Co磁性纳米颗粒的自组装及其外场调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的十几年,湿化学法合成纳米结构发展迅速,人们已经实现了纳米颗粒的大小、形状、表面性能的可控生长。目前面临的最大挑战,是如何把这些纳米结构单体组装成具有结构复杂性和功能多样性的宏观材料,以达到实际应用的需要。这方面,自组装无疑是低廉高效的主要组装途径。而对自组装的操控能力,则取决于我们对纳米颗粒作用势的理解和设计。磁性纳米材料作为纳米材料的重要分支,在电子信息存储、通讯、生物医药等众多领域有着广泛的应用。由于磁性纳米颗粒一般都是单磁畴,整体表现出较大的磁矩,可以与邻近颗粒产生的局域磁场或宏观的外磁场响应,在自组装过程中有着独特的表现。
     本论文以ε-Co磁性纳米颗粒为研究对象,着重研究了它的自组装,并通过理论模拟方法量化分析影响自组装的各种作用势,然后把这种理解应用到复杂的动态自组装过程中,发展出一种制备大面积单层铁磁性纳米颗粒薄膜的方法。本文研究的主要内容如下:
     首先,在磁性Co纳米颗粒的制备方面完善和细化了前人的工作,分析了反应过程中油酸、Co2(CO)8浓度、反应时间等对生成产物的大小、形状及表面性能的影响,研究了不同大小的磁性纳米颗粒在不同外磁场强度下的响应。我们发现并证实了当在反应中的油酸足量时,每个颗粒表面都覆盖有约2nm的单层油酸分子,这对调控颗粒间的相互作用力有着重要意义。同时还确定了Co纳米颗粒的晶体结构,测量了部分颗粒的磁学性质。
     其次,我们把制备的Co纳米颗粒用于自组装的研究,通过分析磁性纳米颗粒之间的相互作用力,研究了极性结构的形成机制和条件。我们引入了高功率超声分散法以使溶液体系中的铁磁性Co纳米颗粒重新分散后再自组装,从而排除了化学制备过程中诸多因素的干扰,使组装结构真正体现了颗粒之间的相互作用。由于磁性纳米颗粒形成的环状结构有着特殊的磁通回路,我们从磁性纳米颗粒溶液的浓度、颗粒大小、表面性能等角度对颗粒环的形成条件和机制进行了研究分析,并制备出了现有报道中最小的磁性纳米颗粒环。同时我们把磁性纳米颗粒在溶液中的平衡态自组装与溶液挥发过程中的挥发自组装相结合,进行Monte Carlo模拟,得到了与实验现象一致的结果,从而证实了对颗粒之间作用势的理解。
     最后,我们首次把动态磁场应用于铁磁性纳米颗粒的组装中,成功制备出单层Co纳米颗粒薄膜,其宏观尺寸达到了厘米量级。形貌和磁性测量表明,这种薄膜具有较大的颗粒间距,颗粒间磁矩耦合很弱,但这并不影响薄膜的易磁化轴沿膜面取向。在这样一个结合了流体、磁场、表面张力、磁矩等诸多作用力的复杂动态自组装过程中,旋转磁场起着关键性的作用。一方面,它驱动大块的磁性纳米颗粒聚合体在溶剂中高速旋转促使其边缘的颗粒受切向流体阻力而不断剥离出来:另一方面,由于旋转磁性的非均匀性,这些剥离单个颗粒在梯度磁场中向旋转中心平移并组装,最成形成一片连续的整体。此外,流体界面的存在也是大面积磁性颗粒膜组装必不可少的因素,它为组装提供了理想的平台。
     由于研究的自组装与化学成分无关,本文的研究结果也适用于其它磁性纳米颗粒体系,具有普遍的意义。
The last decade has witnessed tremendous progress in the wet-chemical synthesis of nanostructures. Up to date one is able to tailor the size, shape, and surface chemistry of these nanostructures in a controlled manner. The greatest challenge nowadays is how to assemble individual nanoscopic components into larger structures and materials with complex patterns and diverse functionalities with low cost and efficient approaches. The self-assembly of colloidal nanoparticles provides such a route to novel classes of nanostructured materials, and the ability of self-assembling in a designed manner depends crucially on the ability to understand in quantitative detail and subsequently "engineer" the interparticle interactions.
     The assemblies of magnetic nanoparticles have been intensely studied in the past decades due to their unique properties, such as single domains and giant magnetic moments, and great potential in biomedical and technological applications such as magnetic sensors, radio frequency devices, and high-density storage media. Large magnetic nanoparticles with the blocking temperature above the room temperature bear substantial dipolar magnetic moments, which lead to a great diversity of assembling patterns, particle chains and rings in particular.
     In this paper, we focus on the self-assembly of colloidal Co magnetic nanoparticles. The well-defined size and shape, and the uniform surfactant coating layer of the cobalt nanoparticles enable quantitative calculations of particle-particle and particle-interface interactions. The experiments, in conjunction with cluster-moving Monte Carlo simulations mimicking the self-assembly in solution and dynamics during solvent evaporation, provide a better understanding of the interparticle interactions. Then their dynamic self-assembly under rotating magnetic fields at fluid interfaces is studied. The introduction of rotating magnetic fields leads to the fabrication of ultra-large scale monolayers comprising16nm Co ferromagnetic nanoparticles at fluid interfaces. We present the results of this thesis as follows.
     First, the synthesis of ε-Co nanoparticles is studied in detail. The control of the shape, size and surface properties of the Co nanoparticles with reactants and reaction time is well analyzed. The surfactant layers are crucial in the self-assembly of colloidal nanoparticles. We verify that as long as enough oleic acid is present in the reaction, the Co nanoparticles would always grow with an about2nm surfactant layer, which corresponds to a monolayer of oleic acid molecules.
     Then we investigate the self-assembly of Co ferromagnetic nanoparticles (FMNPs) by introducing a crucial step of high-power sonication. As a key procedure, the sonication releases the FMNP systems from whatever trapped states when they were prepared. Thus the well-dispersed Co FMNPs are allowed to self-assemble directed only by interparticle interactions, greatly simplifying the analysis. The initially well dispersed FMNPs in solutions of low concentrations would self-assemble into rings composed of a few nanoparticles. A high particle density yields larger clusters, which prefer close-packed spheres as lower energy structures. Monte Carlo simulations based on a simple model taking account of long ranged dipolar and short ranged van der Waals (vdW) interactions show good agreement with the experimental results, and qualitatively reveal the real states of the FMNPs in solution. Further investigations on a range of parameters suggest that the enhancement of the dipolar forces would prevent ring self-assembly as high energy barriers arise from large dipole moments in the transition from chains to rings, whereas much weaker dipolar forces with magnitude comparable to that of van der Waals fail to dominate the structures. An increase of the surfactant thickness outside the FMNPs, on the other hand, would reduce vdW attractions to a minimum, accompanied by a weakening of dipolar forces, and thus results in numerous rings loosely bonded by dozens of particles. Since very weak dipolar forces alone could also induce the formation of rings on the substrate due to the increasing particle density as solution evaporates.
     Finally, we demonstrate a drying-mediated self-assembly of16nm ε-cobalt FMNPs into centimeter-sized monolayers at fluid interface accomplished by a rotating magnetic field (RMF). Instead of rotating solid substrates in a conventional spin-coating procedure, we drive the Co FMNPs using a RMF at fluid interface and monolayers are formed as a result of the interplay of hydrodynamic, magnetic, hydrophobic, and dipolar interactions. The RMF, on one hand, disassemble the FMNP aggregates into2D rafts in the liquid film of sample dispersions, while on the other, attract these rafts together into macroscopic membranes at fluid interface. Such large ferromagnetic membranes are stable on a fluid subphase without the supporting of external fields and transferable to various solid substrates for practical applications. Magnetic measurements show weak dipolar couplings among the Co FMNPs and their easy axes still tend to lie in the layer plane. It seems like that changing the magnitude of the magnetic field and its angular speed would have significant effects on the geometric and magnetic properties of the FMNP monolayers, and further studies are being conducted to explore these parameters. We believe this approach is applicable to most colloidal FMNP systems and can be widely used in the nanofabrication of ferromagnetic granular membranes in large scale.
     In conclusion, we believe the results obtained in this thesis are applicable to most colloidal magnetic nanoparticles.
引文
[1]A.-H. Lu, W. Schmidt, N. Matoussevitch, el. al., Angew. Chem. Int. Ed.,2004, 43,4303.
    [2]A. K. Gupta, and M. Gupta, Biomaterials.,2005,26,3995.
    [3]S. Mornet, S. Vasseur, F. Grasset, P. Verveka, G. Goglio, A. Demourgues, J. Portier, E. Pollert, and E. Duguet, Prog. Solid State Chem.,2006,34,237.
    [4]B. Gleich, and J. Weizenecker, Nature,2006,435,1214.
    [5]Q. Dai, D. Berman, K. Virwani, J. Frommer, P.-O. Jubert, M. Lam, T. Topuria, W. Imaino, and A. Nelson, Nano Lett.,2010,10,3216.
    [6]S. Sun, and C. B. Murray, J. Appl. Phys.,1999,85,4325.
    [7]D. W. Elliott, and W.-X. Zhang, Environ. Sci. Technol.,2001,35,4922.
    [8]J. Philip, and S. P. D. B. Raj, Appl. Phys. Lett.,2006,92,043108.
    [9]J. Philip, T. J. Kumar, P. Kalyanasundaram, and B. Raj, Measur. Sci. Technol., 2003,14,1289.
    [10]D. J. Sellmyer, Y. Liu, and D. Shindo, Advanced Magnetic Materials: Nanostructural Effects, Tsinghua University Press, Beijing,2005:Vol. I.
    [11]H. Benson, and D. L. Mills, Phys. Rev.,1969,178,839.
    [12]B. Schulz, and K. Baberschke, Phys. Rev. B,1994,50,13467.
    [13]Z. Q. Qiu, J. Pearson, and S. D. Bader, Phys. Rev. Lett.,1993,70,1006.
    [14]R. Allenspach, and A. Bischof, Phys. Rev. Lett.,1992,69,3385.
    [15]J. Thomassen, F. May, B. Feldmann, el. al.,Phys. Rev. Lett.,1992,69,3243.
    [16]R. Allenspach, M. Stampanoni, and A. Bischof, Phys. Rev. Lett.,1990,65, 3344.
    [17]C. chappert, K. L. Dang, P. Beauvillain, H. Hurdequint, and D. Renard, Phys. Rev. B,1986,1986,3192.
    [18]U. gradmann, Handbook of Magnetic Materials. Amsterdam:Elsevier,1993, Vol.7.
    [19]W. Wernsdorfer, K. Hasselbach, D. Mailly, B. Barbara, A. Benoit, L. Thomas, and G. Suran,J. Magn. Magn.Mater.,1995,145,33.
    [20]W. Wernsdorfer, D. Mailly, and A. Benoit, J. Appl. Phys.,2000,87,5094.
    [21]E. R. Moog, C. Liu, S. D. Bader, and J. Zak, Phys. Rev. B,1989,39,6949.
    [22]J. Zak, E. R. Moog, C. Liu, and S. D. Bader, Phys. Rev. B,1991,43,6423.
    [23]S. D. Bader, J. Magn. Magn.Mater.,1991,100,440.
    [24]Z. Q. Qiu, and S. D. Bader,J. Magn. Magn.Mater.,1999,200,664.
    [25]P. Grutter, H. Mamin, and D. Rugar, Scanning Tunneling Microscopy. Berlin: Springer,1992, Vol.28.
    [26]R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy. Cambridge: Cambridge University Press,1994.
    [27]M. R. Scheinfein, J. Unguris, et.al., Rev. Sci. Instrum.,1990,61,2501.
    [28]A. Scholl, H. Ohldag, F. Nolting, J. Stohr, and H. A. Padmore, Rev. Sci. Instrum.,2002,73,1362.
    [29]J. N. Chapman, J. Phys. D,1984,17,623.
    [30]M. A. M. Gijs, and G. E. W. Bauer, Adv. Phys.,1997,46,285.
    [31]R. Klajn, A. O. Pinchuk, G. C. Schatz, and B. A. Brzybowski, Angew. Chem. Int. Ed.,2007,46,8363.
    [32]K. J. M. Bishop, C. E. Wilmer, S. Soh, et. al., Small,2009,5,1600.
    [33]D. Henderson, D. M. Duh, X. L. Chu, and D. Wasan, J. Colloid Interface Sci., 1997,185,265.
    [34]G. Foffi, G. D. McCullagh, A. Lawlor, E. Zaccarelli, K. A. Dawson, F. Sciortino, P. Tartaglia, D. Pini, and G. Stell, Phys. Rev. E,2002,65,031407.
    [35]K. A. Dawson, Curr. Opin. Colloid Interface Sci.,2002,7,218.
    [36]N. E. Chayen, Trends Boitechnol.,2002,20,98.
    [37]S. D. Durbin, and G. Feher, Annu. Rev. Phys. Chem.,1996,47,171.
    [38]C. B. Murray, C. R. Kagan, and M. G. Bawendi, Science,1995,270,1335.
    [39]S. A. Harfenist, Z. L. Wang, M. M. Alvarez, I. Vezmar, and R. L. Whetten,J. Phys. Chem.,1996,100,13904.
    [40]I. E. Dzyaloshinskii, E. M. Lifshitz, el. al.,Adv, Phys.,1961,10,165.
    [41]V. A. Parsegian, Van Der Waals Forces. Cambridge:Cambridge University Press,2006.
    [42]H. Y. Kim, J. O. Sofo, D. Velegol, M. W. Cole, and A. A. Lucas, J. Chem. Phys., 2006,124,074504.
    [43]H. Y. Kim, J. O. Sofo, D. Velegol, el. al., Langmuir,2007,23,1735.
    [44]J. Park, J. Joo, S. G. Kwon, Y. Jang, and T. Hyeon, Angew. Chem. Int. Ed., 2007,46,4630.
    [45]Y. K. Park, S. H. Yoo, and S. Park, Langmuir,2007,23,10505.
    [46]L. Motte, F. Billoudet, and M. P. Pileni, J. Phys. Chem.,1995,99,16425.
    [47]B. A. Korgel, S. Fullam, S. Connolly, and D. Fitzmaurice, J. Phys. Chem. B, 1998,102,8379.
    [48]P. C. Ohara, D. V. Leff, J. R. Heath, et. al, Phys. Rev. Lett.,1995,75,3466.
    [49]S. Murthy, Z. L. Wang, and R. L. Whetten, Philos. Mag. Lett.,1997,75,321.
    [50]K. J. Klabunde, C. M. Sorensen, and X. M. Lin, J. Nanopart. Res.,2000,2, 157.
    [51]C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc.,1993,115, 8706.
    [52]M. Yamaki, J. Higo, and K. Nagayama, Langmuir,1995,11,2975.
    [53]T. K. Sau, and C. J. Murphy, Langmuir,2005,21,2923.
    [54]A. M. Kalsin, M. Fialkowski, M. Paszewski, S. K. Smoukov. K. J. M. Bishop, and B. A. Grzybowski, Science,2006,312,420.
    [55]S. K. Smoukov, K. J. M. Bishop, B. Kowalczyk, A. M. Kalsin, and B. A. Grzybowski, J. Am. Chem. Soc.,2007,129,15623.
    [56]E. C. Hao, B. Yang, J. H. Zhang, X. Zhang, J. Q. Sun, and S. C. Shen, J. Mater. Chem.,1998,8,1327.
    [57]D. Lee. M. F. Rubner, and R. E. Cohen, Nano Lett.,2006,6,2305.
    [58]A. N. shipway, M. Lahav, R. Gabai, and I. Willner, Langmuir,2000,16,8789.
    [59]D. Fragouli, R. Buonsanti, G. Bertoni, C. Sangregorio, C. Innocenti, A. Falqui, D. Gatteschi, P. D. Cozzoli, A. Athanassiou, and R. Cingolani,ACS Nano,2010, 4,1873.
    [60]S. L. Tripp, S. V. Pusztay, A. E. Ribbe, and A. Wei,J. Am. Chem. Soc.,2002, 124,7914.
    [61]S. L. Tripp, R. E. Dunin-Borkowski, and A. Wei, Angew. Chem.,2003,115, 5749.
    [62]P. Y. Keng, I. Shim, B. D. Korth, et. al., ACS Nano,2007,1,279.
    [63]A. Sugawara, K.-i. Fukunaga, M. R. Scheinfein, H. Kobayashi, H. Kitagawa, and A. Tonomura, Appl. Phys. Lett.,2007,91,262513.
    [64]H. Wang, Q.-W. Chen, Y.-B. Sun, M.-S. Wang, L.-X. Sun, and W.-S. Yan, Langmuir,2010,26,5957.
    [65]S. Zhou, and Q. Chen, Dalton Trans.,2011,40,8622.
    [66]U. Wiedwald, M. Spasova, M. Farle, M. Hilgendorff, and M. Giersig, J. Vac. Sci. Technol.A,2000,20,1773.
    [67]M. Hilgendorff, B. Tesche, and M. Giersig, Aust. J. Chem.,2001,54,497.
    [68]S. H. sun, and C. B. Murray, IEEE. T. Magn.,1998,38,4325.
    [69]M. P. Pileni, J. Phys. Chem. B,105,3358.
    [70]G. J. Cheng, D. Romero, G. T. Fraser, et. al., Langmuir,2005,21,12055.
    [71]A. Ahniyaz, Y. Sakamoto, and L. Bergstrom, Proc. Nail. Acad. Sci. USA,2007, 104,17570.
    [72]C. Kittel, Introduction to Solid State Physics. Wiley,1995.
    [73]J. R. Choi, S. J. Oh, H. Ju, and J. Cheon, Nano Lett.,2005,5,2179.
    [74]K. Abe, Y. Miyamoto, and S. Chikazumi, J. Phys. Soc. Jpn.,1976,41,1894.
    [75]J. Park, E. Lee, N. M. Hwang, et. al., Angew. Chem. Int. Ed.,2005,44,2872.
    [76]V. Sepelak, D. Baabe, D. Mienert, D. Schultze, F. Krumeich, F. J. Litterst, and K. D. Becker, J. Magn. Magn.Mater.,2003,257,377.
    [77]P. C. Scholten, and D. L. A. Tjaden, J. Colloid Interface Sci.,1980,73,254.
    [78]X. G. Hu, W. L. Cheng, T. Wang, E. K. Wang, and S. J. Dong, Nanotechnol., 2005,16,2164.
    [79]K. G. Thomas, S. Barazzouk, B. I. Ipe, S. T. S. Joseph, and P. V. Kamat, J. Phys. Chem.B,2004,108,13066.
    [80]A. P. Alivisatos, K. P. Johnsson, X. Peng, T. E. Wilson, C. J. Loweth, M. P. Bruchez, and P. G. Schultz, Nature,1996,382,609.
    [81]C. A. Mirkin, R. L. Letsinger, R. C. Mucic, el. al., Nature,1996,382,607.
    [82]S. T. Milner, Science,1991,251,905.
    [83]E. P. K. Currie, W. Norde, and M. A. C. Stuart, Adv. Colloid Interface Sci., 2003,100,205.
    [84]J. Mewis, W. J. Frith, T. A. Strivens, and W. B. Russel, Aiche J.,1989,35,415.
    [85]U. Genz, B. Daguanno, J. Mewis, and R. Klein, Langmuir,1994,10,2206.
    [86]M. Rubenstein, and R. H. Colby, Polymer Physics. Oxford:Oxford University Press,2003.
    [87]R. J. Hunter, Foundations of Colloid Science. Oxford:Clarendon,1987, Vol.1.
    [88]W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions. Cambridge:Cambridge University Press,1989.
    [89]M. L. Steigerwald, and L. E. Brus, Annu. Rev. Mater. Sci.,1989,19,471.
    [90]M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, Chem. Commun,1994,801.
    [91]H. Weller, Adv. Mater.,1993,5,88.
    [92]A. P. Alivisatos,J. PHys. Chem.,1996,100,1861.
    [93]A. Akey, C. Lu, L. Yang, and I. P. Herman, Nano Lett.,2010,10,1517.
    [94]M. Klokkenburg, C. Vonk, E. M. Claesson, J. D. Meeldijk, B. H. Erne, and A. P. Philipse, J.Am. Chem. Soc.,2004,126,16706.
    [95]J. Ku, D. M. Aruguete, A. P. Alivisatos, and P. L. Geissler,J. Am. Chem. Soc., 2011,133,838.
    [96]A. Wei, T. Kasama, and R. E. Dunin-Borkowski, J. Mater. Chem.,2011,21, 16686.
    [97]D. Heinrich, A. R. Goni, A. Smessaert, S. H. L. Klapp, L. M. C. Cerioni, T. M. Osan, D. J. Pusiol, and C. Thomsen, Phys. Rev. Lett.,2011,106,208301.
    [98]V. F. Puntes, P. Gorostiza, D. M. Aruguete, N. G. Bastus, and A. P. Alivisatos, Nat. Nanotechnol.,2004,3,263.
    [99]G. Cheng, D. Romero, G. T. Fraser, and A. R. H. Walker, Langmuir,2005,21, 12056.
    [100]J.-I. Park, Y.-w. Jun, J.-s. Choi, and J. Cheon, Chem. Commun.,2007,5001.
    [101]J. E. Martin, E. Venturini, J. Odinek, and R. A. Anderson, Phys. Rev. E,2000, 61,2818.
    [102]J. E. Martin, E. Venturini, G. L. Gulley, and J. Williamson, Phys. Rev. E,2004, 69,021508.
    [103]F. Smallenburg, and M. Dijkstra, J. Chem. Phys.,2010,132,204508.
    [104]J. E. Martin, R. A. Anderson, and C. P. Tigges, J. Chem. Phys.,1999,110, 4854.
    [105]N. Elsner, C. P. Royall, B. Vincent, and D. R. E. Snoswell, J. Chem. Phys., 2009,130,154901.
    [106]J. E. Martin, Composites:Part A,2005,36,545.
    [107]N. Osterman, I. Poberaj, J. Dobnikar, D. Frenkel, P. Ziherl, and D. Babic, Phys. Rev. Lett,2009,103,228301.
    [108]B. A. Grzybowski, H. A. Stone, and G. M. Whitesides, Nature,2000,405, 1033.
    [109]A. Snezhko, and I. S. Aranson, Nat. Mater.,2011,10,698.
    [110]A. Snezhko, J. Phys.:Condens. Matter,2011,23,153101.
    [111]P. Tierno, R. Muruganathan, and T. M. Fischer, Phys. Rev. Lett.,2007,98, 028301.
    [1]S. Sun, and C. B. Murray,J. Appl. Phys.,1999,85,4325.
    [2]S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science,2000,287, 1989.
    [3]A. Ghazali, and J.-C. Levy, Phys. Rev. B,2003,67,064409.
    [4]A. Ahniyaz, Y. Sakamoto, and L. Bergstrom, Proc. Natl. Acad. Sci. U.S.A.,2007, 104,17570.
    [5]A. Akey, C. Lu, L. Yang, and I. P. Herman, Nano Lett,2010,10,1517.
    [6]J. Ku, D. M. Aruguete, A. P. Alivisatos, and P. L. Geissler, J. Am. Chem. Soc., 2011,133,838.
    [7]T. Wen, and K. M. Krishnan, J. Phys. D:Appl. Phys.,2011,44,393001.
    [8]N. Moumen, P. Veillet, and M. P. Pileni, J. Magn. Magn. Mater.,1995,149,67.
    [9]V. F. Puntes, K. M. Krishnan, and A. P. Alivisatos, Science,2001,291,2115.
    [10]Y. S. Kang, S. Risbud, J. F. Rabolt, and P. Stroeve, Chem. Mater.,1996,8,2209.
    [11]J. Lee, T. Isobe, and M. Senna, J. Colloid Interface Sci.,1996,177,490.
    [12]L. Wang, J. Luo, Q. Fan, M. Suzuki, I. S. Suzuki, M. H. Engelhard, Y. Lin, N. Kim, J. Q. Wang, and C.-J. Zhong, J. Phys. Chem. B,2005,109,21593.
    [13]V. F. Puntes, D. Zanchet, C. K. Erdonmez, and A. P. Alivisatos, J. Am. Chem. Soc.,2002,124,12874.
    [14]D. P. Dinega, and M. G. Bawendi,Angew. Chem. Int. Ed.,1999,38,1788.
    [15]S. Sun, and C. B. Murray,J. Appl. Phys.,1999,85,4325.
    [16]S. Yamamuro, D. F. Farrell, and S. A. Majetich, Phys. Rev. B,2002,65,224431.
    [17]D. Heinrich, A. R. Goni, A. Smessaert, S. H. L. Klapp, L. M. C. Cerioni, T. M. Osan, D. J. Pusiol, and C. Thomsen, Phys. Rev. Lett,2011,106,208301.
    [18]S. A. Majetich, and Y. Jin, Science,1999,284,470.
    [19]O. Kitakami, H. Satao, Y. Shimada, F. Sato, and M. Tanaka, Phys. Rev. B,1997, 56,13849.
    [20]A. W. Hull, Phys. Rev.,1921,17,571.
    [21]C. B. Shoemaker, D. P. Shoemaker, T. E. Hopkins, and S. Yidepit, Acta Cryst., 1978,B34,3573.
    [22]N. Wu, L. Fu, M. Su, M. Aslam, K. C. Wong, and V. P. Dravid, Nano Lett.,2004, 4,383.
    [23]Y. Lalatonne, J. Richardi, and M. P. Pileni, Nat. Mater.,2004,3,121.
    [24]J. B. Kortright, O. Hellwig, K. Chesnel, S. Sun, and E. E. Fullerton, Phys. Rev. B, 2005,71,012402.
    [1]J.-G. Zhu, Y. Zheng, and G. A. Prinz, J. Appl. Phys.,2000,87,6668.
    [2]S. P. Li, D. Peyrade, M. Natali, A. Lebib, and Y. Chen, Phys. Rev. Lett.,2001,86, 1102.
    [3]Y. G. Yoo, M. Klaui, C. A. F. Vaz, L. J. Heyderman, and J. A. C. Bland, Appl. Phys. Lett.,2003,82,2470.
    [4]S. L. Tripp, S. V. Pusztay, A. E. Ribbe, and A. Wei, J. Am. Chem. Soc.,2002,124, 7914.
    [5]P. C. Ohara, J. R. Heath, and W. M. Gelbart, Angew. Chem. Int. Ed. Engl.,1997, 36,1078.
    [6]K. V. P. M. Shafi, I. Felner, Y. Mastai, and A. Gedanken, J. Phys. Chem. B,1999, 103,3358.
    [7]M. Maillard, L. Motte, A. T. Ngo, and M. P. Pileni, J. Phys. Chem. B,2000,104, 11871.
    [8]L. V. Govor, G. H. Bauer, G. Reiter, E. Shevchenko, H. Weller, and J. Parisi, Langmuir,2003,19,9573.
    [9]W. L. Zhou, J. He, J. Fang, T.-A. Huynh, T. J. Kennedy, K. L. Stokes, and C. J. O'Connor, J. Appl. Phys.,2003,93,7340.
    [10]L. V. Govor, G. Reiter, G. H. Bauer, and J. Parisi, Appl. Phys. Lett.,2004,84, 4774.
    [11]Z. Liu, and R. Levicky, Nanotechnol.,2004,15,1483.
    [12]S. L. Tripp, R. E. Dunin-Borkowski, and A. Wei, Angew. Chem.,2003,115, 5749.
    [13]P. Y. Keng, I. Shim, B. D. Korth, J. F. Douglas, and J. Pyun, ACS Nano,2007,1, 279.
    [14]H. Wang, Q.-W. Chen, Y.-B. Sun, M.-S. Wang, L.-X. Sun, and W.-S. Yan, Langmuir,2010,26,5957.
    [15]S. Zhou, and Q. Chen, Dalton Trans.,2011,40,8622.
    [16]J. M. Tavares, J. J. Weis, and M. M. Telo da Gama, Phys. Rev. E,2002,65, 061201.
    [17]A. Ghazali, and J.-C. Levy, Phys. Rev. B,2003,67,064409.
    [18]Q. Dai, D. Berman, K. Virwani, J. Frommer, P.-O. Jubert, M. Lam, T. Topuria, W. Imaino, and A. Nelson, Nano Lett.,2010,10,3216.
    [19]N. Wu, L. Fu, M. Su, M. Aslam, K. C. Wong, and V. P. Dravid, Nano Lett.,2004, 4,383.
    [20]C. B. Murray, C. R. Kagan, and M. G. Bawendi, Science,1995,270,1335.
    [21]A. Akey, C. Lu, L. Yang, and I. P. Herman, Nano Lett.,2010,10,1517.
    [22]Y. Lalatonne, J. Richardi, and M. P. Pileni, Nat. Mater.,2004,3,121.
    [1]C. Desvaux, C. Amiens, P. Fejes, P. Renaud, M. Respaud, P. Lecante, E. Snoeck, and B. Chaudret, Nat. Mater.,2005,4,750.
    [2]N. Ning, X. P. Li, J. Fan, W. C. Ng, Y. P. Xu, X. Qian, and H. L. Seet, IEEE Trans. Magn.,2006,42,1585.
    [3]Q. Dai, D. Berman, K. Virwani, J. Frommer, P.-O. Jubert, M. Lam, T. Topuria, W. Imaino, and A. Nelson, Nano Lett.,2010,10,3216.
    [4]S. Sun, and C. B. Murray, J. Appl. Phys.,1999,85,4325.
    [5]S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science,2000,287, 1989.
    [6]A.Akey, C. Lu, L. Yang, and I. P. Herman, Nano Lett.,2010,10,1517.
    [7]P. Y. Keng, I. Shim, B. D. Korth, J. F. Douglas, and J. Pyun, ACS Nano,2007,1, 279.
    [8]W.-F. Ding, Z. Li, H. Zhou, B. Zhao, J.-g. Wan, F. Song, and G.-H. Wang, J. Phys. Chem. C,2012,116,10805.
    [9]B. A. Grzybowski, H. A. Stone, and G. M. Whitesides, Nature,2000,405,1033.
    [10]B. A. Grzybowski, and G. M. Whitesides, J. Phys. Chem. B,2001,105,8770.
    [11]O. G. Calderon, and S. Melle, J. Phys. D:Appl. Phys.,2002,35,2492.
    [12]M. V. Sapozhnikov, Y. V. Tolmachev, I. S. Aranson, and W.-K. Kwok, Phys. Rev. Lett.,2003,90,114301.
    [13]P. Tierno, R. Muruganathan, and T. M. Fischer, Phys. Rev. Lett.,2007,98, 028301.
    [14]N. Osterman, I. Poberaj, J. Dobnikar, D. Frenkel, P. Ziherl, and D. Babic, Phys. Rev. Lett.,2009,103,228301.
    [15]K. V. Tretiakov, K. J. M. Bishop, and B. A. Grzybowski, Soft Matter,2009,5, 1279.
    [16]A. Snezhko, and I. S. Aranson, Nat. Mater.,2011,10,698.
    [17]Y. Lin, H. Skaff, T. Emrick, A. D. Dinsmore, and T. P. Russell, Science,2003, 299,226.
    [18]H. Duan, D. Wang, D. G. Kurth, and H. Mohwald, Angew. Chem. Int. Ed.,2004, 43,5639.
    [19]J.-I. Park, W.-R. Lee, S.-S. Bae, Y. J. Kim, K.-H. Yoo, J. Cheon, and S. Kim, J. Phys. Chem. B,2005,109,13119.
    [20]M. Sachan, N. D. Walrath, S. A. Majetich, K. Krycka, and C.-C. Kao,J. Appl. Phys.,2006,99,08C302.
    [21]P. Arumugam, D. Patra, B. Samanta, S. S. Agasti, C. Subramani, and V. M. Rotello, J.Am. Chem Soc.,2008,130,10046.
    [22]E. Pohjalainen, M. Pohjakallio, C. Johans, K. Kontturi, J. V. I. Timonen, O. Ikkala, R. H. A. Ras, T. Viitala, M. T. Heino, and E. T. Seppala, Langmuir,2010, 26,13937.
    [23]A. Dong, J. Chen, S. J. Oh, W.-k. Koh, F. Xiu, X. Ye, D.-k. Ko, K. L. Wang, C. R. Kagan, and C. B. Murray, Nano Lett.,2011,11,841.
    [24]D. K. Lee, Y. H. Kim, Y S. Kang, and P. Stroeve, J. Phys. Chem. B,2005,109, 14939.
    [25]V. F. Puntes, P. Gorostiza, D. M. Aruguete, N. G. Bastus, and A. P. Alivisatos, Nat. Nanotechnol.,2004,3,263.
    [26]A. Stannard, J. Phys.:Condens. Matter,2011,23,083001.
    [27]E. Pauliac-Vaujour, and P. Moriarty, J. Phys. Chem. C,2007,111,16255.
    [28]B. P. Binks, and T. S. Horozov, Colloidal Particles at Liquid Interfaces. New York:Cambrige University Press,2006.
    [29]Y. Lalatonne, J. Richardi, and M. P. Pileni, Nat. Mater.,2004,3,121.
    [1]A. R. Leach, Molecular Modelling:Principles and Applications. Essex CM20 2JE:Pearson Education,2001.
    [2]王子瑜,and曹恒光,物理双月刊,2005,27,456.
    [3]G. Helgesen, A. T. Skjeltorp, P. M. Mors, R. Botet, and R. Jullien, Phys. Rev. Lett.,1988,61,1736.
    [4]A. Satoh, R. W. Chantrell, S.-I. Kamiyama, and G. N. Coverdale,J. Colloid Interface Sci.,1996,181,422.
    [5]A. Satoh, R. W. Chantrell, S.-I. Kamiyama, and G. N. Coverdale,J. Colloid Interface Sci.,1996,178,620.
    [6]J. E. Martin, R. A. Anderson, and C. P. Tigges, J. Chem. Phys.,1998,108,3765.
    [7]J. E. Martin, R. A. Anderson, and C. P. Tigges, J. Chem. Phys.,1999,110,4854.
    [8]J. E. Martin, E. Venturini,J. Odinek, and R. A. Anderson, Phys. Rev. E,2000,61, 2818.
    [9]H. Morimoto, and T. Maekawa, J. Phys. A:Math. Gen.,2000,33,247.
    [10]J. M. Tavares, J. J. Weis, and M. M. Telo da Gama, Phys. Rev. E,2002,65, 061201.
    [11]A. Ghazali, and J.-C. Levy, Phys. Rev. B,2003,67,064409.
    [12]J. E. Martin, E. Venturini, G. L. Gulley, and J. Williamson. Phys. Rev. E,2004. 69,021508.
    [13]M. Aoshima, and A. Satoh, J. Colloid Interface Sci.,2005,288,475.
    [14]J. E. Martin, Composites:Part A,2005,36,545.
    [15]Y. Min, M. Akbulut, K. Kristiansen, Y. Golan, and J. Israelachvili, Nat. Mater., 2008,7,527.
    [16]K. J. M. Bishop, C. E. Wilmer, S. Soh, and B. A. Grzybowski, Small,2009,5, 1600.
    [17]N. Elsner, C. P. Royall, B. Vincent, and D. R. E. Snoswell, J. Chem. Phys.,2009, 130,154901.
    [18]F. Smallenburg, and M. Dijkstra, J. Chem Phys.,2010,132,204508.
    [19]G. Bertoni, B. Torre, A. Falqui, D. Fragouli, A. Athanassiou, and R. Cingolani, J. Phys. Chem. C,2011,115,7249.
    [20]K. Butter, P. H. H. Bomans, P. M. Frederik, G. J. Vroege, and A. P. Philipse, Nat. Mater.,2003,2,88.
    [21]Y. Lalatonne, J. Richardi, and M. P. Pileni, Nat. Mater.,2004,3,121.
    [22]K. Jiles, Introduction to Magnetism and Magnetic Materials. New York: Chapman and Hall,1991.
    [23]T. Panczyk, P. J. Camp, G. Pastorin, and T. P. Warzocha, J. Phys. Chem. C,2011, 115,19074.
    [24]N. Moumen, P. Veillet, and M. P. Pileni,J. Magn. Magn. Mater.,1995,149,67.
    [25]M. A. Miller, and D. J. Wales,J. Phys. Chem. B,2005,109,23109.
    [26]P. Y. Keng, I. Shim, B. D. Korth, J. F. Douglas, and J. Pyun, ACS Nano,2007,1, 279.
    [27]H. Wang, Q.-W. Chen, Y.-B. Sun, M.-S. Wang, L.-X. Sun, and W.-S. Yan, Langmuir,2010,26,5957.
    [28]S. Zhou, and Q. Chen, Dalton Trans.,2011,40,8622.
    [29]Q. Dai, D. Berman, K. Virwani, J. Frommer, P.-O. Jubert, M. Lam, T. Topuria, W. Imaino, and A. Nelson, Nano Lett.,2010,10,3216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700