碳及硅氮基磁性纳米颗粒膜的制备、结构和磁电性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁磁性金属纳米颗粒薄膜系统中存在的巨磁电阻效应、巨霍尔效应、高矫顽力效应等新特性,使其在磁性传感器件、高密度记录介质、读出磁头和磁性随机存取存储器等研究领域具有广阔的应用前景。近年来,纳米金属磁性颗粒包埋在非磁性碳基体中的颗粒膜体系由于在高抗蚀性材料和巨磁阻材料方面具有潜在的应用价值,吸引了人们越来越多的注意。另外,具有有序结构的FePt和CoPt材料与非磁性成分形成的复合薄膜,在超高密度磁记录介质领域展示了诸多优越性也成为材料科学领域的研究热点。
     本文用直流磁控溅射法在Si(100)和载玻片衬底上制备了铁磁性金属-碳基(Co-C, Fe-C)颗粒膜和硬磁性的CoPt-C、FePt-SiN系列纳米颗粒薄膜,对它们的制备、结构、磁性质和输运特性进行了系统研究。主要得到了以下结果:
     1)在制备态的CoC薄膜中,Co和碳成分是以非晶结构存在,且该碳基薄膜为类金刚石(DLC)薄膜;制备态的CoC薄膜表面光滑,颗粒尺寸及膜厚度均匀,当Co含量为2.5 at.%时薄膜的粗糙度(Ra)为0.152 nm,纳米尺寸的Co颗粒均匀分布在碳基体中;Co成分掺入后sp~2C的无序结构(D峰)和C=C键的E_(2g)伸缩振动峰(G峰)没有漂移,薄膜中sp~3杂化碳的含量不变,Co的添加没有促进碳基薄膜的石墨化;Co_xC_(1-x)薄膜具有较好的软磁性能,矫顽力均不超过180 Oe;当Co掺入后,与非晶碳膜相比,Co_xC_(1-x)纳米复合薄膜显示了较高的磁电阻(MR)效应,当x=2.5 at.%,膜厚约为80 nm,外磁场垂直于膜面方向时,检测到的最大MR值为36%,随着膜厚和Co成分的增加,磁电阻值逐渐降低;磁电阻效应可以用p-n异质结和界面散射效应来解释。
     2)Fe掺杂的Fe_xC_(1-x)复合薄膜也为DLC膜,Fe和C也是以非晶形态存在,且Fe的加入使该膜的D峰和G峰向低值方向漂移,sp~3杂化碳的成分增加;当Fe的加入量为18 at.%时,薄膜的表面粗糙度Ra为0.231 nm;Fe_xC_(1-x)纳米复合薄膜表现为软磁性能,矫顽力约为20 Oe;制备态的Fe_xC_(1-x)薄膜有较大的磁电阻效应,在300 K温度和5特斯拉(T)磁场下,Fe_1C_(99)薄膜的正磁电阻值达到93%;FeC复合薄膜中观察到的异常电输运现象遵循双通道导电模型,该模型能很好地和实验结果相吻合。
     3)制备态的CoPt-C薄膜是无序的面心立方(fcc)结构,在700℃热处理1h以后,转变为有序的面心四方(fct)结构,CoPt-C薄膜的相转变温度不低于700℃;制备态的CoPt-C样品表面平整、致密、均匀,颗粒尺寸约为23.5 nm,并随着碳含量的提高,颗粒尺寸逐渐减小,碳成分在细化晶粒方面起到了显著的效果;CoPt-C薄膜的饱和磁化强度(M_s)随C含量的增加先增加后减小,在C含量为15 at.%时,Ms约为1000 emu/cm~3;C含量为35 at.%时能最大地提高薄膜的矫顽力(H_c),在700℃热处理1小时后,膜面垂直磁场方面的最大矫顽力达到4200 Oe;首次发现用于磁记录介质的CoPt-C颗粒膜体系具有负磁电阻效应,MR的值在2T磁场下接近-1%。
     4)利用反应磁控溅射方法成功制备了具有包埋结构的FePtSiN薄膜;制备态的FePtSiN薄膜是由无序的A1-FePt相组成,在600℃热处理1小时之后,转化为有序的面心四方结构,且随着热处理温度的增加,有序相的衍射峰增强;随Si、N含量的不同,FePtSiN薄膜的晶格常数发生了相应的变化;加入合适比例的Si、N成分能有效促使Si-N相的形成,并从FePt合金中脱离出来均匀分布在FePt颗粒周围,起到隔离其交换耦合和限制晶粒长大双重作用;Si-N成分以非晶的形式存在于FePtSiN薄膜中;制备态的FePtSiN薄膜表现为fcc结构的软磁性能,矫顽力不高于20 Oe,当在700℃热处理1小时之后,室温下的矫顽力达到13.6 kOe,而100 K温度下的矫顽力高达17.5 kOe;FePtSiN复合薄膜的硬磁性机理和高矫顽力特性在很大程度上依靠Si-N的含量。
Novel properties such as giant magnetoresistance (GMR), giant Hall effect (GHE) and high coercivity have made ferromagnetic nanogranular films promising candidates for the applications of magnetic sensors, high density magnetic recording materials, read-out magnetic head and magnetic random access memory. Recently, magnetic granular films, consisting of nanoscale ferromagnetic grains dispersed in a non-magnetic carbon matrix, have received much attention due to their potential applications as high-resistive soft magnetic materials and giant magnetoresistance materials. In addition, L1_0 ordered FePt and CoPt films embedded in non-magnetic matrix have become the focuses in the field of ultra-high density magnetic recording medium and materials science.
     Various series of ferromagnetic nanocomposite films, including soft ferromagnetic carbon-based granular films (Co-C, Fe-C), hard ferromagnetic CoPt-C and FePt-SiN granular films were fabricated on Si(100) or glass substrates by dc magnetron sputtering. Their preparation, structure, magnetic properties, and transport properties were studied systemically. The main results are as follows:
     Firstly, the cobalt and carbon or graphite in the as-deposited films are in amorphous state, and the Co_xC_(1-x) films are diamond like carbon (DLC) films. The Co_xC_(1-x) films have smooth surface (Ra=0.152nm), homogeneous grain size and film thickness. The nano-sized amorphous Co particles were homogeneously dispersed in the amorphous cross-linked carbon matrix. After doping cobalt into DLC film, the sp~3-hybridized carbon content in DLC composite films almost had no change. The coercivity of Co_xC_(1-x) film is less than 180 Oe. The as-deposited Co_xC_(1-x) granular films with 80nm thickness had larger value of magnetoresistance than the amorphous carbon film. A very high positive MR, up to 36% at magnetic field B=5 T and x=2.5 at.% was observed in a Co_xC_(1-x) granular film at room temperature when the external magnetic field was perpendicular to the electric current and the film surface. With increase of the film thickness and Co-doped content, the MR decreased gradually. The MR effect of the Co_xC_(1-x) granular films may be interpreted by p-n heterojunction theory and interface scattering effect.
     Secondly, as-deposited Fe-doped amorphous Fe_xC_(1-x) granular films are also in amorphous state, and the Fe_xC_(1-x) films are diamond like carbon (DLC) films. After doping iron into DLC film, the Fe_xC_(1-x) films have smooth surface morphology and the surface roughness Ra is 0.231nm for x=18 at.%. Moreover, the sp~3-hybridized carbon content in DLC composite films increases with Fe doping. The Fe_xC_(1-x) films have good soft magnetic properties, the coercivity of only around 20 Oe was obtained. The as-deposited Fe_xC_(1-x) granular films with 160nm thickness have larger value of magnetoresistance. A very high positive MR, up to 93% with x=1 at.% was observed in a Fe_xC_(1-x) granular film at 300 K. The MR effect may be interpreted by two-channel electric conduction model. The model is in accordances with the experiment results.
     Thirdly, the CoPt in as-deposited CoPt-C films had face-centered cubic (fcc) structure, which transforms into the face-centered tetragonal (fct) structure after thermal annealing at 700°C. The as-deposited films have smooth surface morphology and the average grain size is about 23.5 nm. Carbon components have played important effect in grain refinement. The saturation magnetization increases firstly and then decreases with the increase of C concentration, about 1000 emu/cm3 with 15 at.% C. The coercivity of CoPt-C films is up to 4200 Oe measured at 300 K when the films are annealed at 700°C for 1h. It is the first time that the CoPt-C films exhibited negative MR effect about -1% at 2T.
     Finally, FePtSiN films consisting of FePt nanoparticles embedded in a Si-rich matrix were successfully fabricated on silicon substrate by dc reactive magnetron sputtering. The as-deposited films had fcc structure, which transforms into fct structure after thermal annealing at 600°C. The grain size of FePt increased with the annealing temperature but decreased with increasing Si-N content. Increasing Si content led to the formation of Si-N rich amorphous phase distributed between the FePt nano-grains, which reduced the lattice distortion and increased the coercivity. The fct-FePt films annealed at 700°C exhibited very high coercivity, up to 13.6 kOe at room temperature and about 17.5 kOe at 100 K. The high coercivity mechanism depends largely on Si-N concentration. These FePtSiN films with novel structure have shown promise for high density magnetic recording medium.
引文
[1] Baibich M.N., Broto J.M., Fert A., et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic suptterlittces [J]. Phys. Rev. Lett., 1988, 61: 2472-2475
    [2] Berkowitz A.E., Mitchell J.R., Carey M.J., et al. Giant magnetoresistance in heterogeneous Cu-Co alloys [J]. Phys. Rev. Lett., 1992, 68: 3745-3748
    [3] Xiao J.Q., Jiang J.S., Chien C.L.. Giant magnetoresistance in non-multilayer magnetic systems[J]. Phys. Rev. Lett., 1992, 68: 3749-3752
    [4] Von Helmolt R., Wecker J., Holzapfel B., et al. Giant negative magnetoresistance in perovskitelike La_(2/3)Ba_(1/3)MnO_x ferromagnetic films [J]. Phys. Rev. Lett., 1993, 71: 2331-2333
    [5] Miyazaki T., Tezaka N.. Giant magnetic tunneling effect in Fe/Al_2O_3/Fe junction [J]. J. Magn. Magn. Mater., 1995,139: L231-234
    [6] Brux U., Schneider T., Acet M., et al. Giant magnetoresistance in Cr_(100-x)Fe_x bulk granular alloys [J]. Phys. Rev. B, 1995, 52: 3042-4
    [7] Rosenbaum T.F., Milligan R.F., Thomas G.A.. Low-temperature magnetoresistance of a disordered metal[J]. Phys. Rev. Lett., 1981, 47: 1758-1761
    [8] Matsumoto Y., Murakami M., Shono T.. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide[J]. Science, 2001, 291(5505): 854-856
    [9] Chen P., Xing D.Y., Du Y.W.. Phys. Positive magnetoresistance from quantum interference effects in perovskite-type manganites [J]. Phys. Rev. B, 2001, 64: 104402-5
    [10] Schmidt G., Richter G., Grabs P.. Large magnetoresistance effects due to spin injection into a nonmagnetic semiconductor [J]. Phys. Rev. Lett., 2001, 87: 227203-4
    [11] Manyala N., Sidls Y., Ditusa J. F.. Magnetoresistance from quantum interference effects in ferromagnets [J]. Nature (London), 2000, 404: 581-584
    [12] Rata A.D., Kataev V., Khomskii D., et al. Giant positive magnetoresistance in metallic VOx thin films [J]. Phys. Rev. B, 2003, 68: 220403-4
    [13] Xu R., Husmann A., Rosenbaum T.F., et al. Large magnetoresistance in non-magnetic silver chalcogenides [J]. Nature (London), 1997, 390: 57-60
    [14] Chuprakov I.S., Dahmen K.H.. Large positive magnetoresistance in thin films of silver telluride[J]. Appl. Phys. Lett., 1998, 72: 2165-2167
    [15] Solin S.A., Thio T., Hines D.R., et al. Enhanced room-temperature geometric magneto- resistance in inhomogeneous narrow-gap semiconductors [J]. Science, 2000, 289:1530-1532
    [16] Akinaga H., Mizuguchi M., Ono K., et al. Room-temperature thousandfold magneto- resistance change in MnSb granular films: Magnetoresistive switch effect [J]. Appl. Phys. Lett., 2000, 76(3): 357-359
    [17] Akinaga H., Mizuguchi M.. Room-temperature photoinduced magnetoresistance effect in GaAs including MnSb nanomagnets[J]. Appl. Phys. Lett., 2000, 76: 2600-2602
    [18]张栋杰,都有为.磁性多层膜的正巨磁电阻特性[J].功能材料,2003,6:652-653
    [19]都有为.纳米材料中的巨磁阻效应[J].物理学进展,1997,17(2):180-199
    [20] Yang F.Y., Liu K., Hong K., et al. Large magnetoresistance of electrodeposited single-crystal bismuth thin films [J]. Science, 1999, 284 (5418): 1335-1337
    [21] Wang Z.M., Xu Q.Y., Ni G.., et al. Huge magnetoresistance and shubnikov-de hass effect in graphite [J]. Phys. Lett., A2003, 314: 328-331
    [22] Lebon A., Adler P., Bernhard C., et al. Magnetism, charge order, and giant magnetoresistance in SrFeO_3-δsingle crystals [J]. Phys. Rev. Lett., 2004, 92 (3): 037202-4
    [23] Kimura H., Fukumura T., Kawasaki M., et al. Rutile-type oxide-diluted magnetic semiconductor: Mn-doped SnO_2 [J]. Appl. Phys. Lett., 2002, 80(1): 94-96
    [24] Zhang D.J., Du Y.W.. Giant positive magnetoresistance in magnetic multilayer film prepared by ion-beam sputtering[J]. Chin. Phys. Lett., 2003, 20(6): 919-920
    [25] Ruster C., Borzenko T., Gould C., et al. Very large magnetoresistance in lateral ferromagnetic (Ga, Mn) As wires with nanoconstrictions[J]. Phys. Rev. Lett., 2003, 91(21): 216602-4
    [26] Cai J.Z., Lu L., Kong W.J., et al. Pressure-induced transition in magnetoresistance of single-walled carbon nanotubes[J]. Phys. Rev. Lett., 2006, 97(2): 26402-4
    [27] Waldron D., Haney P., Larade B., et al. Nonlinear spin current and magnetoresistance of molecular tunnel junctions[J]. Phys. Rev. Lett., 2006, 96(16): 166804-4
    [28] Thamankar R., Niyoai S., Yoo B.Y., et al. Spin-polarzed transport in magnetically assembled carbon nanotube spin valves [J]. Appl. Phys. Lett., 2006, 89(3): 033119-3
    [29] Terabe K., Hasegawa T., Nakayama T., et al. Quantized conductance atomic switch [J]. Nature, 2005, 433: 47-50
    [30] Pop E., Mann D., Cao J., et al. Negative differential conductance and hot phonons in suspended nanotube molecular wires[J]. Phys. Rev. Lett., 2005, 95(15): 155505-4
    [31] Hueso L.E., Pruneda J.M., Ferran V., et al. Transformation of spin information into large electrical signals using carbon nanotubes[J]. Nature, 2007, 445: 410-413
    [32] Isberg J., Hammersberg J., Johansson E., et al. High crrier mobility in single-crystal plasma-deposited diamond[J]. Science, 2002, 297(5587): 1670-1672
    [33] Novoselov K.S., Geim A.K., Morozov S.V., et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669
    [34] Bhattacharyya S., Henley S.J., Mendoza E., et al. Resonant tunneling and fast switching in amorphous-carbon quantum-well structures[J]. Nature Materials, 2006, 5: 19-22
    [35] He J., Chen B., Flatt A.K., et al. Metal-free silicon-molecule-nanotube testbed and memory device[J]. Nature Materials, 2006, 5: 63-68
    [36] Amaratunga G.A.J..A dawn for carbon electronics[J].Science, 2002,297(5587):1657-1658
    [37] Weller D., Moser A., Folks L., et al. High Ku materials approach to 100 Gbits/in2[J]. IEEE Trans. Magn., 2000, 36(1): 10-15
    [38] Barmak K., Kim J., Shell S., et al. Calorimetric studies of the A1 to L10 transformation in FePt and CoPt thin films[J]. Appl. Phys. Lett., 2002, 80(22): 4268-4270
    [39] Takahashi Y.K., Ohkukbo T., Ohuma M., et al. Size effect on the ordering of FePt granular films [J]. J. Appl. Phys., 2003, 93(10): 7166-7168
    [40] Miyazaki T., Kitakami O., Okamoto S., et al. Size effect on the ordering of L10 FePt nanoparticles[J]. Phys. Rev. B, 2005, 72(14): 144419-144423
    [41] Shima T., Takanashi K., Takahashi Y.K., et al. Coercivity exceeding 100 kOe in epitaxially grown FePt sputtered films [J]. Appl. Phys. Lett., 2004, 85(13): 2517-2573
    [42] Yin J.H.,Singh A.K.,Suzuki T., et al. Recording Performance of granular-type FePt-MgO Perpendicular media [J]. IEEE Trans. Magn., 2005, 41(10): 3208-3210
    [43] Sun C.J., Chow G.M., Wang J.P.. Epitaxial Ll(0) FePt magnetic thin films sputtered on Cu(001) [J]. Appl. Phys. Lett., 2003, 82(12): 1902-1904
    [44] Nefedov A., Sehmitte T., Theis-Brohl K., et al. Growth and structure of Ll(0) ordered FePt films on GaAs(001) [J]. J. Phys-Condens. Mat., 2003, 14(47): 12273-12286
    [45] Xu Y.F., Chen J.S., Wang J.P.. In situ ordering of FeP tthin films with face-centered-tetragonal (00l) texture on Cr100-xRux underlayer at low substrate temperature [J]. Appl. Phys. Lett., 2002, 80(18): 325-3327
    [46] Maeda T.. Fabrieation of highly(001) oriented Ll(0) FePt thin film using NiTa seed layer [J]. IEEE Trans. Magn., 2005, 41(10): 3331-3333
    [47] Yan M.L., Zeng H., Powers N., et al. Ll(0), (001)-oriented FePt:B_2O_3 composite films for Perpendicular recording[J]. J. Appl. Phys., 2002, 91(10): 8471-8473
    [48] Luo C.P., Liou S.H., Sellmyer D.J.. FePt:Si02 granular thin film for high density magnetic recording[J]. J. Appl. Phys., 2000, 87(9): 6941-6943
    [49] Maeda T., Kai T., kikitsu A., et al. Reduction of ordering temperature of an FePt-ordered alloy by addition of Cu[J]. Appl. Phys. Lett., 2002, 80(12): 2147-2149
    [50] Kang K., Zhang Z.G., Papusoi C., et al. (001) oriented FePt-Ag composite nanogranular films on amorphous substrate[J]. Appl. Phys. Lett., 2003, 82(19): 3284-3286
    [51] Perumal A., Ko H.S., Shin S.C.. Magnetie Properties of carbon-doped FePt nanogranular films[J]. Appl. Phys. Lett., 2003, 83(16): 3326-3328
    [52] Kaushik N., Sharma P., Nagar S., et al. Exchange-coupled FePtB nano-composite hard magnets produced by pulsed laser deposition[J]. Mater. Sci. Eng. B, 2010, 171: 62-68
    [53] Wang H.Y., Mao W.H., Ma X.K., et al. Improvement in hard magnetic properties of FePt films by N addition [J]. J. Appl. Phys., 2004, 95(5): 2564-2568
    [54] Zhao Z.L., Ding J., Inaba K., et al. Promotion of Ll(0) ordered Phase transformation by the Ag top layer on FePt thin films[J]. Appl. Phys. Lett., 2003, 83(11): 2196-2198
    [55] Yuan F.T., Chen S.K.,Chang W.C.,et al. Effect of Au cap layer on the magnetic Properties and the microstructure for FePt thin films[J]. Appl. Phys. Lett., 2004, 85(15): 3163-3165
    [56] Lai C.H., Yang C.H., Chiang C.C.. Ion-irradiation-induced direct ordering of L1(0) FePt Phase[J]. Appl. Phys. Lett., 2003, 83(22): 4550-4552
    [57] Saita S., Maenosono S.. Chemical ordering of FePt nanoparticles by Pulsed laser annealing[J]. J. Phys-condens. Mat., 2004, 16(36): 6385-6394
    [58] Wang H.Y., Ma X.K., He Y.J., et al. Enhancement in ordering of FePt films by magnetic fleld annealing [J]. Appl. Phys. Lett., 2004, 85(12): 2304-2306
    [59] Bai J., Yang Z., Wei F., et al. Nano-composite FePt-Al2O3 films for high-density magnetic recording [J]. J. Magn. Magn. Mater., 2003, 257: 132-137
    [60] Luo C.P., Liou S.H., Gao L., et al. Nanostructured FePt:B2O3 thin films with perpendicular magnetic anisotropy [J]. Appl. Phys. Lett., 2000, 77(14): 2225-2227
    [61] Chen J.S., Huang L.S., Hu J.F., et al. FePt-C graded media for ultra-high density magnetic recording [J]. J. Phys. D: Appl. Phys., 2010, 43: 185001-5
    [62] Liu Y., Tan C.Y., Liu Z.W., et al. FeCoSiN film with ordered FeCo nanoparticles embedded in a Si-rich matrix [J]. Appl. Phys. Lett., 2007, 90: 112506-3
    [63] Parkin S.S.P., More N, Roche K.P.. Oscillations in exchange coupling and magnetore- sistance in metallic superlattice structure:Co/Ru, Co/Cr, and Fe/Cr [J]. Phys. Rev. Lett., 1990, 64: 2304-2307
    [64]卢正启,柴春林,赖武彦.两步法制备的自旋阀巨磁电阻效应研究[J].物理学报, 2000,49:328-333
    [65]扬涛,赖彦武.NiMn/NiFe双层膜中的交换耦合及其热稳定性[A].第十界全国磁学和磁性材料会议论文集[C].北京.1999,155-156
    [66]邱进军,卢志红,梁建等.NiFe/Co/Cu/Co结构GMR自旋阀效应及Co夹层的影响研究[J].功能材料,1999,30(3):258-259
    [67] Thangaraj N., Echer C., Krishman K.M., et al. Giant magnetoresistance and microstructural characteristics of epitaxial Fe-Ag granular thin films [J]. J. Appl. Phys., 1994, 75: 6900-6950
    [68] Sousa J.B., Azevedo M.M.P., Rogalski M.S., et al. GMR in high fluence ion implanted granular thin films [J]. J. Magn. Magn. Mater., 1999,196-197: 13-17
    [69] Hylton T., Coffey K.R., Parker M.A., et al. Giant magnetoresistance at low fields in discontinous NiFe-Ag mutilayer thin films [J]. Science, 1993, 261: 1021-1024
    [70] Holody P., Soren L.B., Morel R., et al. Giant magnetoresistance in hybrid magnetic nanostructures including both layers and clusters[J]. Phys.Rev.B, 1994, 50(17):12999-13002
    [71] Jin S., Tiefel T.H., Mccormack M., et al. Colossal magnetoresistance in La-Ca-Mn-O ferromagnetic thin films [J]. J. Appl. Phys., 1994, 76: 6929-6933
    [72] Kataoka N., Kim I.J., Takeda H., et al. Giant magnetoresistance of Cu-Co-X alloys produced by liquid quenching [J]. Mater. Sci. Eng., 1994, A181/A182: 888-891
    [73] Berkowitz A.E., Parker F.T., Rao D.. Exchange interactions among ferromagnetic cluster in Cu-Co heterogeneous alloy films [J].J. Appl. Phys., 1994, 75(10): 6622-6625
    [74] Parkin S.S.P., Marks R.F., Farrow R.F.C., et al. Giant magnetoresistance and enhanced antiferromagnetic coupling in highly oriented Co/Cu(111) superlattices [J]. Phys. Rev. B, 1992, 46: 9262-9265
    [75] Li M.F., Wong K.H.. Giant positive magnetoresistance of Ti/Si based films prepared by pulsed laser deposition[J]. J. Magn. Magn. Mater., 1999, 196: 31-32
    [76] Robertson J.. Amorphous carbon [J]. Adv. Phys., 1986, 35(4): 317-374
    [77] Kaburagi Y., Hishiyama Y.. Electronic properties of kish graphite crystals with low values of residual resistivity ratio [J]. Carbon, 1998, 36(11): 1671-1676
    [78] Hishiyama Y., Irumano H., Kaburagi Y.. Structure, Raman scattering, and transport properties of boron-doped graphite [J]. Phys. Rev. B, 2001, 63: 245406
    [79] Van Schaijk R.T.F.,De Visser A., Ionov S.G., et al. Magnetotransport in carbon foils fabricated from exfoliated graphite [J]. Phys. Rev. B, 1997, 57(15): 8900-8906
    [80] Dujardin E., Thio T.. Fabrication of mesoscopic devices from graphite microdicks[J]. Appl. Phys. Lett., 2001, 79(15): 2474-2476
    [81] Pakhomov A.B., Zhang X.X., Liu H., et al. Magnetoresistance in arrays of fine graphite powders with nearest-neighbor tunneling conduction [J]. Physica B, 2000, 279: 41-44
    [82] Endo M., Hishiyama Y., Koyama T.. Magnetoresistance effect in graphitizing carbon fibers prepared by benzene decomposition[J]. J. Phys. D: Appl. Phys., 1982, 15: 353-363
    [83] Mott N.F.. The resistance and thermoelectric properties of the transition metals[J]. Proc. Roy. Soc., 1936, 156: 368-382
    [84] Campbell I.A., Fert A.. Ferromagnetic Materials, ed. E.P.Wohlfarth (North Holland, Amsterdam,1982), 3: 747
    [85] Farrell T., Greig D.. The electrical resistivity of nickel and its alloys[J]. J.Phys. C: Solid State Phys., 1968, 1(5): 1359
    [86] Gurney B.A., Speriosu V.S., Nozieres J.P., et al. Direct measurement of spin-dependent conduction-electron mean free paths in ferromagnetic metals [J]. Phys. Rev. Lett., 1993, 71(24): 4023-4026
    [87] Charap S.H., Liu P.L., He Y.. Thermal stability of recorded information at high densities[J]. IEEE Trans. Magn., 1997, 33: 978-983
    [88] Xu Y.F., Shan Z.S., Wang J.P., et al. Magnetic and reversal properties of HCP-CoCrPt:Cgranular films with CrTi underlayer[J]. J. Magn. Magn. Mater., 2001, (2): 103-113
    [89] Li J., Liu C.Y., Zhao B.G., et al. Structures and properties of Fe-C fine particles prepared by AC arc discharge[J]. J. Magn. Magn. Mater., 1999, (195): 470-475
    [90] Delaunay J.J., Hayashi T., Tomita M., et al. Co-sputtered thin films consisting of Cobalt nano-grains embedded in graphite-like carbon and their magnetic properties [J]. Jpn. J. Appl. Phys., 1997, (36): 7801-7804
    [91] Delaunay J.J., Hayashi T., Tomita M., et al. Formation and microstructural analysis of co-sputtered thin films consisting of cobalt nanograins embedded in carbon [J]. J. Appl.Phys., 1997, 82(5): 2200-2208
    [92] Zhu D.D., Zhang X., Xue Q.Z.. Anomalous positive magnetoresistance in Co_x-C_(1-x) granular films on Si substrates [J], J. Appl. Phys., 2004, 95:1906
    [93] Chen S.C., Kuo P.C., Sun A.C., et al. Granular FePt-Ag thin films with uniform FePt particle size for high-density magnetic recording[J]. Mater. Sci. Eng. B, 2002, 88: 91-97
    [94] Konno T.J., Shoji K., Sumiyama K., et al. Structure and magnetic properties of co-sputtered Co-C thin films [J]. J. Magn. Magn. Mater., 1999, 195(1): 9-18
    [95] Konno T.J., Ogawa N.,Wakoh K., et al. Structure and magnetic properties of Fe/EuO granular films[J]. Mater.Sci.Eng.A, 1996, (217/218): 331-335
    [96] Sun C.Q.. Oxidation electronics:bond–band–barrier correlation and its applications[J]. Prog. Mater. Sci., 2003, (48): 521-685
    [97] Christodoulides J.A., Shevchenko N.B., Hadjipanayis G.C., et al. Effect of preparation conditions on the hysteresis behavior of granular Fe-SiO2 [J]. J. Magn. Magn. Mater., 1997, (166): 283-289
    [98] Tomoyuki M., Tadashi K., Akira K., et al. Reduction of ordering temperature of an FePt-ordered alloy by addition of Cu [J]. Appl. Phys. Lett., 2002, (80): 2147-2149
    [99] Stavroyiannis S., Panagiotopoulos I., Niarchos D., et al. Investigation of CoPt/M (M= Ag,C)films for high density recording media [J]. J. Magn. Magn. Mater., 1999, (193):181-184
    [100] Mccary R.. Saturation magnetic recording process [J]. IEEE Trans. Magn., 1971, 7(1): 4-16
    [101] Thompson D.A., Best J.S.. The future of magnetic data storage technology[J]. IBM J. Res. Develop., 2000, 44 (3): 311-322
    [102]白建民.超高密度磁记录介质用磁性薄膜的研究[D].兰州:兰州大学,2002
    [103]单荣.铁磁/反铁磁双层膜中矫顽力及磁性多层膜中垂直磁各向异性的研究[D].上海:复旦大学,2005
    [104]杨正,磁记录物理[M].兰州:兰州大学出版社,1986
    [105] Grundy P.J.. Thin film magnetic recording media [J]. J. Phys. D: Appl. Phys., 1998, 31: 2975- 990
    [106] Jeong S.. Strueture and magnetic Properties of Polycrystalline FePt and CoPt thin films for high density recording media [D]. 2002,PA:Camegie Mellon University
    [107] Shick A.B., Mryasov O.N.. Coulomb correlations and magnetic anisotropy in ordered Ll(0) CoPt and FePt alloys [J]. Phys. Rev. B, 2003, 67(17): 172407
    [108] Ravindran P., Kjekshus A., Fjellvag H., et al. Large magnetocrystalline anisotropy in bilayer transition metal phases from first-Principles full-potential calculations [J]. Phys. Rev. B, 200l, 63(14): 144409
    [109]Sun S., Murray C.B., Weller D., et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices [J]. Science, 2000, 287: 1989-1992
    [110] Coffey K.R., Parker M.A., Howard J.K.. High anisotropy L10 thin films for longitudinal recording[J]. IEEE Trans.Magn., 1995, 31: 2737-2739
    [111] Ristau R.A., Barmak K., Lewis L.H., et al. On the relationship of high coercivity and L10 ordered phase in CoPt and FePt thin films [J]. J. Appl. Phys., 1999, 86: 4527-4533
    [112] Visokay M.R., Sinclair R.. Direct formation of ordered CoPt and FePt compound thin-films by sputtering[J]. Appl. Phys. Lett., 1995, 66: 1692-1694
    [113] Farrow R.F.C., Weller D., Marks R.F., et al.Control of the axis of chemical ordering and magnetic anisotropy in epitaxial FePt films [J]. J. Appl. Phys.,1996, 79: 5967-5969
    [114] Wang H.Y., Mao W.H., Sun W.B., et al. High coercivity and small grains of FePt films annealed in high magnetic fields[J]. J. Phys.D:Appl. Phys., 2006, 39: 1749-1753
    [115] Rhen F.M.F., Coey J.M.D.. Electrodeposition of coercive L10 FePt magnets[J]. J.Magn. Magn. Mater., 2010, 322: 1572-1575
    [116] Lee S.R., Yang S., Kim Y.K., et al. Rapid ordering of Zr-doped FePt alloy films [J]. Appl. Phys. Lett., 2001, 78(25): 4001-4003
    [117] Endo Y., Kikuchi N., Kitakami O., et al. Lowering of ordering temperature for fct Fe-Ptin Fe/Pt multilayers [J]. J. Appl. Phys., 2001, 89(11): 7065
    [118] Suzuki T., Ouchi K.. Sputter-deposited (Fe-Pt)-MgO composite films for perpendicular recording media [J]. IEEE Trans. Magn., 2001, 37(4): 1283
    [119] Na K.H., Na J.G.., Kim H.J., et al. Microstructure and magnetic properties of oxidized FePt films with high rate order-disorder transformation [J]. IEEE Trans. Magn., 2001, 37(4): 1312
    [120] Na K.H., Na J.G.., Kim H.J., et al. Surface topology and magneitc properties of FePt alloyed thin films [J]. IEEE Trans. Magn., 2001, 37(4): 1302
    [121] Farrow R.F.C., Weller D., Marks R.F., et al. Growth temperature dependence of long-range alloy order and magnetic Properties of epitaxial FexPtl-x(x similar or equal to 0.5) films [J]. Appl. Phys.Lett., 1996, 69(8): 1166-1168
    [122] Cebollada A., Weller D., Sticht J., et al. Enhanced magnetooptical Kerr-effect in spontaneously ordered FePt alloys-Quantitative agreement between theory and experiment [J]. Phys. Rev. B, 1994, 50: 3419-3422
    [123] Hsu Y.N., Jeong S., Laughlin D.E., et al. Effects of Ag underlayers on the microstructure and magnetic properties of epitaxial FePt thin films [J]. J. Appl. Phys., 2001, 89: 7068-7070
    [124] Xu Y.F., Chen J.S., Wang J.P.. In situ ordering of FePt thin films with face-centered- tetragonal (001) texture on Cr100-xRux underlayer at low substrate temperature[J]. Appl.Phys. Lett., 2002, 80: 3325-3327
    [125] Shen W.K., Judy J.H., Wang J.P.. In situ epitaxial growth of ordered FePt (001) films with ultra small and uniform grain size using a RuAl underlayer [J]. J. Appl. Phys., 2005, 97: 10H301
    [126] Cao J.W., Cai J., Liu Y., et al. Effect of CrW underlayer on structural and magnetic properties of FePt thin films [J]. J. Appl. Phys., 2006, 99: 08F901
    [127]Tsuji Y., Noda S., Yamaguchi Y. Structure and magnetic property of c-axis oriented L10-FePt nanoparticles on TiN/a-Si underlayers [J]. J. Vac. Sci. Technol. B 2007, 25: 1892-1895
    [128] Moser A., Takano K., Margulies D.T., et al. Magnetic recording: advancing into the future [J]. J. Phys. D-Appl. Phys., 2002, 35: 157-167
    [129]Zeng H., Yan M.L., Powers N., et al. Orientation-controlled nonepitaxial LI(0) CoPt and FePt films [J]. Appl. Phys. Lett., 2002, 80(13): 2350-2352
    [130] Yan M.L., Xu Y.F., Li X.Z., et al. Highly (001)-oriented Ni-doped L10 FePt films and their magnetic properties[J]. J. Appl. Phys., 2005, 97(10): 10H309-3
    [131] Shao Y., Yan M.L., Sellmyer D. J.. Effects of rapid thermal annealing on nanostructure, texture and magnetic properties of granular FePt:Ag films for perpendicular recording [J]. J. Appl. Phys., 2003, 93(10): 8152-8154
    [132] Yang F.J., Wang H., Wang H.B., et al. Microstructure evolution,magnetic and mechanical properties of FePt/B4C multifunctional multilayer composite films [J]. J. Phys. D-Appl.Phys., 2007, 40: 6735-6739
    [133] George T.A., Li Z., Yan M.L., et al. Nanostructure and magnetic properties of L10 FePt:X films [J]. J. Appl. Phys., 2008, 103(7): 07D502-3
    [134] Wu Y.C., Wang L.W., Lai C.H., et al. Control of microstructure in(001)-orientated FePt-SiO_2 granular films [J]. J. Appl. Phys., 2008,103(7): 07E140-3
    [135] Wu Y.C., Wang L.W., Rahman, M.T., et al. Evolution of granular to particulate structure of (001)FePt on amorphous substrates [J]. J. Appl. Phys., 2008, 103(7): 07E126-6
    [136] Li Y.B., Lou Y.F., Zhang L.R.,et al. Effect of magnetic field annealing on microstructure and magnetic properties of FePt films [J]. J. Magn. Magn. Mater., 2010, 322: 3789-3791
    [137] Kim J.S., Koo Y.M., Lee B.J., et al.The origin of (001) texture evolution in FePt thin films on amorphous substrates [J]. J. Appl. Phys., 2006, 99: 053906
    [138] Kim J.S., Koo Y.M., Shin N.. The effect of residual strain on (001) texture evolution in FePt thin film during postannealing [J]. J. Appl. Phys., 2006, 100: 093909
    [139] Ichitsubo T., Tojo S., Uchihara T., et al. Mechanism of c-axis orientation of L10 FePt in nanostructured FePt/B2O3 thin films [J]. Phys. Rev. B, 2008, 77: 094114
    [140] Victora R.H., Xue J.H., Patwari M. Areal density limits for perpendicular magnetic recording [J]. IEEE Trans. Magn., 2002, 38: 1886-1891
    [141] Kuo C.M., Kuo P.C.. Magnetic properties and microstructure of FePt-Si_3N_4 nanocomposite thin films[J]. J. Appl. Phys., 2000, 87:419-426
    [142] Dai Z.R., Sun S.H., Wang Z.L. Phase transformation, coalescence, and twinning of monodisperse FePt nanocrystals[J]. Nano Lett., 2001, 1: 443-447
    [143] Kuo C.M., Kuo P.C., Hsu W.C., et al. Effects of W and Ti on the grain size and coercivity of Fe50Pt50 thin films [J]. J. Magn. Magn. Mater., 2000, 209:100-102
    [144] Ko H.S., Perumal A., Shin S.C. Fine control of L10 ordering and grain growth kinetics by C doping in FePt films [J]. Appl. Phys. Lett., 2003, 82(14): 2311-2313
    [145] Liu C.,Wu X.W., Klemmer T., et al. Reduction of sintering during annealing of FePt nanoparticles coated with iron oxide [J]. Chem. Mat., 2005, 17: 620-625
    [146] Zeng H., Li J., Wang Z.L., et al. Bimagnetic core/shell FePt/Fe3O4 nanoparticles[J]. Nano Lett., 2004, 4:187-190
    [147] Chen M.P., Kuroishi K., Kitamoto Y. Magnetic properties and microstructure of isolated Fe-Pt nanoparticle-monolayer assembly by protective coating [J]. IEEE Trans. Magn., 2005, 41: 3376-3378
    [148] Lee D.C., Mikulec F.V., Pelaez J.M., et al. Synthesis and magnetic properties of silica-coated FePt nanocrystals [J]. J. Phys. Chem. B, 2006, 110:11160-11166
    [149] Mizuno M., Sasaki Y., Yu A.C.C., et al. Prevention of nanoparticle coalescence under high-temperature annealing[J]. Langmuir Acs J. Surf. Coll., 2004, 20(26): 11305-11307
    [150] Elkins K., Li D., Poudyal N., et al. Monodisperse face-centred tetragonal FePt nanoparticles with giant coercivity[J]. J. Phys. D:Appl. Phys., 2005, 38: 2306-2309
    [151] Ping D.H., Ohnuma M., Hono K., et al. Microstructures of FePt-Al-O and FePt-Ag nanogranular thin films and their magnetic properties [J]. J. Appl. Phys., 2001, 90: 4708-4716
    [152] Takahashi Y.K., Ohkubo T., Ohnuma M., et al. Size effect on the ordering of FePt granular films[J]. J. Appl. Phys., 2003, 93: 7166-7168
    [153] Takahashi Y.K., Koyama T., Ohnuma M., et al. Size dependence of ordering in FePt nanoparticles[J]. J. Appl. Phys., 2004, 95: 2690-2696
    [154] Miyazaki T., Kitakami O., Okamoto S., et al. Size effect on the ordering of L10 FePt nanoparticles[J]. Phys. Rev. B, 2005, 72: 144419
    [155]Shima T., Takanashi K., Takahashi Y.K., et al. Coercivity exceeding 100 kOe in epitaxially grown FePt sputtered films [J]. Appl. Phys. Lett., 2004, 85: 2571-2573
    [156]Kanai Y., Matsubara R.,Watanabe H., et al. Recording field analysis of narrow-track SPT head with side shields,tapered main pole, and tapered return path for 1 Tb/in2 [J]. IEEE Trans. Magn., 2003, 39:1955-1960
    [157]Takahashi N., Akiyama K., Miyagi D., et al. Advanced optimization of standard head model with higher writing field and higher field gradient using 3-D ON/OFF method [J]. IEEE Trans.Magn., 2008, 44: 966-969
    [158] Osaka T., Sayama J.. A challenge of new materials for next generation's magnetic recording [J]. Electrochimica Acta, 2007, 52:2884-2890
    [159]Rottmayer R.E., Batra S., Buechel D., et al. Heat-assisted magnetic recording[J]. IEEE Trans. Magn., 2006, 42:2417-2421
    [160] Zhang Y.J., Yang Y.T., Liu Y., et al. Effects of annealing temperature, atomic composition, film thichness on structure and magnetic properties of CoPt composite films [J]. J. Alloys Compd., 2011, 509: 326-331
    [161] Ohd Y., Park J.K.. Crystallographic texture and angular dependence of coercivity of ordered CoPt thin film[J]. J. Appl. Phys., 2005, 97: 10H304
    [162] Zhao Z.L., Ding J., Inaba K., et al. Promotion of L10 ordered phase transformation by the Ag top layer on FePt thin films [J]. Appl. Phys. Lett., 2003, 83: 2196-2198
    [163] Liao W.M., Lin Y.P., Yuan F.T., et al. Ordering enhancement of Cu underlayer on CoPt thin films[J]. J Magn. Magn. Mater., 2004, 272-276: 2175-2177
    [164] Xu X.H., Yang Z.G., Wu H.S.. A High (001)-oriented CoPt/Ag Film Deposited on Glass Substrate [J]. J Magn. Magn. Mater., 2005, 295: 106-109
    [165] Karansos V., Panagiotopoulos I., Niarchos D., et al. CoPt:B granular thin films for high density magnetic recording media [J]. J Magn. Magn. Mater., 2001,236(1-2): 234-241
    [166] Xu Y., Sun Z.G., Qiang Y., et al. Preparation and magnetic properties of CoPt and CoPt: Ag nanocluster films [J]. J. Magn. Magn. Mater., 2003, 266: 164-170
    [167] Kitakami O., Shimada Y., Oikawa K., et al. Low-temperature ordering of L10-CoPt thin films promoted by Sn, Pb, Sb, and Bi additives[J]. Appl. Phys. Lett., 2001, 78(8): 1104-1106
    [168] Panagiotopoulos I., Stavroyiannis S., Nlarchos D., et al. Granular CoPt/C films for high-density recording media [J]. J. Appl. Phys., 2000, 87: 4358-4361
    [169] Hang Y.H., Zhang Y., Hadjipanayis G. C., et al. Hysteresis Behavior of CoPt Nanoparticles [J]. IEEE Trans. Magn., 2002, 38: 2604-2606
    [170] Christodoulides J.A., Huang Y., Zhang Y., et al. CoPt and FePt thin films for high density recording media[J]. J. Appl. Phys., 2000, 87: 6938-6940
    [171] Wang A.L., Li T., Zhou Y.S., et al. Structural and magnetic properties of nanogranular Co-Pt/C films [J].Thin Solid Films, 2003, 445: 127-130
    [172] Oh D.Y., Park J.K.. Effect of microstructure on the magnetic properties of L10 CoPt-20 at.% C magnetic thin film[J]. J. Appl. Phys., 2003, 93: 7756-7758
    [173] Ohring M.. Materials science of thin films: deposition and structure [M], second edition, Academic Press, 1999
    [174]吴自勤,王兵著.薄膜生长[M].北京:科学出版社,2001:1-419
    [175]郑伟涛.薄膜材料与薄膜技术[M].北京:化学工业出版社,2008
    [176]梁敬魁.粉末衍射法测定晶体结构(上、下册)[M].北京:科学出版社,2003
    [177]周玉,武高辉.材料分析测试技术:材料X射线衍射与电子显微分析[M].黑龙江:哈尔滨工业大学出版社,1998
    [178]章晓中.电子显微分析[M].北京:清华大学出版社,2006
    [179] Zhang W.L., Xia Y.B., Ju J.H., et al. Raman analysis of laser annealed nitrogen doped amorphous carbon film[J]. Solid State Commun., 2002, 123 (3-4): 97-100
    [180]周世昌.磁性测量[M].北京:电子工业出版社,1994:1-175
    [181]陆架和,陈长彦.现代分析技术[M].北京:清华大学出版社,1995:1-309
    [182] Asakura S., Ishio S., Okada A., et al. Magnetic domain percolation of Cox(SiO2)100?x granular films[J]. J. Magn. Magn. Mater., 2002, 240: 485
    [183] Tian P., Zhang X., Xue Q.Z.. Enhanced room-temperature positive magnetoresistance of a-C:Fe film [J]. Carbon, 2007,45:1764
    [184] Xue Q.Z., Zhang X.. Anomalous electrical transport properties of amorphous carbon films on Si substrate [J]. Carbon, 2005, 43:760
    [185] Wan S.H., Wang L.P., Xue Q.J.. An electrochemical strategy to incorporate iron into diamond like carbon films with magnetic properties [J]. Electrochem. Commun., 2009, 11: 99
    [186] Konno T.J., Sinclair R.. Crystallization of co-sputtered amorphous cobalt-carbon alloys [J]. Acta Metall. Mater., 1994, 42:1231
    [187] Hayashi T., Hirono S., Tomita M., et al. Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon [J]. Nature, 1996, 381:772
    [188] Mi W.B., Guo L., Jiang E.Y., et al. Structure and magnetic properties of facing-target sputtered Co-C granular films [J]. J. Phys. D: Appl. Phys., 2003, 36:2393
    [189] Ferrari A.C., Robertson J.. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys. Rev. B, 2000, 61:14095
    [190] Ferrari A.C.. Raman spectroscopy of grapheme and graphite: disorder, electron-phone coupling, doping and nonadiabatic effects [J]. Solid State Commun., 2007,143(1-2): 47-57
    [191] Riedo E., Comin F., Chevrier J., et al. Structural properties and surface morphology of laser-deposited amorphous carbon and carbon nitride films [J]. Surf. Coat. Technol., 2000, 125: 124
    [192] Yu M., Liu Y., Sellmyer D.J.. Structural and magnetic properties of nanocomposite Co:C films[J]. J. Appl. Phys., 1999, 85 (8): 4319
    [193] Li M. F., Shi J., Nakamura Y., et al. Magnetoresistance of nanocrystalline Co-AlN films [J]. Appl. Phys. A, 2007, 89(3): 807-812
    [194] Cullity B.D., Graham C.D.. Introduction to magnetic materials[M]. (Hoboken, New Jersey: IEEE/Wiley, 2009) p.360
    [195]李正,白海洋,赵德乾,等.永磁性Pr55Al12Fe30Cu3大块金属玻璃[J].物理学报, 2003,52(3):652-655
    [196] Zhang J., Luo J.L., Bai H.Y., et al. Low temperature specific heat on bulk amorphous Zr-Ti-Cu-Ni-Be alloy[J]. Acta Phys. Sin-ch ed., 2001, 50(9): 1747-1750
    [197]黄智,白海洋,景秀年,等.非晶合金中的低温电阻率极小行为研究[J].物理学报,2004,53(10):3457-3461
    [198]卢博斯基.非晶态金属合金[M].柯成,唐与谌,罗阳,等译.北京:冶金工业出版社,1989
    [199]郭贻诚,王震西.非晶态物理学[M].北京:科学出版社,1984
    [200] Tang J., Dai J., Wang K., et al. Current-controlled channel switching and magnetoresistance in an Fe3C island film supported on a Si substrate [J]. J. Appl. Phys., 2002, 91: 8411-8413
    [201] Haerle R., Riedo E., Pasquarello A., et al. sp2/sp3 hybridization ratio in amorphous carbon from C 1s core-level shifts: X-ray photoelectron spectroscopy and first-principles calculation[J]. Phys. Rev. B, 2002, 65:045101-9
    [202] Mi W.B., He F., Li Z.Q., et al. Structure and magnetic properties of N-doped Fe–C granular films[J]. J. Phys. D: Appl. Phys., 2006, 39:911–916
    [203]米文博.磁性纳米颗粒薄膜的微观结构、磁性质和输运特性[D].博士学位论文,天津大学,2005
    [204] Dieny B., Speriosu V.S., Parkin S.S.P., et al. Giant magnetoresistive in softferromagnetic multilayers [J]. Phys. Rev. B, 1991, 43(1): 297-300
    [205] Garcia N., Munoz M., Qian G.G., et al. Ballistic magnetoresistance in a magnetic nanometer sized contact: an effective gate for spintronics [J]. Appl. Phys. Lett., 2001, 79(27): 4550-2
    [206]薛庆忠.过渡金属-碳复合材料和复合纳米薄膜的磁电阻和电输运特性[D].博士学位论文,清华大学,2004
    [207] Yu H.F., Lin H.Y.. Preparation and thermal behavior of aerosol-derived BaFe12O19 nanoparticles[J]. J Magn. Magn. Mater., 2004, 283(2-3):190
    [208] Yokota T., Gao L., Liou S.H., et al. Effect of Au spacer layer on L10 phase ordering temperature of CoPt thin films[J]. J. Appl. Phys., 2004, 95(11):7270
    [209] Du X.Y., Inokuchi M., Toshima N.. Preparation and characterization of Co-Pt bimetallic magnetic nanoparticles[J]. J. Magn.Magn. Mater., 2006, 299:21
    [210] Delaunay J.J., Hayashi T., Tomita M., et al. CoPt-C nanogranular magnetic thin films [J]. Appl. Phys. Lett., 1997, 71(23):3427
    [211] Yu M., Liu Y., Sellmyer D.J.. Nanocomposite CoPt:C films for extremely high-density recording[J]. Appl. Phys. Lett., 1999, 75:3992-3994
    [212] Shih J.C., Hsiao H.H., Tsai J.L., et al. Low temperature in-situ growth of high coercivity FePt films [J]. IEEE Trans. Magn., 2001, 37:1280-1282
    [213] Yao B., Coffey K.R.. Quantification of L10 phase volume fraction in annealed [Fe/Pt]n multilayer films [J]. J. Appl. Phys., 2009, 105: 033901-8
    [214] Maeda T., Kikitsu A., Kai T., et al. Effect of added of Cu on disorder-order transformation of L10-FePt [J]. IEEE Trans. Magn., 2002, 38(5): 2796-2798
    [215] Bian B., Laughlin D.E., Sato K., et al. Fabrication and nanostructure of oriented FePt particles[J]. J. Appl. Phys., 2000, 87: 6962-6964
    [216] Lide D.R.. CRC handbook of chemistry and physics[M]. 87th ed., Internet version (CRC, Boca Raton, FL, 1998)
    [217] Warren B.E.. X-Ray diffraction [M]. New York: Dover, 1990, p. 208
    [218] Chen Y.F., Jiang E.Y., Li Z.Q., et al. Structure and magnetic properties of RF sputtered Fe-N films [J]. J. Phys. D: Appl. Phys., 2004, 37: 1429-1433
    [219] Ulmeanu M., Antoniak C., Wiedwald U., et al. Composition-dependent ratio of orbital-to-spin magnetic moment in structurally disordered FexPt1-x nanoparticles [J]. Phys. Rev. B, 2004, 69: 054417-5
    [220] Boyen H.G., Fauth K., Stahl B., et al. Electronic and magnetic properties of ligand-free FePt nanoparticles[J]. Adv. Mater., 2005, 17: 574-578
    [221] Li F., Ren L.. Fabrication and magnetic properties of FePt3 nanowire arrays[J]. Phys. Stat. Sol. A , 2002, 193:196-201
    [222] Kisker E., Wassermann E.F., Carbone C.. Evidence for the high-spin to low-spin state transition in ordered Fe3Pt invar [J]. Phys. Rev. Lett., 1987, 58:1784-1787
    [223] Gutfleisch O., Lyubina J., Muller K.H., et al. FePt hard magnets[J]. Adv. Eng. Mater., 2005, 7(4): 208-212
    [224] Gavrin A., Kelley M.H., Xiao J.Q., et al. Domain structures in magnetoresistive granular metals[J]. Appl. Phys. Lett., 1995, 66:1683-1685
    [225] Sang H., Zhang S.Y., Chen H., et al. Dynamic behavior of cobalt granules with annealing treatment in ion-beam cosputtered Co22Ag78 granular film[J]. Appl. Phys. Lett. 1995, 67: 2017-2019
    [226] Sheng L., Wang Z.D., Xing D.Y., et al. Semiclassical transport theory of inhomogeneous systems[J]. Phys. Rev. B, 1996, 53: 8203–8206
    [227] Allia P., Knobel M., Tiberto P.. Magnetic properties and giant magnetoresistance of melt-spun granular Cu100-x-Cox alloys[J]. Phys. Rev. B, 1995, 52:15398–15411
    [228] Altbir D., Castro J.A., Vargas P.. Magnetic coupling in metallic granular systems[J]. Phys. Rev. B, 1996, 54:R6823–R6826

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700