll C., Farrell G. F., et al. Characterization of the interaction of gamma cyclodextrin with single-walled carbon nanotubes. Nano Lett, 2003, 3(6): 843-846.
    [92] Hafner J. H., Cheung C. L., Leiber C.M., Direct growth of single-walled carbon nanotube scanning probe microscopy tips. J. Am. Chem. Soc. 1999, 12I(41): 9750-9751.
    [93] Tans S. J., Verschueren A.R.M., Dekker C., Room-temperature transistor based on a single carbon nanotube. Nature, 1998, 393(6680): 49-52.
    [94] Britto P. J., Santhanam K. S. V., Ajayan P. M.. Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem.and Bioenerg, 1996, 41 : 121-125.
    [95] Britto P. J., Santhanam K. S. V., Rubio A. R., et al. Improved charge transfer at carbon nanotube electrodes. Advanced Materials, 1999, 11 : 154-158.
    [96] Cai C. X., Chen J.. Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode. Anal Biochem, 2004, 325(2): 285-292.
    [97] Zhao G .C., Zhang L., Zhang X. W., et al. Myoglobin on multi-walled carbon nanotubes modified electrode: direct electrochemistry and electrocatalysis. Electrochem Commun., 2003, 5(9): 825-829.
    [98] 麦智彬,谭学才,邹小勇.基于碳纳米管的化学修饰电极及电化学生物传感器的研究进展.分析测试学报,2006,25(3):120-124.
    [99] Davis J.J., Green M.L.H., Hill H. A. O., et al. The immobilization of proteins in carbon nanotubes. Inorganica Chimica Acta, 1998, 272(1-2): 261-266.
    [100] Liu C. Y., Hu J. M.. Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized on silver nanoparticles doped carbon nanotubes film. Biosensors & Bioelectronics, 2009, 24(7): 2149-2154.
    [101] Chiu J. Y., Yu C. M., Yen M. J., et al. Glucose sensing electrodes based on a poly (3, 4-ethylenedioxythiophene)/Prussian blue bilayer and multi-walled carbon nanotubes. Biosensors & Bioelectronics, 2009, 24(7): 2015-2020.
    [102] Guo M. L., Chen J. H., Liu D. Y., et al. Electrochemical characteristics of the immobilization of calf thymus DNA molecules on multi-walled carbon nanotubes. Bioelectrochemistry, 2004, 62 (1): 29-35
    [103] Wang J. X., Li M. X., Shi Z. J., et al. Electrochemistry of DNA at single-wall carbon nanotubes. Electroanalysis, 2004, 16(1-2): 140-144.
    [104] 朱玉奴,彭图治,李建平.碳纳米管负载纳米铂修饰电极及电催化氧化H_2O_2的研究.高等学校化学学报,2004,25(9):1637-1639.
    [105] 朱玉奴,彭图治,李建平.碳纳米管负载铂颗粒酶电极葡萄糖传感器.分析化学,2004,32:1299-1301.
    [106] Shi Q. C., Peng T. Z.. A novel cholesterol oxidase biosensor based on Pt-nanoparticle/carbon nanotube modified electrode. Chinese Chemical Letters, 2005, 16 (8): 1081-1084.
    [107] 时巧翠,彭图治,陈金媛.碳纳米管负载铂修饰电极结合溶胶-凝胶技术制备胆固醇传感器.分析化学,2005,33(3):329-332.
    [108] Banks C. E., Davies T. J., Wildgoose G. G., et al. Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem Commun, 2005, 7: 829-841.
    [109] Moore R. R., Banks C. E., Compton R. G.. Basal plane pyrolytic graphite modified electrodes: comparison of carbon nanotubes and graphite powder as electrocatalysts. Anal Chem, 2004, 76(10): 2677-2682.
    [110] Kong J., Franklin N. R., Zhou C., et al. Nanotube molecular wires as chemical sensors. Science, 2000, 287(5453): 622-625.
    [111] Collins P.G., Bradley K., Ishigami M., et al. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science, 2000, 287(5459): 1801-1804.
    [112] Jhi S. H., Louie S. G., Cohen M. L.. Electronic properties of oxidized carbon nanotubes. Phys.Rev.Lett., 2000, 85(8): 1710-1713.
    [113] Star A., Han T. R., Joshi V., et al. Nanoelectronic carbon dioxide sensors. Adv.Mater, 2004,16(22): 2049-2052.
    [114] Li J., Lu Y., Ye Q., et al. Carbon nanotube sensors for gas and organic vapor detection. Nano Lett., 2003, 3(7): 929-933.
    [115] Wang S. J., Zhu W. X., Liao D. W., et al. In situ FTIR studies of NO reduction over carbon nanotubes (CNTs) and 1 wt.% Pd/CNTs. Catalysis Today, 2004,(93-95): 711-714.
    [116] Luo J. Z., Gao L. Z., Leng Y. L., et al. The decomposition of NO on CNTs and 1 wt%Rh/CNTs. Catal Lett, 2000, 66 (1-2): 91-97.
    [117] Li Y. H., Wang S. G.., Wei J. Q., et al. Lead adsorption on carbon nanotubes.Chemical Physics Letters, 2002, 357: 263-266.
    [118] Li Y. H., Di Z. C, Ding J., et al. Adsorption thermo-dynamic, kinetic and desorption studies of Pb~(2+)on carbon nanotubes. Water Research, 2005, 39:605-609.
    [119] Di Z. C, Ding J., Peng X. J., et al. Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles. Chemosphere, 2006, 62: 861-865.
    [120] Li Y. H., Wang S. G, Cao A. Y, et al. Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes. Chemical Physics Letters,2001,350:412-416.
    [121] Peng X. J., Li Y. H., Luan Z. K., et al. Adsorption of 1, 2-dichlorobenzene from water to carbon nanotubes. Chemical Physics Letters, 2003, 376: 154-158.
    [122] Lu C. Y, Chung Y. L., Chang K. F.. Adsorption of trihalomethanes from water with carbon nanotubes. Water Research, 2005, 39: 1183-1189.
    [123] Wang W. D., Philippe S, Philippe K, et al. Visible light photodegradation of phenol on CNT-TiO_2 composite catalysts prepared by a modified sol-gel method.Journal of Molecular Catalysis A: Chemical, 2005, 235: 194-199.
    [124] Li Q. L., Yuan D. X.. Study of properties of multi-walled carbon nanotubes (CNTs) as gas chromatographic column packing material. Acta Chim. Sinica, 2002,60(10): 1876-1882.
    [125] Stadermann M., McBrady A. D., Dick B., et al. Ultrafast gas chromatography on single -wall carbon nanotube stationary phases in microfabricated channels.Anal.Chem, 2006, 78(16): 5639-5644.
    [126] Karwa M., Mitra S.. Gas chromatography on self-assembled, single-walled carbon nanotubes. Anal.Chem., 2006, 78(6): 2064-2070.
    [127] Cai Y., Jiang G., Liu J., et al. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol A, 4-n-nonylphenol, and 4-tert -octylphenol. Anal.Chem., 2003, 75(10): 2517-2521.
    [128] Basheer C., Alnedhary A. A., Rao B. S. M., et al. Development and application of porous membrane-protected carbon nanotube micro-solid-phase extraction combined with gas chromatography/mass spectroscopy. Anal. Chem., 2006, 78(8): 2853-2858.
    [129] Long R. Q., Yang R. T.. Carbon nanotubes as superior sorbent for dioxin removal. J.Am. Chem.Soc. 2001, 123(9): 2058-2059.
    [130] Chen R. J., Zhan Y. G., Wang D. W., et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 2001, 123(16):3838-3839.
    [131] Cai Y. Q., Jiang G. B., Liu J. F., et al. Multi-walled carbon nanotubes packed cartridge for the solid-phase extraction of several phthalate esters from water samples and their determination by high performance liquid chromatography. Anal.Chim.Acta, 2003, 494 (1-2): 149-156.
    [132] 陈小华,陈传盛,孙磊等.碳纳米管的表面修饰及其在水中的分散性能研究.湖南大学学报(自然科学版),2004,31(5):18-21.
    [133] Liu H. P., Cheng G. A., Zheng R. T., et al. Influence of acid treatments of carbon nanotube precursors on Ni/CNT in the synthesis of carbon nanotubes. Journal of Molecular Catalysis A:Chemical, 2005, 230: 17-22.
    [134] Liu H. P., Cheng G. A., Zheng R.T., et al. Influence of acid treatments of carbon nanotube precursors on Ni/CNT in the synthesis of carbon nanotubes. Journalof Molecular CatalysisA:Chemical, 2005, 230:17-22.
    [135] Zhang J. D., Feng M. L., Tachikawa H.. Layer-by-layer fabrication and direct electrochemistry of glucose oxidase on single wall carbon nanotubes. Biosensors and Bioelectronics, 2007, 22(12): 3036-3041.
    [136] 蔡称心,陈静.碳纳米管电极上辣根过氧化物酶的直接电化学.化学学报,2004,62(3):335-340.
    [137] Islam M. F., Rojas E., Bergey D.M., et al. High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water. Nano.Lett., 2003,3(2): 269-273.
    [138] Assael M. J., Metaxa I. N., Arvanitidis J., et al. Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants. International Journal of Thermophysics, 2005, 26(3): 647-664.
    [139] Zhao Y. D., Zhang W. D., Chen H., et al. Electrocatalytic oxidation of cysteine at carbon nanotube powder microelectrode and its detection. Sensors and Actuators B, 2003, 92: 279-285.
    [140] 陈小华,陈传盛,孙磊.碳纳米管的表面修饰及其在水中的分散性能研究.湖南大学学报(自然科学版),2004,31(5):18-21.
    [141] Nkosi D., Ozoemena K. I.. Self-assembled nano-arrays of single-walled carbon nanotube-octa(hydroxyethylthio)phthalocyaninatoiron(Ⅱ) on gold surfaces: Impacts of SWCNT and solution pH on electron transfer kinetics. Electrochimica Acta, 2008, 53 (6): 2782-2793.
    [142] Finklea H.O., in: Bard A.J., Rubinstein I.. Electroanalytical Chemistry. Marcel Dekker. New York, 1996.109-110.
    [143] Finklea H.O., in: Meyers R.A., Encyclopedia of Analytical Chemistry: Applications: Theory and Instrumentations. Chichester: Wiley, 2000. 10090-10091.
    [144] 曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社,2002.23-25.
    [145] Zhang J. D., Kambayashi M., Oyama M.. Anovel electrode fabricated by directly attaching gold nanospheres and nanorods onto indium tin oxide sun\bstrate with a seed mediated growth process. Electrochemistry Communication, 2004, 6: 683-688.
    [146] Shanmugam S., Gedanken A.. Electrochemical properties of bamboo-shaped multiwalled carbon nanotubes generated by solid state pyrolysis. Electrochem. Commun., 2006, 8:1099-1105.
    [147] 王广凤,李茂国,阚显文,等.纳米银/半胱氨酸修饰金电极的制备及对苯二酚的测定.应用化学,2005,22(2):168-171.
    [148] 孙一新,王升富.细胞色素C在L-半胱氨酸自组装膜电极上的电化学行为.应用化学,2005,22(3):295-299.
    [149] 张旭志,焦奎.单壁碳纳米管和室温离子液体胶修饰电极.物理化学学报.2008,24(8):1439-1444.
    [150] Strambini E. G.., Strambini G. B. Tryptophan phosphorescence as a monitor of protein conformation in molecular films. Biosensors and Bioelectronics, 2000, 15(9-10): 483-490
    [151] Ye J. N., Baldwin R. P. Determination of amino acids and peptides by capillary electrophoresis and electrochemical detection at a copper electrode. Anal.Chem., 1994, 66:2669-2674.
    [152] Alwarthan. A. A. Chemiluminescent determination of tryptophan in a flow injection system. Analytica Chimica Acta, 1995, 317(1-3):233-237
    [153] Xu J. M., Wang Y. R, Xian Y. Z., et al. Preparation of multiwall carbon nanotubes film modified electrode and its application to simultaneous determination of oxidizable amino acids in ion chromatography. Talanta, 2003, 60:1123-1130.
    [154] Amirkhani A., Heldin E., Markides K. E., et al. Quantitation of tryptophan, kynurenine and kynurenic acid in human plasma by capillary liquid chromatography-electrospray ionization tandem mass spectrometry. Journal of Chromatography B. Analytical Technologies in the Biomedical and Life Science, 2002, 780 (2): 381-387.
    [155] Chen G. N., Zhao Z. F., Wang X. L., et al. Electrochemical behavior of tryptophan and its derivatives at a glassy carbon electrode modified with hemin. Anal. Chim. Acta, 2002, 452: 245-254.
    [156] Jin G. P., Lin X. Q.. The electrochemical behavior and amperometric determination of tyrosine and tryptophan at a glassy carbon electrode modified with butyrylcholine. Electrochem. Commun. 2004, 6(5): 454-460.
    [157] 邹永德,王进,莫金垣.用碳糊修饰电极测定氨基酸的伏安法研究I.色氨酸和酪氨酸在聚酰胺修饰碳糊电极上的电化学行为.分析测试学报,1999,18(2):25-28.
    [158] 张卉,汪振辉.单壁碳纳米管/聚合物修饰玻碳电极的电化学行为及酪氨酸的伏安测定.分析试验室,2005,24(3):27-30.
    [159] Bard A. J., Faulkner L. R.. Electrochemical Methods. Chemical Industry Publishing Company. John Wiley & Sons, Inc. 1980.
    [160] Xu Q., Wang S. F.. Electrocatalytic oxidation and direct determination of L-Tyrosine by square wave voltammetry at multi-wall carbon nanotubes modified glassy carbon electrodes. Microchim Acta, 2005, 151 : 47-52.
    [161] Wu F. H., Zhao G. C., Wei X. W.. et al. Electrocatalysis of Tryptophan at multi-walled carbon nanotube modified electrode. Microchim.Acta, 2004, 44(4):243-247.
    [162] Wei S. H., Zhao F. Q., Zeng B. Z.. Electrochemical behavior and determination of uric acid at single-walled carbon nanotube modified gold electrodes.Microchimica Acta, 2005, 150(3-4):219~224.
    [163] Huang K. J., Luo D. F., Xie W. Z., et al. Sensitive voltammetric determination of tyrosine using multi-walled carbon nanotubes/4-aminobenzere-sulfonic acid film-coated glassy carbon electrode. Colloids and Surfaces B: Biointerfaces, 2008,61(3-4):176-181.
    [164] Zhai Q. Z., Zhang X. X., Liu Q. Z.. Spectrophotometric determination of trace oxalic acid with zirconium (Ⅳ)-dibromochloroarsenazo complex. Bulletin of the Chemical Society of Ethiopia, 2007, 21(2): 297-301.
    [165] Wu F. W., He Z. K., Luo Q. Y., et al. HPLC determination of oxalic acid using tris(l, 10-phenanthroline) ruthenium (Ⅱ) chemiluminescence application to the analysis of spinach. Food Chemistry, 1999, 65 (4): 543-546.
    [166] Ensafi A. A., Kazemzadeh A., et al. Flow injection spectrophotometric determination of ultra trace amounts of oxalic acid. Fresenius' Journal of Analytical Chemistry, 2000, 367(6): 590-592.
    [167] Yang L., Liu L., Olsen B. A., et al. The determination of oxalic acid, oxamic acid, and oxamide in a drug substance by ion-exclusion chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2000, 22(3): 487-493.
    [168] Perez E. F., De Oliveira N. G., Kubota L. T.. Bi-enzymatic amperometric biosensor for oxalate. Sensors and Actuators B: Chemical, 2001, 72(1): 80-85.
    [169] Chollier-Brym M. J., Epron F., Lamy-Pitara E., et al. Catalytic and electrocatalytic oxidation of oxalic acid in aqueous solutions of different compositions. J. Electroanal. Chem., 1999, 474(2): 147-154.
    [170] Berna A., Rodes A., Feliu J. M.. Oxalic acid adsorption and oxidation at platinum single crystal electrodes. Journal of Electroanalytical Chemistry, 2004, 563(1):49-62.
    [171] Berna A., Delgado J. M., Orts J. M., et al. In-situ infrared study of the adsorption and oxidation of oxalic acid at single-crystal and thin-film gold electrodes: a combined external reflection infrared and ATR-SEIRAS approach. Langmuir,2006, 22(17): 7192-7202.
    [172] Martinez-Huitle C. A., Ferro S.,. De Battisti A.. Electrochemical incineration of oxalic acid: Role of electrode material. Electrochimica Acta, 2004, 49(22-23):4027-4034.
    [173] Casella I. G., Zambonin C. G., Prete F.. Liquid chromatography with electrocatalytic detection of oxalic acid by a palladium-based glassy carbon electrode. Journal of Chromatography A, 1999, 833(1): 75-82.
    [174] Ivandini T. A., Rao T. N., Fujishima A., et al.,Electrochemical Oxidation of Oxalic Acid at Highly Boron-Doped Diamond Electrodes.Analytical Chemistry, 2006,78(10): 3467-3471.
    [175] Santos L M,. Baldwin R. P.. Electrocatalytic response of cobalt phthalocyanine chemically modified electrodes toward oxalic acid and a-keto acids.Analytical Chemistry, 1986, 58(4):848~852.
    [176] Yamazaki S. I., Yamada Y., Fujiwara N., et al. Electrochemical oxidation of oxalic acid by Rhoctaethylporphyrin adsorbed on carbon black at low overpotential. Journal of Electroanalytical Chemistry, 2007, 602(1): 96-102.
    [177] Canevari T. C, Arguello J., Francisco M. S. P.,. et al. Cobalt phthalocyanine prepared in situ on a sol-gelderived SiO_2/SnO_2 mixed oxide: Application in electrocatalytic oxidation of oxalic acid. Journal of Electroanalytical Chemistry,2007, 609(2): 61- 67.
    [178] Zhao G. C, Zhang L., Wei X. W., et al. Myoglobin on multi-walled carbon nanotubes modified electrode: direct electrochemistry and electrocatalysis.Electrochemistry Communications, 2003, 5(9): 825-829.
    [179] Wang J. X., Li M. X., Shi Z. J., et al.. Direct electrochemistry of cytochrome C at a glassy carbon electrode modified with single-wall carbon nanotubes. Analytical Chemistry, 2002, 74(9): 1993-1997.
    [180] Lawrence N. S., Deo R. P., Wang J.. Detection of homocysteine at carbon nanotube paste electrodes. Talanta, 2004, 63(2):443~449.
    [181] Ag(?)e(?) L., Pena-Farfal C, Y(?)(?)ez-Sede(?)o P., et al. Determination of β-carboline alkaloids in foods and beverages by high-performance liquid chromatography with electrochemical detection at a glassy carbon electrode modified with carbon nanotubes. Analytica Chimica Acta, 2007, 585(2): 323-330.
    [182] Antiochia R., Lavagnini I., Magno F.Electrocatalytic oxidation of NADH at single-wall carbon-nanotube-paste electrodes: kinetic considerations for use of a redox mediator in solution and dissolved in the paste. Analytical and Bioanalytical Chemistry, 2005, 381(7):135-1361.
    [183] Ye J. S., Wen Y., Zhang W. D., et al. Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes. Electrochemistry Communications,2004, 6(1): 66-70.
    [184] Cheng G. F., Zhao J., Tu Y. H.. et al. A sensitive DNA electrochemical biosensor based on magnetite with a glassy carbon electrode modified by muti-walled carbon nanotubes in polypyrrole. Analytica Chimica Acta, 2005, 533(1): 11-16.
    [185] Liu G. D., Lee Riechers S., Consuelo Mellen M., et al. Sensitive electrochemical detection of enzymatically generated thiocholine at carbon nanotube modified glassy carbon electrode. Electrochemistry Communications, 2005,7(11):1163-1169.
    [186] Zhang Z. Q., Xu X. Q.. Flow-injection catalytic spectrophotometric determination of oxalic acid using the redox reaction between Victoria blue B and dichromate.Analytica Chimica Acta, 2000, 406(2): 303-308.
    [187] Chen H. G., Li H. R., Zhang D. J.. Analytical Chemistry Experiment. Guangzhou,China: Zhongshan University Publishing House, 1998.
    [188] Casella I. G.. Electrocatalytic oxidation of oxalic acid on palladium-based modified glassy carbon electrode in acidic medium. Electrochimica Acta, 1999,44(19): 3353-3360.
    [189] Chollier-Brym M. J., Epron F.,. Lamy-Pitara E., et al. Catalytic oxidation of maleic and oxalic acids under potential control of platinum catalysts. Catalysis Today, 1999, 48(1-4): 291-300.
    [190] Glaze W., Kang J., Chapin D. Priority pollutants: a prospective view. Environ.Sci.Tec, 1979, 13:416-424.
    [191] Keith L.H.. Compilation of Sampling Analysis Methods. US Environmental Protection Agency, Boca Raton, FL, USA, 1991. 389-486.
    [192] Directiva 80/77/CEE 15-7-1990: Diario official de las communidades Europeas.30-8-1990. European Community, Brussels: 1990.
    [193] Blau P. J., Budinski K.G... Development and use of ASTM standards for wear testing. Wear, 1999, 225 (2): 1159-1170.
    [194] Peng J. F., Liu J. F., Hu X. L., et al. Direct determination of chlorophenols in environmental water samples by hollow fiber supported ionic liquid membrane extraction coupled with high-performance liquid chromatography. Journal of Chromatography A, 2007, 1139:165-170.
    [195] Rogers Kim R., Becker James Y., Wang Joseph, et al. Determination of phenols in environmentally relevant matrices with the use of liquid chromatography with an enzyme electrode detector. Field Analytical Chemistry and Technology, 1999, 3(3):161-169.
    [196] Viviana C. D., Claudia D., Santiago S., et al. Liquid chromatography / electrochemical detection of phenols at a Poly[Ni-(Protoporphyrin Ⅸ)] chemically modified electrode. Analytica Chimica Acta, 1996, 336 (1-3) :195-199.
    [197] El-Kosasy A. M., Riad S. M., Abd El-Fattah L. E., et al. Novel poly (vinyl chloride) matrix membrane electrodes for the determination of phenolic pollutants in waste water.Water research, 2003, 37(8): 1769-1775.
    [198] U. S. 51FR. Managing Industrial Hazardous Waste. 1986, 13: 21647-21693.
    [199] Environmental Reporter. Federral Regulations. US: The Bureau of National Affairs Inc, 1993. 182-184.
    [200] Ruban V. F., Pokhvoshchev Y. V., Determination of cresol isomers in aqueous solutions by microscale HPLC using a two-detector recording system. Journal of Analytical Chemistry, 2007, 62(5):463-465.
    [201] 郑志花,崔建兰,邵徽旺.差示分光光度法测定废水中间甲酚的含量.应用化工,2007,36(11):1141-1142.
    [202] 国家环境保护局.空气和废气监测分析方法.北京:中国环境科学出版社,1990.184-191.
    [203] 张月琴,史雪岩,傅若农,等.毛细管气相色谱法分析苯酚和甲酚位置异构体.北京理工大学学报,2000,20(3):380-384.
    [204] 赵起越,岳志孝.气相色谱法分析固体废弃物中苯酚类物质.岩矿测试,2001,20(4):279-283.
    [205] 李凌波,王波,林大泉,热脱附-填充柱气相色谱法测定空气中的苯酚和甲酚.上海环境科学,1996,15(11):31-32.
    [206] 张明时,王爱民.溴化衍生气相色谱法测定环境水体中的酚系物.色谱,2000,18(1):92-93.
    [207] Kim M.A., Lee W.Y.. Amperometric phenol biosensor based on sol-gel silicate/Nafion composite film. Anal. Chim. Acta, 2003, 479:143-150.
    [208] (?)nnerfjord P., Emne(?)s J., Marko-Varga G., et al. Tyrosinase graphiteepoxy based composite electrodes for detection of phenols. Biosens. Bioelectron, 1995, 10 : 607-619.
    [209] Abdullah J., Ahmad M., Karuppiah N., et al. Immobilization of tyrosinase in chitosan film for an optical detection of phenol. Sens. Actuators B: Chem, 2006, 114: 604-609.
    [210] Yu J., Lin S., Ju H.. Mediator-free phenol sensor based on titania sol-gel encapsulation matrix for immobilization of tyrosinase by a vapor deposition method. Biosens. Bioelectron., 2003, 19:509-514.
    [211] Li N., Xue M.H., Yao H., et al. Reagentless biosensor for phenolic compounds based on tyrosinase entrapped within gelatine film. Anal. Bioanal. Chem, 2005, 383: 1127-1132.
    [212] 中国环境监测总站编.固体废弃物试验分析评价手册.北京:中国环境科学出版社,1992.161-162.
    [213] 路鑫,赵欣捷,叶芬,等.固相微萃取/气相色谱/质谱联用测定水中的2,4-二硝基苯酚.色谱,1999,17(2):131-133.
    [214] Belloli R., Barletta B., Bolzacchini E., et al. Determination of toxic nitrophenols in the atmosphere by high-performance liquid chromatography. J. Chromatogr. A, 1999, 846 (1-2): 277-281.
    [215] Wang X.G., Wu Q.S., Liu W.Z., et al. Simultaneous determination of dinitrophenol isomers with electrochemical method enhanced by surfactant and their mechanisms research. Electrochimica Acta, 2006, 52: 589-594.
    [216] 杨全红,李莉香,成会明,等.碳纳米管的管内物理化学过程.科学通报, 2003,48(20):3-6.
    [217] Pan B., Xing B. S.. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ. Sci. Technol., 2008, 42 (24):9005-9013.
    [218] Laviron E.. The use of linear potential sweep voltammetry and of A.C. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J. Electroanal. Chem., 1979, 100: 263-271.
    [219] Muna Abu-Dalo. Electrochemical characterization of benzotriazole derivatives and their behavior in industrial waste treatment: [Doctoral thesis].Irbid- Jordan, American: the University of Colorado, 2003.
    [220] Richardson S. D.. Environmental mass spectrometry: emerging contaminants and current issues, Anal. Chem. 2008, 80(12): 4373-4402.
    [221] Weiss S., Jakobs J., Reemtsma T.. Discharge of three benzotriazole corrosion inhibitors with municipal wastewater and improvements by membrane bioreactor treatment and ozonation. Environ. Sci. Technol., 2006, 40(23): 7193-7199.
    [222] 铁道部标准.铁路内燃机车冷却水添加剂分析方法苯并三氮唑的测定,TB20595-89.
    [223] 化学工业部标准.工业循环冷却水水质分析方法,1985.
    [224] 徐锁洪.浊法测定冷却水中苯骈三氮唑.大连铁道学院学报,1992,13(2):105-107.
    [225] Reemtsma T., Weiss S., Mueller J., et al. Polar pollutants entry into the water cycle by municipal wastewater: A European perspective. Environ. Sci. Technol, 2006, 40(17): 5451-5458.
    [226] Giger W., Schaffner C., Kohler H. P. E.. Benzotriazole and tolyltriazole as aquatic contaminants. 1. Input and occurrence in rivers and lakes. Environ. Sci. Technol., 2006, 40: 7186-7192.
    [227] Henning L., Sianette K.. Electroorganic preparations ⅩⅩⅤ.polarography and reduction of benzotriazole and related compounds. Acta chemica Scandinavica, 1968, 22: 2879-2889.
    [228] Steen U. P., Henning L.. Electrochemical reduction of some benzotriazoles in protic and aprotic media. Acta Chemica Scandinavica B, 1988, 42:319-323.
    [229] 吴敦虎,张蓉,张艳.示波极谱法测定内燃机车冷却液中苯骄三氮哇的含量.内燃机车,1994,(6):45-48.
    [230] 顾仁敖,曹佩根.苯并三氮哇在铁电极上的光谱电化学研究.苏州大学学报(自然科学版),1999,15(1):59-63.
    [231] Roman E. S., Barbara F..Voltammetric oxidation of naphthalene derivatives. Journal of Electroanalytical Chemistry. 2008, 612:147-150.
    [232] 张泰铭,丁峰,梁逸曾.苯并三氮唑缓蚀铜粉中含氧量的测定.光谱学与光谱分析,2006,26(11):2101-2104.
    [233] 李燕,陆柱,吴羡蓉.钨酸盐与苯并三氮唑协同缓蚀机理的探讨.华东理工大学学报,2002,28(3):66-70.
    [234] 黄陟峰,任斌,胡文云,等.利用拉曼光谱和电化学技术研究碱性条件下苯骈三氮唑对Co的缓蚀作用.光散射学报,2002,14(2):101-105.
    [235] Wang H. S., Ju H. X., Chen H. Y.. Adsorptive stripping voltammetric detection of single-stranded DNA at electrochemically modified glassy carbon electrode.Electroanalysis, 2002, 14: 1615-1619.
    [236] Wang H. S., Ju H. X., Chen H. Y.. Voltammetric behavior and detection of DNA at electrochemically pretreated glassy carbon electrode. Electroanalysis, 2001,13(13): 1105-1109.
    [237] Brett C. M. A., Brett Ana M. O., Serrano S. H. P.. An EIS study of DNA-modified electrodes. Electrochim. Acta, 1999, 44: 4233-4237.
    [238] Sun W., Li Y. Z., Yang M. X., et al. Direct electrochemistry of single-stranded DNA on an ionic liquid modified carbon paste electrode. Electrochem. Commun.,2008,10:298-300.
    [239] Mascini M, Palchetti I., Marrazza G.. DNA electrochemical biosensors. Fresenius J Anal Chem, 2001, 369: 15-19.
    [240] Schrader W., Linscheid M.. Styrene oxide DNA adducts: in vitro reaction and sensitive detection of modified oligonucleotides using capillary zone electrophoresis interfaced to electrospray mass spectrometry. Arch.Toxicol, 1997,71(9): 588-595.
    [241] Deforce D.L.D., Lemiere F., Esmans E.L.. et al. Analysis of the DNA damage induced by phenyl glycidyl ether using capillary zone electrophoresis-electrospray mass spectrometry. Anal. Biochem, 1998, 258(2): 331-338.
    [242] Yang J., Zhang Z., Rusling J.F.. Detection of chemically-induced damage in layered DNA films with Co(bpy)_3~(3+) by square-wave voltammetry. Electroanalysis,2002, 14(21): 1494-1500.
    [243] Sistare M.F., Codden S.J., Heimlich G., et al. Effects of Base Stacking on Guanine Electron Transfer: Rate Constants for G and GG Sequences of Oligonucleotides from Catalytic Electrochemistry. J. Am. Chem. Soc. 2000, 122 (19): 4742-4749.
    [244] Wang J., Rivas G., Luo D., et al. DNA-Modified Electrode for the Detection of Aromatic Amines. Anal Chem, 1996, 68: 4365-4367.
    [245] Chiti G., Marrazza G., Mascini M.. Electrochemical DNA biosensor for environmental monitoring. Anal Chim Acta, 2001, 427:155-159.
    [246] Lucarelli F., Kicela A., Palchetti I., et al. Electrochemical DNA biosensor for analysis of wastewater samples. Bioelectrochem, 2002, 58: 113-138.
    [247] Lucarelli F., Palchetti I., Marrazza G., et al. Electrochemical DNA biosensor as a screening tool for the detection of toxicants in water and wastewater samples. Talanta, 2002, 56: 949-954.
    [248] Tencaliec A. M., Laschi S., Magearu V., et al. A comparison study between a disposable electrochemical DNA biosensor and a Vibrio fischeri-based luminescent sensor for the detection of toxicants in water samples. Talanta, 2006, 69: 365-368.
    [249] Del Carlo M., Di Marcello M., Perugini M., et al. Electrochemical DNA biosensor for polycyclic aromatic hydrocarbon detection. Microchim Acta, 2008, 163: 163-169.
    [250] Labuda J., Ov(?)dekov(?) R., Galandov(?) J.. DNA-based biosensor for the detection of strong damage to DNA by the quinazoline derivative as a potential anticancer agent. Microchim. Acta, 2008, 164: 371-375.
    [251] Stani(?) Z., Girousi S. Electrochemical study of the interaction between dsDNA and copper(Ⅱ) using carbon paste and hanging mercury drop electrodes. Microchim. Acta, 2009, 164: 479-482.
    [252] Wu K. B., Fei J.J., Bai W., et al. Direct electrochemistry of DNA, guanine and adenine at a nanostructured film-modified electrode. Anal. Bioanal Chem, 2003, 376: 205-209.
    [253] 徐桂云.DNA电化学传感器的制备及其在转基因植物产品检测中的应用[硕士学位论文].青岛:中国海洋大学图书馆,2006.
    [254] Zhang J. D., Oyama M.. Tunable electrochemical properties of liquid phase deposited TiO_2 films. J Appl Electrochem, 2008, 38(10): 1421-1426.
    [255] S(?)nchez-Pomales G., Santiago-Rodr(?)guez L., Rivera-V(?)lez N. E., Cabrera C. R.. Control of DNA self-assembled monolayers surface coverage by electrochemical desorption. Journal of Electroanalytical Chemistry, 2007, 611: 80-86.
    [256] 孙立伟,曲甍甍,吴笛等.酚类化合物对不同组织细胞DNA损伤的研究.环境化学,2003,22(4):390-393.
    [257] Ennas G., Musinu A., Piccaluga G., et al. Characterization of iron oxide nanoparticles in an Fe_2O_3-SiO_2 composite prepared by a Sol-Gel method.Chem. Mater, 1998, 10: 495-502.
    [258] Jiang W. Q., Yang H. C., Yang S. Y., et al. Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible. Journal of Magnetism and Magnetic Materials, 2004, 283: 210-214.
    [259] Liu J. C, Tsai P. J., Lee Y. C, et al. Affinity capture of uropathogenic Escherichia coli using pigeon ovalbumin-bound Fe_3O_4@Al_2O_3 Magnetic Nanoparticles. Anal. Chem, 2008, 80: 5425-5432.
    [260] Ebner Armin D., Ritter James A., Navratil James D.. Adsorption of cesium,strontium, and cobalt ions on magnetite and a magnetite-silica composite. Ind.Eng. Chem. Res, 2001, 40: 1615-1623.
    [261] Andrew H. L., Mary E. W.. Controlling transport and chemical functionality of magnetic nanoparticles. Functional Magnetic Nanoparticles, 2008, 41(3):411-420.
    [262] Kouassi Gilles K., Irudayaraj Joseph. Magnetic and gold-coated magnetic nanoparticles as a DNA sensor. Anal. Chem. 2006, 78: 3234-3241.
    [263] Chen C. T., Chen Y. C. Fe_3O_4/TiO_2 Core/Shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO_2 surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 2005, 77: 5912-5919.
    [264] Tan F. Y., Fan X. B., Zhang G. L., et al. Coating and filling of carbon nanotubes with homogeneous magnetic nanoparticles. Materials Letters, 2007, 61:1805-1808.
    [265] Correa-Duarte Miguel A., Grzelczak Marek, Veronica Salgueirin(?)-Maceira, et al.Alignment of Carbon Nanotubes under Low Magnetic Fields through Attachment of Magnetic Nanoparticles. J. Phys. Chem. B, 2005, 10(41): 19060-19063
    [266] Qu S., Wang J., Kong J. L., et al. Magnetic loading of carbon nanotube/nano-Fe_3O_4 composite for electrochemical sensing. Talanta, 2007, 71:1096-1102.
    [267] Jiang L. Q., Gao L.. Carbon nanotubes-magnetite nanocomposites from solvothermal processes: formation, characterization, and enhanced electrical Properties. Chem. Mater, 2003, 15: 2848-2853.
    [268] Gao L. Z., Zhuang J., Nie L., et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology. Nature Nanotechnology,2007, 2(9): 577-583.
    
    [269] Zhuang J., Zhang J. B., Gao L. Z., et al. A novel application of iron oxide nanoparticles for detection of hydrogen peroxide in acid rain. Materials Letters,2008, 62: 3972-3974.
    
    [270] Eugenia S., Marco M., Sonia C, et al. Detection of Polychlorinated Biphenyls (PCBs) in Milk using a disposable immunomagnetic electrochemical sensor. Analytical Letters, 2007, 40:1371-1385.
    [271] Liu G. D., Timchalk C., Lin Y. H.. Bioelectrochemical magnetic immunosensing of trichloropyridinol: a potential Insecticide biomarker. Electroanalysis, 2008, 18 (16): 1605-1613.
    [272] Zhang Y., Zeng G. M., Tang L., et al. A hydroquinone biosensor using modified core-shell magnetic nanoparticles supported on carbon paste electrode. Biosensors and Bioelectronics, 2007, 22: 2121-2126.
    [273] Zhao X. L., Shi Y. L., Cai Y. Q., et al. Cetyltrimethylammonium bromide-coated magnetic nanoparticles for the preconcentration of phenolic compounds from environmental water samples. Environ. Sci. Technol, 2008, 42:1201-1206.
    [274] Liu J. F., Zhao Z. S., Jiang G. B.. Coating Fe_3O_4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ. Sci. Technol. 2008, 42: 6949-6954.
    [275] Jin J., Li R., Wang H. L., et al. Magnetic Fe nanoparticle functionalized water-soluble multi-walled carbon nanotubules towards the preparation of sorbent for aromatic compounds removal. Chem.Commun., 2007, (4): 386-388.
    [276] Zhang M. N., Su L., Mao L. Q.. Surfactant functionalization of carbon nanotubes (CNTs) for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid. Carbon, 2006, 44: 276-283.
    [277] 杜桂焕.磁性纳米颗粒的表面修饰及其生物学应用研究:[博士学位论文].武汉:华中科技大学图书馆,2006.
    [278] Zhang L. H., Zhai Y. M., Gao N., et al. Sensing H_2O_2 with layer-by-layer assembled Fe_3O_4-PDDA nanocomposite film. Electrochem. Communi., 2008, 10: 1524-1526.
    [279] 孙明礼,成荣明,徐学诚,等.碳纳米管对酚类物质的吸附研究.东北师大学报自然科学版,2004,36(4):71-75.
    [280] Minkin V. I., Osipov O. A., Zhdanov Y. A.. Dipole moments in organic chemistry. Plenum Press:New york-London, 1970.91-92.
    [281] 陈婉华,袁帅,胡成国.CTAB化学吸附修饰电极线性扫描伏安法直接测定苯酚.分析科学学报,2005,21(1):54-56.
    [282] 王存孝,杨功俊,胡效亚.CTAB存在下酚磺乙胺的电化学测定.扬州大学学报(自然科学版),2007,10(2):32-37.
    [283] Yang G. J., Xu J. J., Wang K., et al. Eleetrocatalytic oxidation of dopamine and ascorbic acid on carbon paste eleetrode modified with nanosized cobalt phthalocyanine particles:simultaneous determination in the presence of CTAB. Eleetroanalysis, 2006, 15(3): 282-290.
    [284] Pan B., Xing B. S.. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ. Sci. Technol., 2008, 42 (24): 9005-9013.
    [285] 陈新苗,郭峰,张桃芝.直接液相微萃取气相色谱分析测定废水中酚类化合物.华中师范大学学报(自然科学版),2007,41(3):395-397.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700