磁性纳米颗粒薄膜的微观结构、磁性质和输运特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁磁性金属纳米颗粒薄膜系统中存在的巨磁电阻效应、巨霍尔效应、高矫顽力效应等新特性,使其在磁性传感器件、高密度记录介质、读出磁头和磁性随机存取存储器等研究领域具有广阔的应用前景。目前,具有面心四方结构的L10-FePt材料、半金属材料和铁磁性金属–半导体复合材料是凝聚态物理和材料科学领域的研究热点。
     本论文用磁控溅射法制备了软铁磁性金属-碳基(Fe-C, Co-C, FeN-CN)、硬铁磁性金属-碳基(FePt-C, FePtCu-C, FePtN-CN)、半金属-半导体基(Fe_3O_4-Ge)和铁磁性金属-半导体基(Fe-Ge)系列纳米颗粒薄膜,对它们的化学成份、微观结构、磁性质和输运特性进行了系统研究。
     通过对软铁磁性金属-碳基(Co, Fe, FeN)–C(N)颗粒薄膜的研究,发现在颗粒薄膜中,颗粒与母体间的相分离、颗粒尺寸和颗粒间的相互作用决定样品的磁性质和磁化机制。当相分离较好、颗粒间相互作用较小时,样品的矫顽力较大,并且磁化机制为单畴磁矩转动。反之,样品矫顽力较小,磁化机制为畴壁位移。用磁力显微镜直接观察到了Fe-C系统中的磁逾渗现象,为阐明颗粒间磁相互作用的变化提供了直接证据。在电子束辐照的Co-C颗粒薄膜中,观察到了Co颗粒对非晶C转变为石墨化的碳纳米结构(纳米线和纳米针)的催化作用。
     通过对硬铁磁性金属-碳基(FePt-C, FePtCu-C, FePtN-CN)颗粒薄膜的研究,发现适量的Cu掺杂可以促进L10-FePt合金的形成,而过量的Cu显著抑制L10-FePt相的形成。特别地,我们还发现N掺杂样品在退火过程中N的溢出和Fe-N键的断裂,可以促进L10相的形成,提高FePt合金的有序度;同时,高氮气分压可以有效控制FePt颗粒尺寸,有利于FePt颗粒薄膜在高密度磁记录介质方面的应用。
     通过对多晶Fe_3O_4薄膜、(Fe, Fe_3O_4)–Ge颗粒薄膜的研究,发现多晶Fe_3O_4薄膜的导电机制为隧穿导电。Fe_3O_4晶粒表面(界面)磁矩的取向对磁化强度贡献很小,但在高场下,晶粒表面(界面)磁矩的排列会导致磁电阻发生很大的变化,这就是Fe_3O_4薄膜材料中磁电阻随外加磁场呈现弱饱和现象的物理机制。在Fe_xGe_(1–x)颗粒薄膜中发现当x=0.5时,霍尔电阻率ρ_(xy)最大(126μ- cm),为纯Fe膜的139倍;在±10 kOe的磁场范围内,ρ_(xy)随磁场呈线性变化关系,并且在2–300 K温度范围内,直线斜率保持不变。这一特点使Fe-Ge颗粒薄膜在微电子学器件中的实际应用具有了可能性。
Novel properties such as giant magnetoresistance (GMR), giant Hall effect (GHE) and huge coercivity have made ferromagnetic nanogranular films promising candidates for the applications of magnetic sensors, high density magnetic recording materials, read-out magnetic head and magnetic random access memory. Recently, L10 ordered FePt alloy, half-metals and ferromagnetic metal-semiconductor composite materials have become the focuses in the field of condensed matter physics and materials science.
     Series of ferromagnetic nanocomposite films, including soft ferromagnetic metal ?C granular films (Co-C, Fe-C, FeN-CN), hard ferromagnetic metal–C granular films (FePt-C, FePtCu-C, FePtN-CN), half metal–semiconductor granular films (Fe_3O_4-Ge), ferromagnetic metal–semiconductor granular films (Fe-Ge) were fabricated using magnetron sputtering. Their chemical composition, microstructure, magnetic properties, reversal mechanism, and transport properties were studied systemically.
     It was found that, for the soft ferromagnetic metal–C granular films (Co, Fe, FeN)-C(N), the phase segregation between metal particles and C matrix, particle size control and interparticle interaction determine the magnetic properties and reversal mechanism of samples. The better the phase segregation and the weaker the interparticle interaction are, the larger the coercivity is, and the reversal mechanism is single domain rotation. Contrarily, the coercivity will decrease, and the reversal mechanism becomes domain wall motion. The magnetic percolation of Fe-C system was directly observed using magnetic force microscopy, which clarifies the changes of interparticle interaction in the nanogranular system. We also found that the amorphous C in the as-deposited Co-C granular films transforms into graphitized nanostructured C (carbon nanostripes and nanoneedles) after being exposed in the electron beam for several minutes.
     For the hard ferromagnetic metal–C granular films (FePt-C, FePtCu-C, FePtN-CN), we found that appropriate Cu doping can improve the transformation of ordered-L10 FePt, but excessive Cu suppresses the formation of L10 phase. Particularly, we noted that the evaporation of N and decompounding of Fe-N bonds in FePtN-CNgranular films promote the formation of L10 phase during annealing, and improves its chemical ordering. Besides, the size of FePt particles can be effectively controlled by N doping at high N_2 partial pressure, which is benefit to the practical application of FePt-based granular films in high-density magnetic recording media.
     The mechanism of electron transport in polycrystalline Fe_3O_4 films is tunneling. Although the moments at the surface and/or interface of Fe_3O_4 grains slightly affect the magnetization of films, the magnetoresistance of polycrystalline Fe_3O_4 films changes obviously in the high field range when a small part of the moments at the grain surface and/or interface was aligned. This observation explains the weak saturation of MR with applied field in the polycrystalline Fe_3O_4 films. For Fe-Ge composite films, when the Fe atomic fraction is 50%, the Hall resistivity (ρ_(xy)) reaches its maximum value of 126μΩcm, which is 139 times larger than that of pure Fe films. In the magnetic field range of -10?10 kOe,ρ_(xy) changes linearly with the applied magnetic field and the slope almost keeps constant at temperatures rangeing from 2 to 300 K, making the practical application of Fe-Ge composite films possible in the field of microelectronic devices.
引文
[1] Baibich M N, Brato J M, Fert A, et al, Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattice, Phys. Rev. Lett., 1988, (61): 2472~2475.
    [2] Grunberg P, Schrieber R, Pang Y, Layered Magnetic structures: Evidence for Anti- ferromagnetic Coupling of Fe layers across Cr Interlayers, Phys. Rev. Lett., 1986, (57): 2442~2445.
    [3] Xiao J Q, Jiang J S, Chien C L, Giant Magnetoresistance in Nonmultilayer Magnetic Systems, Phys. Rev. Lett., 1992, (68): 3749~3752.
    [4] Gavin A, Chien C L, Fabrication and magnetic properties of granular alloys, J. Appl. Phys., 1990, (67): 938~942.
    [5] Childress J R, Chien C L, Granular Fe in metallic matrix, Appl. Phys. Lett., 1990, (56): 95~97.
    [6] Chien C L, Granular magnetic solids, J. Appl. Phys., 1991, (69): 5267~5272.
    [7] Helmolt R V, Wecker J, Holzapfel B, et al, Giant Negative MR in perobskitelike La2/3Ba1/3MnOx Ferromagnetic Films, Phys. Rev. Lett., 1993, (71): 2331~2333.
    [8] Miyazaki T, Tezaka N, Giant Magnetic tunneling effect in Fe/Al2O3/Fe junction, J. Magn. Magn. Mater., 1995, (139): L231~L234.
    [9] Gittleman J L, Goldstein Y, Bozowski S, Magnetic properties of granular Nickel films, Phys. Rev. B, 1972, (5): 3609~3611.
    [10] Fujimori H, Mitani S, Ohnuma S, Tunnel-type GMR in metal-nonmetal granular alloy thin films, Mater. Sci. Eng. B, 1995, (31): 219~224.
    [11] Mitani S, Fujimori H, Ohnuma S, Spin-dependent tunneling phenomena in insulating granular systems, J. Magn. Magn. Mater., 1997, (165): 141~148.
    [12] Milner A, Gerber A, Groisman B, Spin dependent electronic transport in granular ferromagnets, Phys. Rev. Lett., 1996, (76): 475-479.
    [13] Xu Y F, Wang J P, Shan Z S, et al, Magnetc and Strutural properties of hexagonal-close-packed-CoCrPt-C granular media for high areal density recording, J. Appl. Phys., 2000, (88): 7234~7241.
    [14] Xu Y F, Wang J P, Su Y, High Coercivity CoCrPt-SiO2 granular thin films for magnetic recording, J. Phys. D: Appl. Phys., 2000, (33): 1460~1463.
    [15] Xu Y F, Shan Z S, Wang J P, et al, Magnetic and reversal properties of HCP-CoCrPt:C granular films with CrTi underlayer, J. Magn. Magn. Mater., 2001, (2): 103~113.
    [16] Babonneau D, Briatico J, Petroff F, et al, Structure and magnetic properties of Fex-C1-x nanocomposite thin films, J. Appl. Phys., 2000, (87): 3432~3443; Babonneau D et al, Appl. Phys. Lett., 2003, (82): 3056~3058.
    [17] Li J, Liu C Y, Zhao B G, et al, Structures and properties of Fe-C fine particles prepared by AC arc discharge, J. Magn. Magn. Mater., 1999, (195): 470~475.
    [18] Delaunay J J, Hayashi T, Tomita M, et al, Co-sputtered Thin Films Consisting of Cobalt Nano-Grains Embedded in Graphite-like Carbon and Their Magnetic Properties, Jpn. J. Appl. Phys., 1997, (36): 7801~7804.
    [19] Delaunay J J, Hayashi T, Tomita M, et al, CoPt-C nanogranular magnetic thin films, Appl. Phys. Lett., 1997, (71) 3427~3429.
    [20] Delaunay J J, Hayashi T, Tomita M, et al, Formation and microstructural analysis of co-sputtered thin films consisting of cobalt nanograins embedded in carbon, J. Appl. Phys., 2000, (82): 2200~2208.
    [21] Yu M, Liu Y, Sellmyer D J, Nanocomposite CoPt:C films for extremely high-density recording, Appl. Phys. Lett., 1999, (75): 3992~3994.
    [22] Chen S C, Kuo P C, Lie C T, et al, Microstructure and coercivity of granular FePt-AlN thin films, J. Magn. Magn. Mater., 2001, (236) 151~157.
    [23] Chen S C, Kuo P C, Sun A C, et al, Granular FePt-Ag thin films with uniform FePt particle size for high-density magnetic recording, Mater. Sci. Eng. B, 2002, (88): 91~97.
    [24] Watanabe M, Masumoto T, Ping D H, et al, Microstucture and magnetic properties of FePt-Al-O granular thin films, Appl. Phys. Lett., 2000, (76): 3971~3973.
    [25] Delaunay J J, Hayashi T, Tomita M, et al, CoPt-C nanogranular magnetic thin films, Appl. Phys. Lett., 1997, (71): 3427~3429.
    [26] Konno T J, Shoji K, Sumiyama K, et al, Structure and magnetic properties of co-sputtered Co-C thin films, J. Magn. Magn. Mater., 1999, (195) 9~18.
    [27] Konno T J, Ogawa N, Wakoh K, et al, Structure and magnetic properties of Fe/EuO granular films, Mater. Sci. Eng. A, 1996, (217/218): 331~335.
    [28] Sun C Q, Oxidation electronics: bond–band–barrier correlation and its applications, Prog. Mater. Sci., 2003, (48): 521~685.
    [29] Christodoulides J A, Shevchenko N B, Hadjipanayis G C, et al, Effect of preparation conditions on the hysteresis behavior of granular Fe-SiO2, J. Magn. Magn. Mater., 1997, (166): 283~289.
    [30] Tomoyuki M, Tadashi K, Akira K, et al, Reduction of ordering temperature of an FePt-ordered alloy by addition of Cu, Appl. Phys. Lett., 2002, (80): 2147~2149.
    [31] Barmak K, Kim J, Shell S, et al, Calorimetric studies of the A1 to L10 transformation in FePt and CoPt films, Appl. Phys. Lett., 2002, (80): 4268~4270.
    [32] Stavroyiannis S, Niarchos D, et al, Investigation of CoPt/M (M=Ag, C) films for high density recording media, J. Magn. Magn. Mater., 1999, (193): 181~184.
    [33] Redon O, Magnetoresistance of Ag/Co70Fe30 Layered and granular structures, J. Magn. Magn. Mater., 1995, (149): 398~407.
    [34] Allia P, et al, Magnetic properties and giant magneto- resistance of melt-spun granular Cu100-x Cox alloys, Phys. Rev. B, 1995, (52): 15398-15411.
    [35] Hickey B J, et al, Phys. Rev. B, Giant magnetoresistance for superparamagnetic particles: Melt-spun granular CuCo, 1995, (51) 667~669.
    [36] Ferrari E F, Silva F C, Knobel M, Influence of the distribution of magnetic moments on the magnetization and magnetoresistance in granular alloys, Phys. Rev. B, 1997, (56): 6086~8093.
    [37] Altbir D, Castro J, Vargas P, Magnetic coupling in metallic granular systems, Phys. Rev. B, 1996, (54): R6823~R6826.
    [38] Vargas P, Altbir D, Castro J A, et al, Magnetoresistance in granular metallic systems, J. Phys.: Condens. Matter., 1997, (9): 9931~9938.
    [39] Vargas P, Albuquerque J, Altbir D, Magnetism of nanosized metallic particles, Phys. Rev. B, 1999, (60): 6541~6544.
    [40] Altbir D, Vargas P, Castro J, et al, Dipolar interaction and magnetic ordering in granular metallic materials, Phys. Rev. B, 1998, (57): 13604~13609.
    [41] Honda S, Okada T, Nawate M, et al, Tunneling giant magnetoresistance in heterogeneous Fe-SiO2 granular films, Phys. Rev. B, 1997, (56): 14566~14573.
    [42] Kodama R H and Edelstein A S, Synthesis and characterization of magnetic nanocomposite films, J. Appl. Phys., 1999, (85): 4316~4318.
    [43] Yakushiji K, Mitani S, Takanashi K, Tunnel magnetoresistance oscillations in current perpendicular to plane geometry of CoAlO granular thin films, J. Appl. Phys., 2002, (91): 7038~7040.
    [44] Mitani S, Fujimori H, Ohnuma S, Temperature dependence of tunnel-type GMR in insulating granular systems, J. Magn. Magn. Mater., 1998, (177-181): 919~920.
    [45] Ha J G, Mitani S, Takahashi K, et al, Annealing effect of tunnel-type GMR in Co-Al-O granular thin films, J. Magn. Magn. Mater., 1999, (198-199): 21~23.
    [46] Yakushiji K, Mitani S, Takanashi K, et al, Composition dependence of particle size distribution and giant magnetoresistance in Co-Al-O granular films, J. Magn. Magn. Mater., 2000, (212): 75~81.
    [47] Ge S H, Chi J H, Zhang Z G, The influence of oxygen flux on the tunnelling magnetoresistance effect of Co-Al-O granular thin films, J. Phys D: Applied Physics, 2001, (34):167~173.
    [48] Kobayashi N, Ohnuma S, Murakami S, et al, Enhancement of low field magnetoresistive response of tunnel-type magnetoresistance in metal-nonmetal granular thin films, J. Magn. Magn. Mater., 1998, (188): 30~34.
    [49] Mitani S, Takanashi K, Yakushiji K, et al, Study on spin dependent tunneling and Coulomb blockage in granular systems with restricted tunneling paths, Mater. Sci. Eng. B, 2001, (84): 120~125.
    [50] Yakushiji K, Mitani S, Takanashi K, et al, Enhanced tunnel magneto resistance in granular nanobridges, Appl. Phys. Lett., 2001, (78): 515~517.
    [51] Weber W, Riesen S, Siegmann H C, Magnetization Precession by Hot Spin Injection, Science, 2001, (291): 1015~1018.
    [52] Teresa J M D, Barthelemy A, Fert A, et al, Role of Metal-Oxide Interface in Determining the Spin Polarization of Magnetic Tunnel Junctions, Science, 1999, (286): 507~509.
    [53] Boeck J D, Switching With Hot Spins, Science, 1998, (281): 357~359.
    [54] Daisuke I, Mikio K, Shinichi K, et al, Magnetic and electrical properties of Fe-MoOx (2≤x≤3) granular thin films, J. Magn. Magn. Mater., 2002, (238): 173~177.
    [55] Pakhomov A B, Yan X, Zhao B, Giant Hall effect in percolating ferromagnetic granular metal-insulator films, Appl. Phys. Lett., 1995, (67): 3497~3499.
    [56] Pakhomov A B, Yan X, Xu Y, Observation of giant Hall effect in granular magnetic films, J. Appl. Phys., 1996, (79): 6140~6142.
    [57] Jing X N, Wang N, Pakhomov A B, et al, Effect of annealing on the giant Hall effect, Phys. Rev. B, 1996, (53): 14032~14035.
    [58] Zhao B and Yan X, Giant Hall effect in granular Fe-SiO2 film, J. Appl. Phys., 1997, (81): 4290~4292.
    [59] Luo E Z, Pakhomov A B, Zhang Z Q, et al, Conductance distribution in granular metal films: a combined study by conducting atomic force microscopy and computer simulation, Physica B, 2000, (279): 98~101.
    [60] Samoilov A V, Beach G, et al, Magnetic percolation and giant spontaneous Hall effect in La1-xCaxCoO3, Phys. Rev. B, 1998, (57): R14032~14035.
    [61] Xu Q Y, Ni G, Sang H, et al, Giant Hall Effect of Fe45.51(Al2O3)54.49 Nano-granular Film, Chin. Phys. Lett., 2000, (17): 227~229.
    [62] Xu Q Y, Ni G, Wang Z M, et al, Hall Effect of (Co0.34Fe0.66)0.42(SiO2)0.58 Granular Films, Chin. Phys. Lett., 2000, (18): 672~673.
    [63] Groot R A, Mueller F M, Engen van P G, et al, New class of materials: Half-metallic ferromagnets, Phys. Rev. Lett., 1983, (50): 2024~2027.
    [64] Morrish A H, Physical principles of Magnetism, New York: Wiley, 1965; Haghiri-Gosnet et al, Spintronics: Perspectives for the half-metallic oxides, Phys. Stat. Sol. a, 2004, (201): 1392~1397.
    [65] Coey J M D, Louis Néel: Retrospective (invited), J. Appl. Phys., 2003, (93): 8224~8229.
    [66] Chien C L, Granular magnetic solids (invited), J. Appl. Phys., 1991, (69): 5267~5272.
    [67] Zhao B, Magnetotransport properties in ferromagnetic granular composite films, Ph. D Thesis. Hong Kong; HKUST, 1997.
    [68] Chantrell R W, Wohlfarth E P, Dynamic and static properties of interacting fine ferromagnetic particles, J. Magn. Magn. Mater., 1983, (40): 1~11.
    [69] Kittel C, Introduction to solid state physics, New York: Wiley, 1996, 167
    [70] Stoner E C and Wohlfarth E P, A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys, IEEE Trans. Magn., 1991, (27): 3475~3518.
    [71] Sheng P, et al, Hopping conductivity in granular metals. Phys. Rev. Lett., 1973, (31): 44~47; Helman J S, Abeles B, Tunneling of spin-polarized electrons and magneto- resistance in granular Ni films, Phys. Rev. Lett., 1976, (37): 1429~1432.
    [72] Xiao J Q, Jiang J S, Chien C L, Giant magnetoresistance in nonmultilayer magnetic systems, Phys. Rev. Lett., 1992, (68): 3749~3752.
    [73] Barzilai S, Goldstein Y, Balberg I, et al, Magnetic and transport properties of granular cobalt films, Phys. Rev. B, 1981, (23): 1809~1817.
    [74] Mitani S, Takahashi S, Takanashi K, et al, Enhanced magnetoresistance in insulating granular systems: evidence for higher-order tunneling, Phys. Rev. Lett., 1998, (81): 2799~2802.
    [75] Meservey R, Tedrow P M, Spin polarized electron tunneling, Phys. Rep., 1994, (238): 173~243.
    [76] Meservey R, Tedrow P M, Fulde P, Magnetic field splitting of the quasiparticle states in superconducting aluminum films, Phys. Rev. Lett., 1970, (25): 1270~1272.
    [77] Tedrow P M, Meservey R, Spin-dependent tunneling into ferromagnetic nickel, Phys. Rev. Lett., 1971, (26): 192~195.
    [78] Tedrow P M, Meservey R, Spin-polarization of electrons tunneling from films of Fe, Co, Ni, and Gd, Phys. Rev. B, 1973, (7): 318~326.
    [79] Julliere M, Tunneling between ferromagnetic films, Phys. Lett., 1975, (54A): 225~226.
    [80] Maekawa S, G?fvert U, Electron tunneling between ferromagnetic films, IEEE Trans Magn, 1982, (18): 707~708.
    [81] Slonczewski J C, Conductance and exchange coupling of the ferromagnets separated by a tunneling barrier, Phys. Rev. B, 1989, (39): 6995~7002.
    [82] LeClair P, Moodera J S, Meservey R, Ferromagnetic-ferromagnetic tunneling and the spin filter effect, J. Appl. Phys., 1994, (76): 6546~6548.
    [83] Miyazaki T, et al, Large magnetoresistance effect in 82Ni-Fe/Al-Al2O3/Co magnetic tunneling junctions, J. Magn. Magn. Mater., 1991, (98): L7~L9.
    [84] Yaoi T, Ishio S, Miyazaki T, Dependence of magnetoresistance on temperature and applied voltage in a 82Ni-Fe/Al-Al2O3/Co magnetic tunneling junction, J. Magn. Magn. Mater., 1993, (126): 430~432.
    [85] Simmons J G, Generalized formula for the electric tunnel effect between similar electrodes separated by thin insulating films, J. Appl. Phys., 1963, (34): 1793~1783
    [86] Simmons J G, Electric tunnel effect between dissimilar electrodes separated by a thin insulating films, J. Appl. Phys., 1963, (34): 2581~2590.
    [87] Stratton R, Volt-current characteristics for tunneling through insulating films, J. Phys. Chem. Solids, 1962, (23): 1177~1190.
    [88] 白海力,姜恩永,铁磁金属—绝缘体颗粒薄膜的隧道型磁电阻(TMR),科学通报,2000,(45): 2134~2145。
    [89] Lee H J, Mitani S, Shima T, et al. High electrical resistivity and soft properties of Fe-Mg-O thin films, J. Magn. Soc. Jpn., 1998, (22): 625~630.
    [90] Bai H L, Jiang E Y, Tunnel magnetoresistance (TMR) in ferromagnetic metal-insulator granular films, Chinese Science Bulletin, 2001, (46): 529~537.
    [91] Mitani S, Takanashi K, Yakushiji K, Anomalous behavior of temperature and bias-voltage dependence of tunnel-type giant magnetoresistance in insulating granular systems, J. Appl. Phys., 1998, (83): 6524~6526.
    [92] Helman J S, Abeles B, Tunneling of spin-polarized electrons and magnetoresistance in granular Ni films, Phys. Rev. Lett., 1976, (37): 1429~1432.
    [93] Miyazaki T, Tezuka N, Spin polarized tunneling in ferromagnet/insulator/ ferromagnet junctions, J. Magn. Magn. Mater., 1995, (151): 403~410.
    [94] Dai J, Tang J, Temperature dependence of the conductance and magnetoresistance of CrO2 powder compacts, Phys. Rev. B, 2001, (63): 064410-1~064410-5
    [95] Coey J M D, Powder magnetoresistance (invited), J. Appl. Phys., 1999, (85) 5576~5581.
    [96] Coey J M D, Berkowitz A E, Balcells L, Magnetoresistance of Chromium Dioxide Powder Compacts, Phys. Rev. Lett., 1998, (80): 3815~3818.
    [97] Watts S M, Wirth S, Molnar S V, Evidence for two-band magnetotransport in half-metallic chromium dioxide, Phys. Rev. B, 2000, (61): 9621~9628.
    [98] Shang C H, Nowak J, Jansen R, Temperature dependence of magnetoresistance and surface magnetization in ferromagnetic tunnel junctions, Phys. Rev. B, 1998, (58): R2917~2920.
    [99] Itoh H, Ohsawa T, Inoue J, Magnetoresistance of Ferromagnetic Tunnel Junctions in the Double-Exchange Model, Phys. Rev. Lett., 2000, (84): 2501~2504.
    [100] Hong M H, Hono K, Microstructure of FePt/Pt Magnetic thin films with high perpendicular coercivity, J. Appl. Phys., 1998, (84): 4403~4409.
    [101] Ishio S, Mori N, Yoshino T, et al, Magnetic anisotropy field Hk and domain structure in L10 FexPt1-x films, J. Magn. Magn. Mater., 2001, (235): 148~152.
    [102] Sato K, Bian B, Hanada T, et al, Oriented L10-FePt nanoparticles and their magnetic properties, Scripta. Mater., 2001, (44): 1389~1393.
    [103] Chen C, Osamu K, Satoshi O, et al, Ordering and orientation of CoPt/SiO2 granular films with additive Ag, Appl. Phys. Lett., 2000, (76): 3218~3220.
    [104] Kitakami O, Shimada Y, Okiwa K, et al, Lou-temperature ordering of L10-CoPt thin films promoted by Sn, Pb, Sb, and Bi additives, Appl. Phys. Lett., 2001, (78): 1104~1106.
    [105] Luo C P, Liou S H, Gao L, Nanostructured FePt: B2O3 thin films with perpendicular magnetic anisotropy, Appl. Phys. Lett., 2000, (77): 2225~2227.
    [106] Takeshi S, Osamu K, Yutaka S, Grain growth and L10 ordering in FePt-SiO2 granular films, J. Magn. Magn. Mater., 2002, (239): 310~312.
    [107] Shima T, Mitani S, et al, Low temperature fabrication of L10 ordered FePt alloy by alternate monatomic layer deposition, Appl. Phys. Lett., 2002, (80): 288~230.
    [108] Kirk T L, Hellwig O, et al, Coercivity mechanisms in positive exchang-biased Co films and Co/Pt multilayers, Phys. Rev. B, 2002, (65): 224426.
    [109] Leroux C, Cadeville M C, Bohnes V P, et al, Comparative investigation of structural and transport properties of L10 NiPt and CoPt phases; the role of magnetism, J. Phys. F: Met. Phys., 1988, (18): 2033~2051.
    [110] Hsiao H H, Panda R N, Shih J C, et al, Effect of nitridation on magnetic properties of Fe53Pt47 thin film, J. Appl. Phys., 2002, (91): 3145~3149.
    [111] Olikawa K, Qin G W, Okamoto S, et al, Thermodynamic calculations of the effect of B and Ta on magnetically induced phase separation in Co-Cr-Pt alloys, Appl. Phys. Lett., 2002, (80): 2704~2706.
    [112] Shima T, Takanashi K, Takahashi Y K, et al, Preparation and magnetic properties of highly coercive FePt films, Appl. Phys. Lett., 2002, (81): 1050~1052.
    [113] Shima T, Morigushi T, Mitani S, et al, Low-Temperature fabrication of L10 ordered FePt alloy by alternate monatomic layer deposition, Appl. Phys. Lett., 2002, (80): 288~290.
    [114] Xu Y F, Chen J S, and Wang J P, In Situ ordering of FePt thin films with face-centered-tetragonal(001) texture on Cr100-xRux underlayer at low substrate temperature, Appl. Phys. Lett., 2002, (80): 3325~3327.
    [115] Zeng H, Yan M L, Powers N, et al, Orientation-controlled nonepitaxial L10 CoPt and FePt films, Appl. Phys. Lett., 2002, (80): 2350~2352.
    [116] Halley D, Auric P, Gilles B, et al, L10 ordering at different stages of FePb epitaxial growth, J. Appl. Phys., 2002, (91): 9757~9763.
    [117] Guzman M, Delplancke J L, Long G J, et al, Morphologic and magnetic properties of Pd100-xFex nanoparticles prepared by ultrasound assisted electro- chemistry, J. Appl. Phys., 2002, (92): 2634~2640.
    [118] Shi Y S, Qian D, Dong G S, et al, Electronic structure and magnetism of Fe1-xPdx alloys, Phys. Rev. B, 2002, (65): 172401~172404.
    [119] Barmak K, Kim J, Shell S, et al, Calorimetric studies of the A1 to L10 tansfor- mation in FePt and CoPt thin films, Appl. Phys. Lett., 2002, (80): 4268~4270.
    [120] Zhang Z and Satpathy S, Electron states, magnetism, and the Verwey transition in magnetite, Phys. Rev. B, 1991, (44): 13319~13331.
    [121] Dedkov Y S, Rudiger U, Guntherodt G, Evidence for the half-metallic ferromagnetic state of Fe3O4 by spin-resovled photoelection spectroscopy, Phys. Rev. B, 2002, (65): 064417-1~4.
    [122] Meservey R, Tedrow P M, Spin-polarized electron tunneling, Phys. Rep., 1994, (238): 173~243.
    [123] Soulen R J, Byers J M, Osofsky M S, et al, Measuring the Spin Polarization of a Metal with a Superconducting Point Contact, Science, 1998 (282): 85~88.
    [124] Coey J M D, Versluijs J J, et al, Half-Metallic oxide point contacts, J. Phys. D: Appl. Phys., 2002, (35): 2457~2466.
    [125] Versluijs J J, Bari M A, Coey J M D, Magnetoresistance of Half-Metallic Oxide Nanocontacts, Phys. Rev. Lett., 2001 (87): 026601-1~026601-4.
    [126] Park J H, Vescovo E, Kim H J, et al, Direct evidence for a half-metallic ferromagnet, Nature, 1998, (392): 794~796.
    [127] Soeya S, Hayakawa J, Takahashi H, et al, Development of half-metallic ultrathin Fe3O4 films for spin-transport devices, Appl. Phys. Lett., 2002, (80): 823~825.
    [128] Jeng H T, Guo G Y, First-principles investigations of the orbital magnetic moments in CrO2, J. Appl. Phys., 2002, (92): 951~957.
    [129] Parker J S, Watts S M, Ivanov P G, et al, Spin Polarization of CrO2 at and across an Artificial Barrier, Phys. Rev. Lett., 2002, (88): 196601-1~196601-4.
    [130] Poddar P, Fried T, Markovich G., First-Order metal-insulator transition and spin-polarized tunneling in Fe3O4 nanocrystals, Phys. Rev. B, 2002, (65): 172405.
    [131] Pan Q, Pokhil T G, et al, Domain structures in epitaxial (110) Fe3O4 Particles studied by magnetic force microscopy, J. Appl. Phys., 2002, (91): 5945~5950.
    [132] Hrianca I, Caizer C, Schlett Z, Dynamic magnetic behavior of Fe3O4 colloidal nanoparticles, J. Appl. Phys., 2002, (92): 2125~2132.
    [133] Hsu J H, Chen S Y, Chang C R, Anomalous positive magnetoresistance in Fe3O4-Ag composite, J. Magn. Magn. Mater., 2002, (242-245): 479~481.
    [134] Stoner E C, Wohlfarth E P, A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys, IEEE. Trans. Magn., 1991, (27): 3475~3518.
    [135] 薛增全,吴全德,李洁,电子工业出版社,《薄膜物理》,97
    [136] 吴自勤,王兵,科学出版社,《薄膜生长》,402
    [137] Li Z Q, Chen J L, Zhang X X, et al, Catalytic synthesized carbon nanostructures from methane using nanocrystalline Ni, Carbon, 2002, (40) 409~415.
    [138] Zem A, Kleinschroth I, Gonzalez A, et al, Transmission electron microscopy– investigation of the microstructure of rapidly quenched Co80B20 alloys, J. Appl. Phys., 1999, (85): 7609~7615.
    [139] Bai H L, Jiang E Y, Wang C D, et al, Structural stability of heat-treated CoN/CN soft X-ray multilayers fabricated by dual-facing-target sputtering, Appl. Phys. A, 1998, (66): 423~433.
    [140] Sahimi M 1994 Applications of Percolation Theory (London:Taylor and Francis) chapter 12.
    [141] Dai J B, Malkinski L M and Tang J K, Analysis of the Thickness Dependence of MagneticProperties and Interparticle Interaction of Granular Films, IEEE Trans. Magn., 2000, (36): 2918~2920.
    [142] Gaunt P, Ferromagnetic domail-wall pinning by a random array of inhomogeneities, Phil. Mag. B, 1983, (48): 261~276.
    [143] Jack K H, The synthesis, structure, and characterization of α''-Fe16N2 (Invited), J. Appl. Phys. 1994, (76): 6620~6625.
    [144] Jack K H, The occurrence and the crystal structure of α’’-iron nitride: A new type of interstitial alloy formed during the temperature of nitrogen-martensite, Proc. Roy. Roc. London Ser., 1951, (A208): 216~224.
    [145] Jack K H, The iron-nitrogen system: The preparation and crystal structure of nitrogen-austenite (γ) and nitrogen-martensite (α’), Proc. Roy. Roc. London Ser., 1951, (A208): 200~215.
    [146] Sugita Y, Mitsuoka K, Komuro M, et al, Giant magnetic moment and other magnetic properties of epitaxially grown Fe16N2 single-crystal films (invited), J. Appl. Phys., 1991, (70): 5977.
    [147] Cullity B, Elements of X-Ray Diffraction, Addison-Wesley, Inc., London, 1978.
    [148] Warren B E, X-ray Diffraction (Addison-Wesley, Reading, MA, 1969), Chap 12
    [149] Cebollada A, Weller D, Stichit J, et al, Enhanced magneto-optical Kerr effect in spontaneously ordered FePt alloys: Quantitative agreement between theory and experiment, Phys. Rev. B, 1994, (50):3419~3423.
    [150] Shima T, Moriguchi T, Mitani S, et al, Low-temperature fabrication of L10 ordered FePt alloy by alternate monatomic layer deposition, Appl. Phys. Lett., 2002, (80): 288~291.
    [151] Ding Y, Majetich S A, Kim J, et al, Sintering prevention and phase transformation of FePt nanoparticles, J. Magn. Magn. Mater., 2004, (284): 336~340.
    [152] Miedema A R, Chatel P F, Boer F R, Physica B, 1980, (100): 1; Niessen A K, Miedema A R, Boer F R, Boom R, Physica B, 1988, (151): 401.
    [153] Ferre R, Ounadjela K, George J M, et al, Magnetization processes in nickel and cobalt electrodeposited nanowires, Phys. Rev. B, 1997, (56): 14066~14075.
    [154] Okamoto S, et al, Chemical-order-dependent magnetic anisotropy and exchange stiffness constant of FePt (001) epitaxial films, Phys. Rev. B, 2002, (66): 024413.
    [155] Liu Kai, Zhao L, Klavins P, et al. Extrinsic magnetoresistance in magnetite nanoparticles, J. Appl. Phys., 2003, 93(10): 7951~7953
    [156] Skumryev V, Stoyanov S, Zhang Y, et al, Beating the superparamagnetic limit with exchange bias, Nature, 2003 (423): 850~853.
    [157] Furubayashi T and Mamiya H, Exchange anisotropy in nano-granular Fe-FeF2 composite films, Phys. Stat. Sol. c, 2004, (1): 3432~3436.
    [158] Yang J B, Zhou X D, Yelon W B, et al, Magnetic and structural studies of the Verwey transition in Fe3– O4 nanoparticles, J. Appl. Phys., 2004, (95): 7540~7542.
    [159] Gong G Q, Gupta A, Xiao G, et al, Magnetoresistance and magnetic properties of epitaxial magnetite thin films, Phys. Rev. B 1997, (56): 5096~99.
    [160] Liu Hui, Jiang E Y, Bai H L, et al, Large room-temperature spin-dependent tunneling magnetoresistance in polycrystalline Fe3O4 films, Appl. Phys. Lett. 2003, (83): 3531~33; J. Appl. Phys. 2004, (95):5661
    [161] Park C D, Peng Y G, Zhu J G, et al, Magnetoresistance of polycrystalline Fe3O4 films prepared by reactive sputtering at room temperature, J. Appl. Phys. 2005, (97): 10C303
    [162] Dimitrov D V, Zhang S F, Xiao J Q, et al, Effect of exchange interactions at antiferromagnetic/ferromagnetic interfaces on exchange bias and coercivity, Phys. Rev. B, 1998, (58): 12090.
    [163] Liu H, Jiang E Y, Bai H L, et al, Thickness dependence of magnetic and magneto-transport properties of polycrystalline Fe3O4 films prepared by reactive sputtering at room temperature, J. Phys. D: Appl. Phys. 2003, (36): 2950~2953
    [164] Zheng R K, Wen G H, Fung K K, et al, Training effect of exchange bias in γ-Fe2O3 coated Fe nanoparticles, Phys. Rev. B, 2004, (69): 214431
    [165] Zhong Y L, Lin J J, Observation of a linear mean-free-path dependence of the electron–phonon scattering in AuPd films, Phys. Rev. Lett., 1998, (80): 588~91.
    [166] Wu C Y, Lin J J, Weak-localization and Maki-Thompson superconducting fluctuation effects in crystalline disordered Ti–Al–(Sn,Co) alloys at T>Tc, Phys. Rev. B, 1994, (50): 385~94.
    [167] Mui K C, Lindenfeld P, McLean W L, Localization and electron-interaction contributions to the magentoresistance in three-dimensional metallic granular aluminum, Phys. Rev. B, 1984, (30): 2951~4.
    [168] Aronov A G, Gershenzon M E, Zhuravlev Y E, Quantum effects in percolation ystems. Granular Cu1-xOx films, Sov. Phys. JETP., 1984, (60): 554~63.
    [169] Lin J J, Yamada R I, Kobayashi S, Highly isotropic magnetoresistances of high sheet-resistance copper-particle films, J. Phys. Soc. Jpn. 1994, (63): 4514~20.
    [170] Bergmann G, Weak localization in thin films, a time-offlight experiment with conduction electrons. Phys. Rep. 1984, (107), 1~58.
    [171] Lin J J, Bird J P, Recent experimental studies of electron dephasing in metal and semiconductor mesoscopic structures, J. Phys.: Condens Matter, 2002, (14): R501~96.
    [172] Zhang X X, Wan C C, Liu H, et al, Giant Hall Effect in Nonmagnetic Granular Metal Films, Phys. Rev. Lett. 2001, (86): 5562~5565.
    [173] 刘晖,《金属—绝缘体颗粒薄膜的输运特性研究》,博士学位论文,天津大学,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700