树枝形大分子/金属纳米铜、银、钴复合材料的合成及其性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
树枝形聚合物是近年来成功合成的一种新型的高分子材料,它在工业、农业、医学、生命科学、导电材料、纳米材料和催化等领域具有非常重要的应用前景。目前合成出来的树枝形聚合物的种类也很多,本文合成出了一类以苯环为中心的树枝形聚合物并对其进行了表征。
     本文初步研究了铜离子与以苯环为中心的树枝状化合物(下文简称为树枝状化合物)的相互作用。通过铜离子与树枝状化合物的浓度和溶液的pH值的改变对反应影响的研究,表明树枝状化合物内部三种不同的含氮原子基团,与铜离子作用的能力不同,作用的顺序依次为伯胺、叔胺和酰胺。
     采用液相法,利用树枝状化合物作为模板制备了纳米金属铜和银粒子。当铜离子和银离子与3代树枝状化合物(简称3 G)浓度比为2 : 1时,得到的铜和银粒子平均粒径分别为4.6和5.9 nm。讨论了铜离子和银离子与树枝状化合物浓度比以及树枝状化合物的代数对纳米铜和银粒子的粒径、分散性等的影响关系。发现随着铜和银离子浓度的增大,还原后的粒子较容易团聚,所得到的纳米铜与银粒子的尺寸变大,且分散性不好;在金属(铜和银)离子和树枝状化合物浓度比相同的情况下,随着树枝状化合物代数的增大,所得到的纳米金属(铜和银)粒子的粒径减小,且粒子更加分散。
     采用液相法,利用树枝状化合物为模板制备了钴纳米粒子。钴离子与3G浓度比为10 : 1时,得到的钴粒子平均粒径为7.5 nm。同时考察了钴离子与树枝状化合物浓度以及树枝状化合物的代数对钴粒子尺寸、分散性的影响,实验结果表明:增大钴离子的浓度,还原后所得到的钴粒子尺寸变大,且分散性变差;固定钴离子和树枝状化合物浓度比,随着树枝状化合物代数的增加,钴粒子的尺寸变小,分散性也较好。钴粒子的电子衍射表明,所制备的钴纳米粒子属于非晶态。利用超导量子干涉(Superconducting Quantum Interference)技术,通过对所制备的纳米钴粒子的磁滞回线、FC和ZFC的表征,考察了用不同代数的树枝状化合物制备的钴粒子的磁性强弱,得到的结果是利用低代数的树枝状化合物制备的钴粒子磁性大(钴离子与树枝状化合物的浓度比相同的条件);同时考察了温度对钴粒子磁性的影响:对同一钴粒子,在不同温度下(2K,150K,360K),它的磁性不同,随着温度的升高磁性变弱。钴粒子在低温下(如2K)表现出了较明显的磁滞现象,但温度升高磁滞现象减弱。当温度达到阻塞温度(Tb)以上时,磁滞现象表现的很弱,是由于此时钴粒子主要表现出超顺磁性的结果。
Dendritic polymer (dendrimer) is a kind of macromolecular materials which have been applied on industry, agriculture, medicine, electric materials and nanomaterials so on. So far, a lot of new dendrimers have been synthesized. In this thesis we synthesize and characterize a kind of dendrimers with a trimesyl core.
     In my thesis first the complex reaction is completed between dendrimers with a trimesyl core and the copper ions. The results of the concentration of Cu~(2+) and dendrimers as well as pH values influence on the complex reaction show three kinds of amido groups of dendrimers behave different coordinate ability with Cu~(2+): -NH_2 > -NR_2 > -CONH-.
     Copper and silver nanoparticles are obtained through wet chemical method by dendrimers as templates. When the concentration ratio of copper ions and silver ions to G3 dendrimer (3G) are all 2:1, the average diameters of the copper and silver particles are 4.6 and 5.9 nm, respectively. It is also discussed that the relation between the concentration ratios of copper and silver ions to dendrimers as well as the generation of dendrimers and the copper and silver nanoparticles’size. When the concentration of metal (copper and silver) ions increase, the Cu and Ag nanoparticles obtained are easily aggregated, large in size and not well dispersed. When the concentration ratios of metal ions and dendrimers are the same, the generation of the dendrimers increasing, the metal (copper and silver) particles prepared are smaller and well dispersed.
     The cobalt nanoparticles are also prepared through the same method by dendrimers as templates. When the concentration ratio of cobalt ions to 3G is 10:1, the average diameter of the cobalt particles obtained is 7.5 nm. It is discussed that the relation between the concentration ratios of cobalt ions to dendrimers as well as the generation of dendrimers and the cobalt nanoparticles’size, too. When the concentration of cobalt ions increase, the particles we obtained are easily aggregated, large in size and not well dispersed. When fix the concentration ratios of cobalt ions and dendrimers, the generation of the dendrimers increasing, the cobalt particles prepared are smaller and well dispersed. They are smaller in size and well dispersed. The data from the Ed show that the cobalt particles prepared belong to amorphous. The magnetism of different cobalt particles prepared in different generation dendrimers is characterized through the hysteresis loop, FC, and ZFC by Superconducting Quantum Interference. The data of results show the magnetism of cobalt particles in which are prepared in lower generation dendrimers is stronger than that of higher generation dendrimers when concentration ratio of cobalt ions to dendrimers is equal. The data of different temperature (2K, 150K, 360K) suggests the cobalt particles show weaker magnetism in higher temperature. When in very lower temperature, the cobalt particles (for example 2K) show hysteresis obviously. Above blocking temperature (Tb), cobalt particles’hysteresis becomes weak owing to superparamagnetism.
引文
[1] D A Tomalia, H Baker, J Dewald, M Hall, G. Kallos, S Martin, J Roeck, J Ryder, A New Class of Polymers: Starburst-Dendritic Macromolecules Polym.J [J]. 1985, 17 (1):117-132.
    [2] 谭惠民,罗运军,树枝形聚合物[M].北京:化学工业出版社,2002,1-10。
    [3] 谭惠民,罗运军,树枝形聚合物[M].北京:化学工业出版社,2002,16-19。
    [4] D A Tomalia, H D Durst, Genealogically directed synthesis: Starburst/cascade dendrimers and hyperbranched structures. Top Curr. Chem [J].1993, 165:193-213.
    [5] D A Tomalia, P C Lauterbur Dendrimer-based metal chelates: A new class of magnetic resonance imaging contrast agents. Adv. Mater [J].1994, 31(1):1-8.
    [6] Z Xu, J S Moore, Synthesis and Characterization of a High Molecular Weight Stiff Dendrimer. Angew. Chem. Int. Ed. Engl [J].1993, 32(2):246-248.
    [7] I Gistov, J M J Frechet. Novel Nanoscopic Architectures. Linear-Globular ABA Copolymers with Polyether Dendrimers as A Blocks and Polystyrene as B Block Macromolecules [J]. 1994, 27(25):7309-7315.
    [8] W T S Huck, F C J M. van Veggel, D N Reinhoudt. Controlled Assembly of Nanosized Metallodendrimers Angew. Chem. Int. Ed. Engl [J]. 1996, 35 (11): 1213-1215.
    [9] J M J Frechet. Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science [J]. 1994, 263:1710-1715.
    [10] Lochhead, M J; Letellier S R, Vogel V. Assessing the Role of Interfacial Electrostatics in Oriented Mineral Nucleation at Charged Organic Monolayers. J Phys Chem B [J]. 1997, 101(50):10821-10827.
    [11] 刘宏文,陈明,树枝状或超分枝聚合物在涂料中的应用中国涂料[J]. 2000,2:33-34.
    [12] S Watanable, S L Regen. Dendrimers as Building Blocks for Multilayer Construction. J. Am. Chem. Soc [J]. 1994, 116 (19):8855-8856.
    [13] F Wang. Synthesis and Evaluation of a Star Amphiphilic Block Copolymer from Poly (E-caprolactone) and Poly (ethylene glycol) as a Potential Drug Delivery Carrier. Bioconjugate Chem [J]. 2005, 16:397-405.
    [14] Johan F G. A, Jansen E W, Meijer, Ellen M M. de Brabander-van den Berg. The Dendritic Box:Shape-Selective Liberation of Encapsulated Guests. J. Am. Chem. Soc [J]. 1995, 117(15):4417-4418.
    [15] Henrik R I, Francis C S. Polyester Dendritic Systems for Drug Delivery Applications: Design, Synthesis, and Characterization. Bioconjugate Chem [J].2002, 13: 443 - 452.
    [16] Jayant K, Parag K, Omathanu P. Synthesis, Cellular Transport, and Activity of Polyamidoamine Dendrimer-Methylprednisolone Conjugates. Bioconjugate Chem [J].2005, 16: 330-337.
    [17] F V?gtle, S Gestermann, C Kauffmann, P Ceroni, V Vicinelli, V Balzani. Coordination of Co2+ Ions in the Interior of Poly (propylene amine) Dendrimers Containing Fluorescent Dansyl Units in the Periphery. J. Am. Chem. Soc [J]. 2000, 122(42):10398-10404.
    [18] V Balzani, P Ceroni, S Gestrmann, M Gorka, C Kauffmann, M Maestri, F V?gtle. Eosin Molecules Hosted into a Dendrimer Which Carries Thirty-Two Dansyl Units in the Periphery: A Photophysical Study. ChemPhysChem [J]. 2000, 1(4): 224-227.
    [19] B Branchi, P Ceroni, G Bergamini. Cover Picture: A Cyclam Core Dendrimer Containing Dansyl and Oligoethylene Glycol Chains in the Branches: Protonation and Metal Coordination. Chem. Eur. J [J]. 2006, 12(35): 8879.
    [20] U Hahn, M Gorka, F V?gtle, V Vicinelli, P Ceroni, M Maestri. Light-Harvesting Dendrimers: Efficient Intra- and Intermolecular Energy-Transfer Processes in a Species Containing 65 Chromophoric Groups of Four Different Types. Angew. Chem. Int. Ed [J]. 2002, 41(19):3595-3598.
    [21] A P H J Schenning, E Peeters, E W Mejier. Energy Transfer in Supramolecular Assemblies of Oligo (p-phenylene vinylene) Terminated Poly (propylene imine) Dendrimers. J. Am. Chem. Soc [J]. 2000, 122(18): 4489-4495.
    [22] V Vicinelli, P Ceroni, M Maestri, V Balzani, M Gorka, F V?gtle. Luminescent Lanthanide Ions Hosted in a Fluorescent Polylysin Dendrimer. Antenna-Like Sensitization of Visible and Near-Infrared Emission. J. Am. Chem. Soc [J]. 2002, 124(22): 6461-6468.
    [23] F S Precup-Blaga, J C Garcia-Martinez, A P H J Schenning, E W Mei Jer. Highly Emissive Supramolecular Oligo(p-phenylene vinylene) Dendrimers. J. Am. Chem. Soc [J]. 2003, 125 (42):12953-12960.
    [24] 施利毅,纳米科技基础[M].上海:华东理工大学出版社,2005.
    [25] 张立德,牟季美,纳米材料和纳米结构[M].北京:科学出版社,2001.
    [26] 张近,均匀沉淀法制备纳米氧化镁的研究,功能材料[M].1999, 30 (2): 193-194.
    [27]J Gao, F Guan, Y Zhao, WYang, Y Ma, X Lu, J Hou. Preparation of Ultrafine Nickel Powder and its Catalytic Dehydrogenation Activity Material Chemistry and Physics [J]. 2001, 71(2):215.
    [28] D Gao,R He,C.Carraro, Selective Growth of Si Nanowire Arrays via Galvanic Displacement Processes in Water-in-OilMicroemulsions,J. Am.Chem soc. [J].2005, 127: 4574.
    [29] Q Lu, E GaO, D Zhao. One-Step Synthesis and Assembly of Copper Sulfide Nano Particles to Nanowires, Nanotubes, and Nanovesicles by a simple Organic Amine-Assisted Hydrothermal Process,Nano Lett[J].2002, 2:725.
    [30]B Liu, H Yu, L Li. Nanorod-Direct Oriented Attachment Growth and promoted Crystallization Processes Evidenced in Case of ZnWO4. J. Phys.Chem.B [J].2004, 108 : 2788.
    [31]薛韩玲; 李建伟; 葛岭梅.气相水解法介孔分子筛MCM-41组装纳米TiO2研究,辽宁工程技术大学学报[J].2007, 26(5):798-800.
    [32]P W Chien, S L Wu. Boron-δ doped Si grown by ultra-high vacuum Chemical vapor deposition,Mater.Chem.Phys [J].2002, 77: 426.
    [33] 朱宏杰,李春忠,陈红,化学气相淀积制备Si3N4超细粉末,无机材料学报[J],1995,10: 43.
    [34] 石礼伟,李玉国,王强. 高密存储介质磁性纳米颗粒薄膜与纳米超晶格结构研究进展.微纳米电子技术[J],2003, 40 (9): 5.
    [35]都有为,磁性纳米材料及其应用.中国高校科技与产业化[J], 2002, 7: 36.
    [36] Barmak K, Kim J. Calorimetric studies of the Al to L10 transformation in FePt and CoPt thin films. Appl Phys Lett [J].2002, 80 (22):4268-4271.
    [37] Yu H F, Lin H Y. Preparation and thermal behavior of aerosol-derived BaFe12O19 nanoparticles. J Magn Mater [J]. 2004, 283 (2):190-194.
    [38] 田民波,磁性材料,北京:清华大学出版社[M].2000,25-68。
    [39] A. Ney, P. Poulopoulos, M. Farle, K. Baberschke.Absolute determination of Co magnetic moments: Ultrahigh-vacuum high-Tc SQUID magnetometry. Phys. Rev.B [J]. 2000, 62(17): 11336-11339.
    [40] 尹寿银,碳原子线的磁学电学性能[D].南京:南京师范大学,2005。
    [41]田漪,材料物理性能,北京:北京航空航天大学出版社[M].2002,314-315。
    [42] 李志伟,铁磁薄带的性质和FMR研究以及强γ辐照的LiF的研究[D].合肥:中国科学技术大学,2001。
    [43]赵强,庞小峰. 磁性纳米生物材料研究进展及其应用. 原子与分子物理学报[J], 2005, 2 (22) : 223 - 224.
    [44]陈晓青,张俊山,杨娟玉, 双层表面活性剂分散制备水基磁流体. 无机化学学报[J], 2003, 19 ( 5) :548 - 551.
    [45]沙菲,宋洪昌. 纳米a - Fe2 03 的制备方法及应用概况. 江苏化工[J], 2003, 31 (5) : 13 - 15.
    [46]车仁超,李永清,陈朝辉, 钴铁氧体微粒的化学制备工艺及其磁特性研究,功能材料[J].1999, 30(6): 615-616.
    [47]李春虎,赵九生,王大祥,纳米MgAl2O4尖晶石的制备与表征,无机化学学报[J].1996, 11(3):557-560.
    [48]常铮,李峰,段雪,磁性纳米固体酸催化剂Zr(SO4)2/Fe3O4的制备及催化性能研究,无机化学学报[J].2001, 17(3):366-371.
    [49]国秋菊,郑少华,陶文宏,纳米磁流体及其应用,企业技术开发[J].2005, 24(7): 8-10.
    [50]陆伟,严彪,殷俊林. 纳米晶软磁材料及其应用. 上海钢研[J]. 2003, 4(12):35-37.
    [51]Zhang H, Hu N. Conductive Effect of Gold Nanoparticles Encapsulated Inside Polyamidoamine (PAMAM) Dendrimers on Electrochemistry of Myoglobin (Mb) in {PAMAM-Au/Mb}n Layer-by-Layer Films. J. Phys. Chem. B [J]. 2007, 4 (5):10583-10590.
    [52]Tomalia D A, Naylor A M, Goddard W A. Starburst dendrimers: Molecular- Level control of size, shape, surface, chemistry, topology, and flexibility from atoms to macrocopic matter. Angew Chem Intl Ed Engl [J].1990, 29:138- 175.
    [53] Newkome G R, Yao Z, Baker G R, Gupta V K. Micelles. Cascade molecules: a new approach to micelles. J. Org. Chem [J].1985, 50(11): 2003-2004.
    [54] Hawker C J, Frechet J M J. Preparation of polymers with controlled molecular architecture. J. Am. Chem. Soc [J]. 1990, 112(21): 7638-7647.
    [55] Zhang X Q, Wang X L, Huang S W, Zhuo R X, Liu Z L, Mao H Q, Leong K W. In vitro Gene Delivery Using Polyamidoamine Dendrimers with a Trimesyl Core. Biomacromolecules [J]. 2005, 6(1): 341-350.
    [56]关烨第,有机化学实验,北京:北京大学出版社[M].2002。
    [57]夏延秋,金寿日,孙维明,纳米级金属粉对润滑油摩擦磨损性能的影响. 润滑密封[J],1999, 3: 33 - 35.
    [58] Hennques C, Ribeiro F R. Selective catalytic reduction of NO on copper - exchanged zeolites: the role of the structure of the zeolite in the nature of copper - active sites. CatalysisToday [J].1999, 54: 407 - 418.
    [59] Murphy C J, Jana N R. Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires. Adv Mater [J].2002, 14: 80 - 82.
    [60] Salkar R A, Jeevanandam P, Kataby G, Aruna S T. Elongated Copper Nanoparticles Coated with a Zwitterionic Surfactant. J. Phys Chem B [J].2000, 104: 893 – 897.
    [61] TMolares M E, Buschmann V, Dobrev D. Single-Crystalline Copper Nanowires Produced by Electrochemical Deposition in Polymeric Ion TrackMembranes. Adv Mater [J].2001, 13: 62 - 65.
    [62] Jana N R, Gearheart L, Murphy C J. Seed-Mediated Growth App roach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold NanoparticlesUsing a Surfactant Template. Adv Mater [J]. 2001, 13: 1389 - 1394.
    [63]Crooks R M, Zhao M, Sun L, Chechik V, Yeung L K. Dendrimer-Encapsulated Metal Nanoparticles: Synthesis, Characterization, and Applications to Catalysis. Acc.Chem. Res. [J]. 2001, 34(3):181-190.
    [64]Scott, R. W. J.; Datye, A. K.; Crooks, R. M. Bimetallic Palladium-Platinum Dendrimer-Encapsulated Catalysts. J. Am. Chem. Soc [J].2003, 125(13): 3708-3709.
    [65]Lemon, B. I.; Crooks, R. M. Preparation and Characterization of Dendrimer-Encapsulated CdS Semiconductor Quantum Dots. J. Am. Chem. Soc [J]. 2000, 122(51):12886-12887.
    [66]Zhao, M. Q.; Sun, L.; Crooks, R. M. Preparation of Cu Nanoclusters within Dendrimer Templates. J. Am. Chem. Soc [J]. 1998, 120(19):4877 - 4878.
    [67] Balogh L, Tomalia D A. Poly (amidoamine) dendrimer-templated nanocomposites. J. Am. Chem. Soc [J]. 1998, 120(29): 7355 - 7356.
    [68] Esumi, K.; Nakamura, R.; Suzuki, A.; Torigoe, K. Preparation of Platinum Nanoparticles in Ethyl Acetate in the Presence of Poly(amidoamine) dendrimers with a Methyl Ester Terminal Group. Langmuir [J]. 2000, 16(20): 7842-7846.
    [69]柯以侃, 董慧茹. 分析化学手册第三分册光谱分析[M]. 第二版. 北京: 化学工业出版社, 1998.
    [70]孟令芝, 何永炳. 有机波谱分析[M]. 第二版. 武汉: 武汉大学出版社, 2003,253-258.
    [71]Crooks R M., Zhao M Q. Dendrimer-encapsulated metals and semiconductors. Topics inCurrent Chemistry [J] .2001, 212: 96-97.
    [72]邓芹英 刘岚 邓慧敏,波谱分析教程[M]. 科学出版社, 2003, 2-3。
    [73] Crooks R M., Zhao M Q. Dendrimer-encapsulated metals and semiconductors. Topics in Current Chemistry [J] .2001, 212: 96-97.
    [74]徐厚才,罗运军. 树形聚酰胺胺与Cu2 +的配位 作用.分析测试学报[J] .2001, 20(3):1–4.
    [75]徐厚才,罗运军. 树形聚酰胺胺与Cu2 +的配位 作用.分析测试学报[J] .2001, 20(3):1–4.
    [76] Kreibig U, Vollmer M. Optical properties of metal clusters. Springer,Berlin Heidelberg New York [M].1995, 25.
    [77]项金忠, 吴兴惠 译,纳米粒子与纳米结构薄膜[M].北京:化学工业出版社,2003,70-71。
    [78] Kreibig U, Vollmer M. Optical properties of metal clusters. Springer,Berlin Heidelberg New York [M].1995, 25.
    [79]Mark S S, Bergkvist M,Yang X, Angert E R, Batt C A. Self-Assembly of Dendrimer-Encapsulated Nanoparticle Arrays Using 2-D Microbial S-Layer Protein Biotemplates. Biomacromolecules [J].2006, 7(6): 1884-1897.
    [80]章晓中,电子显微分析[M].北京:清华大学出版社,2006,81-85。
    [81]Nordlander P, Prodan E. Plasmon Hybridization in Nanoparticles near Metallic Surfaces. Nano Lett [J].2004, 4(11):2209-2213.
    [82] Curtis AC, Duff DG, Edwards PP, Jefferson DA, Johnson BFG, Firkland AI, Wallace ASA. A morphology-selective copper organosol, Angew Chem Int Ed [J], 1988, 27(11):1530-1533.
    [83]Lisiecki I, Pileni M P. Synthesis of copper metallic clusters using reverse micelles as microreactors. J Am Chem Soc [J].1993, 115(10):3887-3896.
    [84] Kreibig U, Vollmer M. Optical properties of metal clusters. Springer,Berlin Heidelberg New York [M].1995, 25.
    [85]项金忠,吴兴惠 译,纳米粒子与纳米结构薄膜[M].北京:化学工业出版社,2003,79-81。
    [86]Statham P, Filling of Carbon Nanotubes with Silver, Gold, and Gold Chloride. J.Microsc. Microana [J].1998, 4: 605-615.
    [87]何林锋,电子束辐照合成纳米磁性材料[D].上海:上海大学,2005.
    [88] E. V. Shevchenko, D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, H. Weller. Colloidal Synthesis and Self-Assembly of CoPt3 Nanocrystals, J. Am. Chem. Soc [J].2002, 124(38): 11480-11485.
    [89] S. H. Liou, S. Huang, E. Klimek, R. D. Kirby, Y. D. Yao. Enhancement of coercivity in nanometer-size CoPt crystallites, J.Appl.Phys.[J],1999, 85: 4334 - 4337.
    [90] T. O. Ely, C. Pan, C. Amiens, B. Chaudret, F. Dassenoy, P. Lecante, M. J. Casanove, A. Mosset, M. Respaud, M. J. Broto. Nanoscale Bimetallic CoxPt1-x Particles Dispersed in Poly (vinylpyrrolidone): Synthesis from Organometallic Precursors and Characterization. J. Phys. Chem. B [J]. 2000, 104(4): 695-702.
    [91] Lu Y, Yin Y D, Mayers B T, Xia Y N. Electronic Response and Bandstructure Modulation of Carbon Nanotubes in a Transverse Electrical Field. Nano Lett [J]. 2002, 3(2):183-187.
    [92] Korth B D, Keng P, Shim I, Bowles S E, Tang C. Polymer-Coated Ferromagnetic Colloids from Well-Defined Macromolecular Surfactants and Assembly into Nanoparticle Chains. J. Am. Chem. Soc [J].2006,128(20):6562-6563.
    [93]章晓中,电子显微分析[M].北京:清华大学出版社,2006,96-97。
    [94] R.W.卡恩, P.哈森,E.J.克雷默,玻璃与非晶态材料[M].北京:科学出版 社, 2001,430.
    [95]何圣静, 高莉如. 非晶态材料及其应用[M].北京:机械工业出版社,1987.
    [96]孟令芝, 何永炳. 有机波谱分析[M]. 第二版. 武汉: 武汉大学出版社, 2003,225-229.
    [97]谢 泳,钴电极的表面增强拉曼散射现象及其应用[D]. 厦门: 厦门大学, 2000.
    [98]程守洙、江之水,普通物理学[M].第五版,北京:高等教育出版社,1998,302-303。
    [99]徐静,李志华,秦爱丽, Fe3O4 纳米颗粒的磁性研究,河北建筑科技学院学报[J].2005, 22:2.
    [100] An-Hui Lu, E.L. Salabas, and Ferdi Schüth*. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew.Chem.Int.Ed [J].2007, 46: 1225.
    [101] An-Hui Lu, E.L. Salabas, and Ferdi Schüth*. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application Angew.Chem.Int.Ed.2007, 46:1226.
    [102] An-Hui Lu, E.L. Salabas, and Ferdi Schüth*. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew.Chem.Int.Ed [J]. 2007, 46: 1223.
    [103]项金钟, 吴兴惠 译, 纳米粒子与纳米结构薄膜[M].北京:化学工业出版社, 2003,75-77。
    [104] K Haneda, Magnetic Tuning of the Electrochemical Reactivity through Controlled Surface Orientation of Catalytic Nanowires. J. Phys [J].1987, 65:1233-1244
    [105] P M de Bacher, E D Grave, R Vandenberghe, L H Bowen, Sonochemistry under an AppliedMagnetic Field: Determining the Shape of a Magnetic Particle. Hyperfine Int [J], 1990, 54: 493-498.
    [106] P Mollard, P Germi, A Rousset, Chemical Functionality of Magnetic nanoparticles. Physica B C [J].1977, 86: 1393-1394.
    [107]项金钟, 吴兴惠 译, 纳米粒子与纳米结构薄膜[M].北京:化学工业出版社, 2003,78。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700