磁性温敏聚合物纳米微囊的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境响应性材料是一类在外界环境微小变化的刺激下,自身的某些物理或化学性质会发生相应改变的材料,其在分离、催化、药物释放、传感器等方面有着许多潜在的应用。温度响应性聚合物和磁性纳米材料是研究较多的环境响应性材料,这是由于改变温度不仅易于控制,而且可以方便地应用于体外和体内,而磁性纳米材料可以通过外加磁场方便地进行控制。聚合物纳米微囊结构稳定、其内部的空心区能容纳大量的或者大的客体分子,因而引起了人们极大的兴趣。本论文围绕具有温度和磁响应的聚合物纳米微囊的制备展开,主要取得了以下几方面的结果:
     (1)发展了一种简便高效制备温敏性聚(N-异丙基丙烯酰胺)(PNIPAM)纳米微囊的方法。首先,通过无皂乳液聚合法制备了单分散P(St-co-NIPAM)微球,再以P(St-co-NIPAM)微球为种子,种子乳液聚合制备了P(St-co-NIPAM)/PNIPAM核/壳结构微球。P(St-co-NIPAM)微球的粒径可以通过反应体系中加入的十二烷基硫酸钠(SDS)的量进行控制。当SDS的加入量从0增加至0.20 g时,动态光散射(DLS)测得的微球粒径从268 nm减小至43 nm。PNIPAM壳层的厚度可以通过壳层单体NIPAM的加入量进行调节,当保持壳层交联度(交联剂N,N'-亚甲基二丙烯酰胺(MBA)与NIPAM的摩尔比)为10%,NIPAM单体加入量为0.5、1.0和2.0 g时,25℃下DLS测得的PNIPAM壳层的厚度分别为31、67和89 nm。核/壳结构微球的温度敏感性与壳层PNIPAM的交联度有关,当NIPAM单体加入量为1.0 g时,随着壳层交联度从5%变化到10%和15%,微球的溶胀比(定义为(D_(25℃)/D_(45℃))~3)从16.1降低到11.8和7.9。PNIPAM纳米微囊通过四氢呋喃(THF)溶解除去P(St-co-NIPAM)核得到,用FTIR、TEM和DLS等表征了PNIPAM纳米微囊。由于没有P(St-co-NIPAM)核的限制,空心PNIPAM纳米微囊表现出更强的溶胀和收缩能力。
     (2)使用PSt/P(NIPAM-co-AA)核/壳结构微球和-NH_2修饰的磁性Fe_3O_4@SiO_2粒子为功能性模块制备了表面锚接有磁性粒子的P(NIPAM-co-AA)纳米微囊。首先通过种子乳液聚合法制备PSt/P(NIPAM-co-AA)核/壳结构微球,通过改进的St(o|¨)ber方法制备Fe_3O_4@SiO_2磁性粒子,并对Fe_3O_4@SiO_2磁性粒子进行表面-NH_2改性。然后,将-NH_2改性的Fe_3O_4@SiO_2磁性粒子和PSt/P(NIPAM-co-AA)核/壳结构微球通过静电吸附组装在一起,在1-(3-二甲氨基丙基)-3-乙基碳二亚胺(EDC)和N-羟基琥珀酰亚胺(NHS)的共同催化下,核/壳结构微球上的-COOH和磁性粒子上的-NH_2发生酰胺化反应,从而使两种粒子间以共价键相连接。PSt/P(NIPAM-co-AA)核/壳微球表面吸附的磁性Fe_3O_4@SiO_2粒子密度可以通过两种粒子加入量的比例进行控制。使用THF溶解除去PSt/P(NIPAM-co-AA)核/壳微球的PSt核,得到了表面连接有Fe_3O_4@SiO_2磁性粒子的P(NIPAM-co-AA)纳米微囊,纳米微囊显示出磁、pH以及温度等多重响应性。
     (3)通过弱铁磁性氧化铁纳米粒子的磁偶极诱导一维自组装和TEOS的sol-gel反应,制备了蠕虫状氧化铁/SiO_2纳米结构,并在此基础上制备了一维磁性PNIPAM纳米微囊。使用高温水解法制备了磁性氧化铁纳米粒子,纳米粒子的粒径可以通过加入的NaOH/DEG溶液的体积进行控制,磁性纳米粒子的粒径随着加入的NaOH/DEG溶液体积增加而增大。XRD和Raman光谱结果表明制备的磁性纳米粒子是Fe_3O+4和γ-Fe_2O_3的混合物,VSM和ZFC/FC结果表明制备的氧化铁纳米粒子在常温下具有弱铁磁性。在磁极相互作用诱导下,制备的弱铁磁性氧化铁纳米粒子能够在基底上及其胶体分散液中自组装成一维的纳米粒子链。利用氧化铁纳米粒子在其胶体分散液中的一维自组装,结合TEOS的sol-gel反应制备了蠕虫状的一维氧化铁/SiO_2纳米结构,一维氧化铁/SiO_2纳米结构的形貌可以通过制备过程中超声功率进行控制,SiO_2层的厚度可以通过TEOS的加入量进行调节。一维氧化铁/SiO_2纳米结构显示出良好的磁响应性,在外加磁场作用下,能够沿着磁场方向发生定向排列。通过溶液聚合制备了NIPAM和γ-(甲基丙烯酰氧)丙基三甲氧基硅烷(MPS)的共聚物P(NIPAM-co-MPS),并将P(NIPAM-co-MPS)接枝在一维氧化铁/SiO_2纳米结构的表面,再通过NIPAM的沉淀聚合在一维氧化铁/SiO_2纳米结构外包覆了交联的PNIPAM层,最后用NaOH溶解除去SiO_2,得到了一维磁性PNIPAM微囊。
Environmentally responsive materials can be defined as the materials that undergo relatively large and abrupt,physical or chemical changes in response to small external changes in the environmental conditions.Environmentally responsive materials can provide a variety of potential applications in separation,catalysis,drug release, sensors,etc.Temperature-responsive polymer and magnetic nanomaterials are widely studied environmentally responsive materials.The change of temperature is not only relatively easy to control,but also easily applicable both in vitro and in vivo. Magnetic materials can be conveniently manipulated by the application of an external magnetic field.Polymer microcontainers have attracted great interest owing to their stable structure,inner void where a great deal of molecules or big molecules can be encapsulated.Based on the research background,this thesis has focused on the preparation of polymer microcontainers with thermosensitive and magnetic properties and the results of each part are listed as follows.
     1) A reliable and efficient route for preparing thermoresponsive microcontainers based on cross-linked poly(N-isopropylacrylamide)(PNIPAM) was developed.Firstly, monodisperse thermoresponsive core/shell microspheres composed of a P(styrene (St)-co-NIPAM) core and a cross-linked PNIPAM shell were prepared by seeded emulsion polymerization using P(St-co-NIPAM) particles as seeds.The size of the P(St-co-NIPAM) core can be conveniently tuned by different dosages of sodium dodecyl sulfate(SDS).As the amount of SDS increased from 0 to 0.20 g,the size of the microsphere measured by dynamic light scattering(DLS) decreased from 246 nm to 43 nm.The thickness of the cross-linked PNIPAM shell can be controlled by varying the dosage of NIPAM in the preparation of PNIPAM shell.When the crosslinking degree(defined as molar percentage ratio of the cross-linker(N, N'-methylenebisacrylamide,MBA) to NIPAM) was kept constant as 10%and the amount of NIPAM are 0.5,1.0 and 2.0 g,the thickness of PNIPAM shell measured at 25℃are 31,67 and 89 nm,respectively.The thermosensitivity of the core/shell microspheres relates to the crosslinking degree of the shell.With increasing the crosslinking degree from 5%to 10%and 15%,the swelling ratio defined as(D_(20℃)/D_(45℃))~3 decreases from 16.1 to 11.8 and 7.9.Then,PNIPAM microcontainers were obtained by simply dissolving the P(St-co-NIPAM) core with tetrahydrofuran(THF). The core/shell microspheres and the PNIPAM microcontainers were characterized by transmission electron microscopy,dynamic light scattering,atomic force microscopy, and Fourier-transform infrared spectroscopy.By removing the core,the PNIPAM shell was released from the constraint of the core and the PNIPAM microcontainers can shrink and swell over a wider range of volume.
     2) P(NIPAM-co-AA) microcontainers surface-anchored with magnetic nanoparticles were prepared using PSt/P(NIPAM-co-AA) core/shell microspheres and amino-modified Fe_3O_4@SiO_2 particles as building blocks.At first,the PSt/P(NIPAM-co-AA) core/shell microspheres were prepared by seeded emulsion polymerization,and the amino-modified Fe_3O_4@SiO_2 particles were prepared by a modified St(o|¨)ber method followed by functionalized by 3-aminopropyltriethoxysilane (APS).Then,the smaller amino-modified Fe_3O_4@SiO_2 particles were assembled onto the surface of PSt/P(NIPAM-co-AA) core/shell microspheres by electrostatic interaction.Subsequently,the two particles were permanently combined through amidation reaction between carboxylic groups and amino groups under the catalysis of 1-ehtyl-3-(3-dimethylaminopropyl)carbodiimide(EDC) and N-hydroxysuccinimide (NHS).The density of the absorbed Fe_3O_4@SiO_2 particles on the surface of the core/shell microspheres can be tuned by the weight ratio of the added two particles. With an increase in the amount of the added amino-modified Fe_3O_4@SiO_2 particles, more surface of the PSt/P(NIPAM-co-AA) core/shell microspheres is covered by magnetic particles.By dissolving the PSt core with THF,novel triple-functional microcontainers with superparamagnetism and pH- and temperature-sensitivity were obtained.
     3) Wormlike one-dimensional(1D) iron oxide/silica nanostructures were prepared through chainlike self-assembly of the magnetic nanoparticles followed by a sol-gel process of TEOS at the surface of the assemblies.Furthermore,1D magnetic PNIPAM microcontainers were prepared.Iron oxide nanoparticles with narrow size distribution were prepared by a high temperature hydrolysis reaction.The size of the magnetic nanoparticles can be controlled by the volume of the added NaOH/DEG solution.The XRD pattern and Raman spectrum confirm that the product is a mixture of Fe_3O_4 andγ-Fe_2O_3.The magnetization curve measured at 300 K and the temperature dependence of zero-field-cooled(ZFC) and field-cooled(FC) magnetization confirm the weak ferromagnetism of the prepared iron oxide nanoparticles at room temperature.The magnetic nanoparticles can self-assemble into 1D nanoparticle chains on substrates as well as in colloid dispersion through magnetic dipolar interaction without the help of an applied magnetic field.The 1D assemblies were further harnessed to prepare 1D nanostructures with aligned magnetic nanoparticle inclusions and a continuous silica shell.Wormlike 1D iron oxide/silica nanostructures were prepared through chainlike self-assembly of the magnetic nanoparticles in a mixture of ethanol,ammonia,and water followed by a sol-gel process of TEOS at the surface of the assemblies.The length of the nanostructures can be controlled by the amplitude of ultrasonication,and the thickness of the silica coating can be tuned by the dosage of TEOS.The 1D nanostructures exhibit high magnetic sensitivity.In the presence of an applied magnetic field,the nanostructures can be oriented and align along the direction of the external magnetic field. P(NIPAM-co-MPS) was prepared by solution polymerization of NIPAM and 3-(trimethoxysily)propyl methacrylate(MPS).Then,P(NIPAM-co-MPS) was grafted onto the 1D iron oxide/silica nanostructures.The 1D iron oxide/silica nanostructures surface-grafted with P(NIPAM-co-MPS) were encapsulated by crosslinked PNIPAM through the precipitation polymerization of NIPAM.By dissolving the SiO_2 with NaOH,1D magnetic PNIPAM microcontainers were obtained.
引文
[1]张立德.纳米材料[M].北京:化学工业出版社,2000.
    [2]姚康德,许美萱,成国祥,彭涛,胡文华.智能材料--21世纪的新材料[M].天津:天津大学出版社,1996.
    [3]高洁,王香梅,李青山.功能纤维与智能材料[M].北京:中国纺织出版社,2004.
    [4]Jeong B.,Gutowska A.Lessons from nature:stimuliresponsive polymers and their biomedical applications[J].Trends Biotechnol.,2002,20(7):305-311.
    [5]Kikuchi A.,Okano T.Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds[J].Prog.Polym.Sci.,2002,27(6):1165-1193.
    [6]Hoffman A.S.,Stayton P.S.,Bulmus V.,et al.Really smart bioconjugates of smart polymers and receptor proteins[J].J.Biomed.Mater.Res.,2000,52:577-586.
    [7]Galaev L.Y.,Mattiasson B."Smart" polymers and what they could do in biotechnology and medicine[J].Trends Biotechnol.2000,17(8):335-340.
    [8]Qiu Y.,Park K.Environment-sensitive hydrogels for drug delivery[J].Adv.Drug Deliv.Rev.,2001,53(3):321-339.
    [9]Gil E.S.,Hudson S.M.Stimuli-responsive polymers and their bioconjugates[J].Prog.Polym.Sci.,2004,29:1173-1222.
    [10]Ebara M.,Yamato M.,Hirose M.,Aoyagi T.,Kikuchi A.,Sakai K.,Okano T.Copolymerization of 2-carboxyisopropylacrylamide with N-isopropylacrylamide accelerates cell detachment from grafted surfaces by reducing temperature[J].Biomacromolecules,2003,4:344-349.
    [11]Uchida K.,Sakai K.,Ito E.,Kwon OH.,Kikuchi A.,Yamato M.,Okano T.Temperature-dependent modulation of blood platelet movement and morphology on poly(N-isopropylacrylamide)-grafted surfaces[J].Biomaterials,2000,21:923-929.
    [12] Nakajima K., Honda S., Nakamura Y., Redondo F. L. H., Kohsaka S., Yamato M., Kikuchi A., Okano T. Intact microglia are cultured and non-invasively harvested without pathological activation using a novel cultured cell recovery method [J]. Biomaterials, 2001, 22: 1213-1223.
    [13] Chilkoti A., Dreher M. R., Meyer D. E., Raucher D. Targeted drug delivery by thermally responsive polymers [J]. Adv. Drug Deliv. Rev. 2002, 54: 613-630.
    [14] Meyer D. E., Kong G. A., Dewhirst M. W., Zalutsky M. R., Chilkoti A.Targeting a genetically engineered elastin-like polypeptide to solid tumors by local hyperthermia [J]. Cancer Res., 2001, 61: 1548-1554.
    [15] Jeong B., Lee K. M., Gutowska A., An Y. H. Thermogelling biodegradable copolymer aqueous solutions for injectable protein delivery and tissue engineering [J]. Biomacromolecules, 2002, 3: 865-868.
    [16] Fujishige S., Ando K. K. I. Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide) [J]. J. Phys.Chem., 1989,93:3311-3313.
    [17] Schild H. G. Poly(N-isopropylacrylamide): experiment, theory and application [J]. Prog. Polym. Sci., 1992,17: 163-249.
    [18] Dautzenberg H., Gao Y., Hahn M. Formation, structure, and temperature behavior of polyelectrolyte complexes between ionically modified thermosensitive polymers [J]. Langmuir, 2000,16: 9070-9081.
    [19] Aoyagi T., Ebara M., Sakai K., Sakurai Y., Okano T. Novel bifunctional polymer with reactivity and temperature sensitivity [J]. J. Biomater. Sci., Polym. Ed., 2000,1:101-110.
    [20] Aoki T., Muramatsu M., Torii T., Sanui K., Ogata N. Thermosensitive phase transition of an optically active polymer in aqueous milieu [J]. Macromolecules,2001,34:3118-3119.
    [21] Gan L. H., Gan Y. Y., Deen G. R. Poly(N-acryloyl-N'-propylpiperazine): a new stimuli-responsive polymer [J]. Macromolecules, 2000, 33: 7893-7897.
    [22] Inoue T., Chen G. H., Nakamae K., Hoffman A. S. Temperature sensitivity of a hydrogel network containing different LCST oligomers grafted to the hydrogel backbone[J].Polym.Gels Netw.,1997,5(6):561-575.
    [23]Maeda Y.IR spectroscopic study on the hydration and the phase transition of poly(vinyl methyl ether) in water[J].Langmuir,2001,17:1737-1742.
    [24]Okubo M.,Ahmad H.,Suzuki T.Synthesis of temperaturesensitive micron-sized monodispersed composite polymer particles and its application as a carrier for biomolecules[J].Colloid Polym.Sci.,1998,276:470-475.
    [25 Suwa K.,Yamamoto K.,Akashi M.,Takano K.,Tanaka N.,Kunugi S.Effects of salt on the temperature and pressure responsive properties of poly(N-vinylisobutyramide) aqueous solutions[J].Colloid Polym.Sci.,1998,276:529-533.
    [26]Lele A.K.,Hirve M.M.,Badiger M.V.,Mashelkar R.A.Predictions of bound water content in poly(N-isopropylacrylamide) gels[J].Macromolecules,1997,30(1):157-160.
    [27]Wu C.,Zhou S.Volume phase transition of swollen gels:discontinuous or continuous?[J].Macromolecules,1997,30(3):574-576.
    [28]Wang X.,Xing P.,Wu C.Comparation of the coil-to-globule and the globule-to-coil transition of a single poly(isopropylacrylamide) homopolymer chain in water[J].Macromolecules,1998,31(9):2972-2976.
    [29]吴奇,汪晓辉,高均.激光光散射研究聚(N-异丙基丙烯酰胺)单链及其智能凝胶微球在水中的相变(上)[J].高分子通报,1998,(3):9-16.
    [30]吴奇,汪晓辉,高均.激光光散射研究聚(N-异丙基丙烯酰胺)单链及其智能凝胶微球在水中的相变(下)[J].高分子通报,1998,(4):1-9.
    [31]Wu A.S.,Hoffman A.S.,Yager P.J.Synthesis and characterization of thermally reversible macroporous poly(N-isopropylacrylamide) hydrogels[J].J.Polym.Sci.A:Polym.Chem.,1992,30:2121-2129.
    [32]Kishi R.,Hirasa O.,Ichijo H.Fast responsive poly(N-isopropylacrylamide)hydrogels prepared by γ-ray irradiation[J].Polym.Gels Netw.,1997,5(2):145-151.
    [33]Beebe D.J.,Moore J.S.,Bauer J.M.,Qing Y.Q.,Robin H.,Liu R.H.,Chelladurai D.C.,Jo B.Functional hydrogel structures for autonomous flow control inside microfluidic channels[J].Nature,2000,404:588-590.
    [34]Kaneko Y.,Nakamura S.,Sakai K.,Aoyagi T.,Kikuchi A.,Sakurai Y.,Okano T.Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains[J].Macromolecules,1998,31:6099-6105.
    [35]Yoshida R.,Uchida K.,Kaneko Y.,Sakai K.,Kikuchi A.,Sakurai Y.,Okano T.Comb-type grafted hydrogels with rapid de-swelling response to temperature changes[J].Nature,1995,374:240-242.
    [36]Annaka M.,Tanaka C.,Nakahira T.,Sugiyama M.,Aoyagi T.,Okano T.Fluorescence study on the swelling behavior of comb-type grafted poly(N-isopropylacrylamide) hydrogels[J].Macromolecules,2002,35:8173-8179.
    [37]Shibayama M.,Tanaka T.Volume phase transition and related phenomena of polymer gels[J].Adv.Polym.Sci.,1993,109:1-62.
    [38]Chen G.,Hoffman A.S.Graft copolymers that exhibit temperature-induced phase transition over a wide range of pH[J].Nature,1995,373:49-52.
    [39]Neradovic D.,Hinrichs W.L.J.,Kettenes-van den Bosch J.J.,Hennink W.E.Poly(N-isopropylacrylamide) with hydrolysable lactic acid ester side groups:a new type of thermosensitive polymer[J].Macromol.Rapid Commun.,1999,20:577-581.
    [40]Takei Y.G.,Aoki T.,Sanui K.,Ogata N.,Sakurai Y.,Okano T.Dynamic contact angle measurement of temperature-responsive surface properties for poly(N-isopropylacrylamide) grafted surfaces[J].Macromolecules,1994,27:6163-6166.
    [41]Sukuki A.,Tanaka T.Phase transition in polymer gels induced by visible light[J].Nature,1990,346:345-347.
    [42]Chung J.E.,Yokoyama M,Aoyagi T,Sakurai Y,Okano T.Effect of molecular architecture of hydrophobically modified poly(N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers[J].J.Control.Release,1998,53:119-130.
    [43]Katono H.,Maruyama A.,Sanui K.,Ogata N.,Okano T.,Sakurai Y. Thermo-responsive swelling and drug release swithching of interpenetrating polymer networks composed of poly(acrylamide-co-butylmethacrylate) and poly(acrylic acid)[J].J.Control.Release,1991,16:215-228.
    [44]Tanaka T.Gels[J].Scientific America,1981,244:124-138.
    [45]Pelton R.Temperature-sensitive aqueous microgels[J].Adv.Colloid Interf.Sci.,2000,85(1):1-33.
    [46]Duracher D.,Ela(i|¨)ssari A.,Pichot C.Preparation of poly(N-isopropylmethacrylamide) latexes kinetic studies and characterization[J].J.Polym.Sci.A:Polym.Chem.,1999,37:1823-1837.
    [47]Hoare T.,Pelton R.Highly pH and temperature responsive microgels functionalized with vinylacetic acid[J].Macromolecules,2004,37:2544-2550.
    [48]Makino K.,Yamanoto S.,Fujimoto K.,Kawaguchi H.,Oshima H.Surface structure of latex particles covered with temperature-sensitive hydrogel layers[J].J.Colloid Interface Sci.,1994,166(1):251-258.
    [49]Okubo M.,Ahmad H.Adsorption behavior of emulsifiers and biomolecules on temperature-sensitive polymer particles[J].Colloid Polym.Sci.,1996,274(2):112-116.
    [50]Dingenouts N.,Norhausen Ch.,Ballauff M.Observation of the volume transition in thermosensitive core-shell latex particles by small-angle X-ray scattering[J].Macromolecules,1998,31(25):8912-8917.
    [51]Duracher D.,Sauzedde F.,Ela(i|¨)ssari A.,Perrin A.,Pichot C.Cationic amino-containing N-isopropylacrylamide-styrene copolymer latex particles:1-particle size and morphology vs.polymerization process[J].Colloid Polym.Sci.,1998,276(3):219-231.
    [52]Prazeres T.J.V.,Santos A.M.,Martinho J.M.G,Ela(i|¨)ssari A.,Pichot C.Adsorption of oligonucleotides on PMMA/PNIPAM core-shell latexes:polarity of the PNIPAM shell probes by fluorescene[J].Langmuir,2004,20(6):6834-6840.
    [53]Lu Y.,Wittemann A.,Ballauff M.,Drechsler M.Preparation of polystyrene-poly(N-isopropylacrylamide)(PS-PNIPAM) core-shell particles by photoemulsion polymerization[J].Macromol.Rapid.Commun.,2006, 27(14):1137-1141.
    [54] Suzuki D., Kawaguchi H. Gold nanoparticles localization at the core surface by using thermosensitive core-shell particles as a template [J]. Langmuir, 21:12016-12024.
    [55] Li X., Zuo J., Guo Y. L, Yuan X. H. Preparation and characterization of narrowly distributed nanogels with temperature-responsive core and pH-responsive shell [J]. Macromolecules, 2004, 37(26): 10042-10046.
    [56] Jones C. D., Lyon L. A. Synthesis and characterization of multiresponsive core-shell microgels [J]. Macromolecules, 2000,33: 8301-8306.
    [57] Xiao X. C., Chu L. Y., Chen W. M., Wang S., Li Y. Positively thermo-sensitive monodisperse core-shell microspheres [J]. Adv. Funct. Mater., 2003,13: 847-852.
    [58] Zha L. S., Zhang Y, Yang W. L., Fu S. K. Monodisperse temperature-sensitive microcontainers [J]. Adv. Mater., 2002,14: 1090-1092.
    [59] Zhang Y. W, Jiang M., Zhao J. X., Ren. X. W., Chen D. Y., Zhang G. Z. A novel route to thermosensitive polymeric core-shell aggregates and hollow spheres in aqueous media [J]. Adv. Func. Mater., 2005, 15(4): 695-699.
    [60] Nayak S., Gan D. J., Serpe M. J., Lyon L. A. Hollow thermoresponsive microgels [J]. Small, 2005,1: 416-421.
    [61] Singh N., Lyon L. A. Au nanoparticle templated synthesis of pNIPAm nanogels [J]. Chem. Mater, 2007, 19: 719-726.
    [62] Kawaguchi H. Functional polymer microspheres [J]. Prog. Polym. Sci, 2000,25: 1171-1210.
    [63] Kawaguchi H., Fujimoto K., Mizuhara Y. Hydrogel microspheres Ⅲ.temperature-dependent adsorption of proteins on poly-N-isopylacrylamide hydrogel miscrospheres [J]. Colloid Polym. Sci. 1992,270: 53-57.
    [64] Huffman A. S., Afrassiabi A, Dong L. C. Thermally reversible hydrogels: Ⅱ.delivery and selective removal of substances from aqueous solution [J]. J. Control.Release, 1986,4(3):213-222.
    [65] Afrassiabi A., Hoffman A. S., Cadwell L. A. Effect of temperature on the release rate of biomolecules from thermally reversible hydrogels [J]. J. Membrane Sci, 1987,33(2):191-200.
    [66]李雄伟,严昌虹,廖奇.接枝聚合物PAA-g-PIPA微球的制备及其温控释药研究[J].高分子学报,1994,(2):156-161.
    [67]Chu L.Y.,Park S.-H.,Yamaguchi T.,Nakao S.-i.Preparation of thermo-responsive core-shell microcapsules with a porous membrane and poly(N-isopropylacrylamide) gates[J].J.Membrane Sci.,2001,192:27-39.
    [68]Xie R.,Li Y.,Chu L.Y.Preparation of thermo-responsive gating membranes with controlled response temperature.J.Membrane Sci.,2007,289:76-85.
    [69]谢锐,褚良银.环境响应型智能开关膜的研究进展[J].膜科学与技术,2007,(4):1-7.
    [70]Zhang J.G.,Xu S.Q.,Kumacheva E.Polymer microgels:reactors for semiconductor,metal,and magnetic nanoparticles[J].J.Am.Chem.Soc.,2004,126:7908-7914.
    [71]Suzuki D.,Kawaguchi H.Hybrid microgels with reversibly changeable multiple brilliant color[J].Langmuir,2006,22:3818-3822.
    [72]Xu H.X.,Xu J.,Zhu Z.Y.,Liu H.W.,Liu S.Y.In-situ formation of silver nanoparticles with tunable spatial distribution at the poly(N-isopropylacrylamide)corona of unimolecular micelles[J].Macromolecules,2006,39:8451-8455.
    [73]Sun S.H.,Murray C.B.,Weller D.,Folks L.,Moser A.Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices[J].Science,2000,287(5460):1989-1993.
    [74]Miller M.M.,Prinz G.A.,Cheng S.F.,Bounnak S.Detection of a micron-sized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor:a model for a magnetoresistance-based biosensor[J].Appl.Phys.Lett.2002,81,2211-2213.
    [75]Gupta A.K.,Gupta M.Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications[J].Biomaterials,2005,26(18):3995-4021.
    [76]Charles S.W.,Popplewell J.Properties and applications of magnetic liquids[J].Endeavour,1982,6(4):153-161.
    [77] Lu A. H., Salabas E. L., Schuth F. Magnetic nanoparticles: synthesis, protection,functionalization, and application [J]. Angew. Chem. Int. Ed., 2007, 46:1222-1244.
    [78] Park S. -J., Kim S., Lee S., Khim Z. G., Char K., Hyeon T. Synthesis and magnetic studies of uniform iron nanorods and nanospheres [J]. J. Am. Chem. Soc,2000,122(35): 8581-8582.
    [79] Shevchenko E. V., Talapin D. V., Rogach A. L., Kornowski A., Haase M.,Weller H. Colloidal synthesis and self-assembly of CoPt_3 nanocrystals [J]. J. Am.Chem. Soc, 2002,124,11480-11485.
    [80] Chen Q., Rondinone A. J., Chakoumakos B. C., Zhang Z. J. Synthesis of superparamagnetic MgFe_2O_4 nanoparticles by coprecipitation [J]. J. Magn. Magn.Mater., 1999, 194: 1-7.
    [81] Park J., An K., Hwang Y., Park J. -G., Noh H. -J., Kim J. -Y., Park J. -H., Hwang N. -M., Hyeon T. Ultra-large-scale syntheses of monodisperse nanocrystals [J].Nat. Mater., 2004, 3: 891-895.
    [82] Jolivet J. P., Chan(?)ac C., Tronc E. Iron oxide chemistry. from molecular clusters to extended solid networks [J]. Chem. Commun., 2004, 5: 481-487.
    [83] Babes L., Denizot B., Tanguy G., Le Jeune J. J., Jallet P. J. Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study [J]. Colloid Interface Sci., 1999,212 (2): 474-482.
    [84] Fauconnier N., Bee A., Roger J., Pons J. N. Adsorption of gluconic and citric acids on maghemite particles in aqueous medium [J]. Prog. Colloid Polym. Sci.,1996,100: 212-216.
    [85] Laurent S., Forge D., Port M., Roch A., Robic C., Elst L. V., Muller R. N.Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological application [J]. Chem. Rev.,2008,108:2064-2110.
    [86] Sun S., Zeng H., Robinson D. B., Raoux S., Rice P. M., Wang S. X., Li G. X. Monodisperse MFe_2O_4 (M=Fe, Co, Mn) nanoparticles [J]. J. Am. Chem. Soc, 2004,126(1): 273-279.
    [87]Redl F.X.,Black C.T.,Papaefthymiou G.C.,Sandstrom R.L.,Yin M.,Zeng H.,Murray C.B.,O'Brien S.P.Magnetic,electronic,and structural characterization of nonstoichiometric iron oxides at the nanoscale[J].J.Am.Chem.Soc.,2004,126(44):14583-14599.
    [88]Rockenberger J.,Scher E.C.,Alivisatos A.P.A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides[J].J.Am.Chem.Soc.,1999,121(49):11595-11596.
    [89]Farrell D.,Majetich S.A.,Wilcoxon J.P.Preparation and characterization of monodisperse Fe nanoparticles[J].J.Phys.Chem.B,2003,107(40):11022-11030.
    [90]Jana N.R.,Chen Y.F.,Peng X.G.Size- and shape-controlled magnetic(Cr,Mn,Fe,Co,Ni) oxide nanocrystals via a simple and general approach[J].Chem.Mater.,2004,16(20):3931-3935.
    [91]Samia A.C.S.,Hyzer K.,Schlueter J.A.,Qin C.-J.,Jiang J.S.,Bader S.D.,Lin X.-M.Ligand effect on the growth and the digestion of Co nanocrystals[J].J.Am.Chem.Soc.,2005,127(12):4126-4127.
    [92]Li Y.,Afzaal M.,O'Brien P.The syntheis of amino-capped magnetic(Fe,Mn,Co,Ni) oxide nanocrystals and their surface modification for aqueous dispersibility[J].J.Mater.Chem.,2006,16(22):2175-2180.
    [93]Li Z.,Sun Q.,Gao M.Y.Preparation of water-soluble magnetic nanocrystals from hydrated ferric salts in 2-pyrrolidone:mechanism leading to Fe_3O_4[J].Angew.Chem.Int.Ed.,2005,44(1):123-126.
    [94]Hu F.Q.,Wei L.,Zhou Z.,Ran Y.L.,Li Z.,Gao M.Y.Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer[J].Adv.Mater.,2006,18(19):2553-2556.
    [95]Wang X.,Zhuang J.,Peng Q.,Li Y.D.A general strategy for nanocrystal synthesis[J].Nature,2005,437(7055):121-124.
    [96]Deng H.,Li X.L.,Peng Q.,Wang X.,Chen J.P.,Li Y.D.Monodisperse magnetic single-crystal ferrite macrospheres[J].Angew.Chem.Int.Ed.,2005,44(18):2782-2785.
    [97]Langevin D.Micelles and microemulsions[J].Annu.Rev.Phys.Chem.,1992, 43:341-369.
    [98]Gupta A.K.,Gupta M.Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications[J].Biomaterials,2005,26(18):3995-4021.
    [99]Carpenter E.E.,Seip C.T.,O'Connor C.J.Magnetism of nanophase metal and metal alloy particles formed in ordered phase[J].J.Appl.Phys.,1999,85(8):5184-5186.
    [100]Liu C.,Zou B.S.,Rondinone A.J.,Zhang,Z.J.Reverse micelle synthesis and characterization of superparamagnetic MnFe_2O_4 spinel ferrite nanocrystallites[J].J.Phys.Chem.B,2000,104(6):1141-1145.
    [101]Woo K.,Lee H.J.,Ahn J.-P.,Park Y.S.Sol-gel mediated synthesis of Fe_2O_3nanorods[J].Adv.Mater.,2003,15(20):1761-1764.
    [102]Tan W.,Santra S.,Zhang P.,Tapec R.,Dobson J.Preparing nano-size magnetic iron oxide particle in reprographic toner[P].US Patent:6548264,2003.
    [103]del Monte F.,Morales M.P.,Levy D.,Fernandez A.,Oca(?)a M.,Roig A.,Molins E.,O'Grady K.,Serna C.Formation of γ-Fe_2O_3 isolated nanoparticles in a silica matrix[J].Langmuir,1997,13(14):3627-3634.
    [104]Viau G.,Fi(?)vet-Vincent F.,Fi(?)vet F.Monodisperse iron-based particles:precipitation in liquid polyols[J].J.Mater.Chem.,1996,6(6):1047-1053.
    [105]Teranishi T.,Miyake M.Novel synthesis of monodisperse Pd/Ni nanoparticles [J].Chem.Mater.,1999,11(12):3414-3416.
    [106]Pascal C.,Pascal J.L.,Favier F.,Elidrissi Moubtassim M.L.,Payen C.Electrochemical synthesis for the control of γ-Fe_2O_3 nanoparticle size,morphology,microstructure,and magnetic behavior[J].Chem.Mater.,1999,11(1):141-147.
    [107]Juli(?)n-L(?)pez B.,Boissi(?)re C.,Chan(?)ac C.,Grosso D.,Vasseur S.,Miraux S.,Duguet E.,Sanchez C.Mesoporous maghemite-organosilica microspheres:a promising route towards multifunctional platforms for smart diagnosis and therapy[J].J.Mater.Chem.,2007,17:1563-1569.
    [108]Abu Mukh-Qasem R.,Gedanken A.Sonochemical synthesis of stable hydrosol of Fe_3O_4 nanoparticles[J].J.Colloid Interface Sci.,2005,284(2):489-494.
    [109] Ge J. P., Hu Y. X., Biasini M, Beyermann W. P., Yin Y. D. Superparamagnetic magnetite colloidal nanocrystal cluster [J]. Angew. Chem. Int. Ed., 2007, 46(23):4342-4345.
    [110] Ge J. P., Hu Y. X., Biasini M., Dong C. L., Guo J. H., Beyermann W. P., Yin Y D. One-step synthesis of highly water-soluble magnetite colloidal nanocrystals [J].Chem. Eur. J, 2007,13: 7153-7161.
    [111] Bai F., Wang D. S., Huo Z. Y, Chen W., Liu L. P., Liang X., Chen C., Wang X.,Peng Q., Li Y. D. A versatile bottom-up assembly approach to colloidal spheres from nanocrystals [J]. Angew. Chem., 2007, 119: 6770-6773.
    [112] Zhuang J. Q., Wu H. M., Yang Y. G., Cao Y C. Supercrystalline colloidal particles from artificial atoms [J]. J. Am. Chem. Soc, 2007, 129: 14166-14167.
    [113] Sahoo Y., Pizem H., Fried T., Golodnitsky D., Burstein L., Sukenik C. N.,Markovich G. Alkyl phosphonate/phosphate coating on magnetite nanoparticles: a comparison with fatty acids [J]. Langmuir, 2001, 17(25): 7907-7911.
    [114] Sauzedde R, Elaissari A., Pichot C. Hydrophilic magnetic polymer latexes: 1. adsorption of magnetic iron oxide nanoparticles onto various cationic latexes [J]. Colloid Polym. Sci., 1999,277(9): 846-855.
    [115] Deng Y H, Wang C. C., Hu J. H., Yang W. L., Fu S. K. Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approach [J].Colloids and Surface A: Physicochem. Eng. Aspects, 2005, 262: 87-93.
    [116] Xia A., Hu J. H., Wang C. C., Jiang D. L. Synthesis of magnetic microspheres with controllable structure via potymerization-triggered self-positioning of nanocrystals [J]. Small, 2007, 3 (10): 1811-1817.
    [117] Xu Z. Z., Xia A., Wang C. C., Yang W. L., Fu S. K. Synthesis of raspberry-like magnetic polystyrene microspheres [J]. Materials Chemistry and Physics, 2007,103:494-499.
    [118] Liu H. B., Guo J., Jin L., Yang W. L., Wang C. C. Fabrication and functionalization of dendritic poly(amidoamine)-immobilized magnetic polymer composite microspheres [J]. J. Phys. Chem. B, 2008, 112(11): 3315-3321.
    [119] Sun Y. K., Duan L., Guo Z. R., DuanMu Y., Ma M., Xu L., Zhang Y., Gu N. An improved way to prepare superparamagnetic magnetite-silica core-shell nanoparticles for possible biological application[J].J.Magn.Magn.Mater.,2005,285:65-70.
    [120]St(o|¨)ber W.,Fink A.,Bohn E.Controlled growth of monodisperse silica spheres in the micron size range[J].J.Colloid Interface Sci.,1968,26:62-69.
    [121]Lu Y.,Yin Y.D.,Mayers B.T.,Xia Y.N.Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach[J].Nano Lett.,2002,2(3):183-186.
    [122]Liu X.Q.,Xing J.M.,Guan Y.P.,Shan G.B.,Liu H.Z.Synthesis of amino-silane modified superparamagnetic silica supports and their use for protein immobilization[J].Colloids and Surface A:Physicochem.Eng.Aspects,2004,238:127-131.
    [123]Butterworth M.D.,Bell S.A.,Armes S.P.,Simpson A.W.Synthesis and characterization of polypyrrole-magnetite-silica particles[J].J.Colloid Interface Sci,.1996,183(1):91-99.
    [124]Philipse A.P.,van Bruggen M.P.B.,Pathmamanoharan C.Magnetic silica dispersions:preparation and stability of surface-modified silica particles with a magnetic core[J].Langmuir,1994,10(1):92-99.
    [125]Tartaj P.,Serna C.J.Microemulsion-assisted synthesis of tunable superparamagnetic composites[J].Chem.Mater.,2002,14(10):4396-4402.
    [126]Lyon J.L.,Fleming D.A.,Stone M.B.,Schiffer P.,Williams M.E.Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding[J].Nano Lett.,2004,4(4):719-723.
    [127]Lin J.,Zhou W.L.,Kumbhar A.,Fang J.Y.,Carpenter E.E.,O'Connor C.J.Gold-coated iron(Fe@Au) nanoparticles:synthesis,characterization,and magnetic field-induced self-assembly[J].J.Solid State Chem.,2001,159(1):26-31.
    [128]Kim J.,Park S.,Lee J.E.,Jin S.M.,Lee J.H.,Lee I.S.,Yang I.,Kim J.-S.,Kim S.K.,Cho M.-H.,Hyeon T.Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy[J].Angew.Chem.Int.Ed.,2006,45:7754-7758.
    [129]Paul K.G.,Frigo T.B.,Groman J.Y.,Groman E.V.Synthesis of ultrasmall superparamagnetic iron oxides using reduced polysaccharides[J].Bioconjugate Chem.,2004,15(2):394-401.
    [130]Lee H.S.,Kim E.H.,Shao H.,Kwak B.K.Synthesis of SPIO-chitosan microspheres for MRI-detectable embolotherapy[J].J.Magn.Magn.Mater.,2005,293(1):102-105.
    [131]Kang H.W.,Josephson L.,Petrovsky A.,Weissleder R.,Bogdanov A.J.Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture[J].Bioconjugate Chem.,2002,13(1):122-127.
    [132]Chastellain M.,Petri A.,Hofmann H.Particle size investigations of a multistep synthesis of PVA coated superparamagnetic nanoparticles[J].J.Colloid Interface Sci.,2004,278(2):353-360.
    [133]Lee J.-H.,Huh Y.-M.,Jun Y.,Seo J.-w.,Jang J.-t.,Song H.-T.,Kim S.J.,Cho E.-J.,Yoon H.-G.,Suh J.-S.,Cheon J.Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging[J].Nat.Med.,2007,13:95-99.
    [134]Jun Y.,Huh Y.-M.,Choi J.-s.,Lee J.-H.,Song H.-T.,Kim S.J.,Yoon S.,Kim K.-S.,Shin J.-S.,Suh J.-S.,Cheon J.Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging[J].J.Am.Chem.Soc.,2005,127:5732-5733.
    [135]Hahn Y.K.,Jin Z.,Kang H.,Oh E.,Han M.-K.,Kim H.-S.,Jang J.-t.,Lee J.-H.,Cheon J.,Kim S.-H.,Park H.S.,Park J.-K.Magnetophoretic immunoassay of allergen-specific IgE in an enhanced magnetic field gradient[J].Anal.Chem.,2007,79(6):2214-2220.
    [136]Widder K.J.,Morris R.M.,Poore G.,Howard D.P.Jr.,Senyei A.E.,Tumor remission in Yoshida sarcoma-beating rats by selective targeting of magnetic albumin microspheres containing doxorubicin[J].Proceedings of the National Academy of Sciences of the United States of America,1981,78(1):579-581.
    [137]H(a|¨)feli U.O.Magnetically modulated therapeutic systems[J].International Journal of Pharmaceutics,2004,277:19-24.
    [138]Nakamura M.,Decker K.,Chosy J.,Comella K.,Melnik K.,Moore L.,Lasky L.C.,Zborowski M.,Chalmers J.J.Seperation of a breast cancer cell line from human body using a quadrupole magnetic flow sorter[J].Biotechnol.Prog.,2001,17(6):1145-1155.
    [139]Safarik I.,Safarikova M.Use of magnetic techniques for the isolation of cells [J].J.Chromatogr.B,1999,722:33-53.
    [140]Xu C.J.,Xu K.M.,Gu H.W.,Zhang X.F.,Guo Z.H.,Zheng R.K.,Zhang X.X.,Xu B.Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins[J].J.Am.Chem.Sci.,2004,126(11):3392-3393.
    [141]del Campo A.,Sen T.,Lellouche J.P.,Bruce I.J.Multifunctional magnetite and silica-magnetite nanoparticles:synthesis,surface activation and applications in life science[J].J.Magn.Mag.Mater.,2005,293(1):33-40.
    [142]Zhao X.J.,Tapec-Dytioco R.,Wang K.M.,Tan W.H.Collection of trace amounts of DNA/mRNA molecules using genomagnetic nanocapturers[J].Anal.Chem.,2003,75(14):3476-3483.
    [143]邓勇辉,汪长春,杨武利,胡建华,金岚,褚轶雯,府寿宽,沈锡中.磁性聚合物微球研究进展[J].高分子通报,2006,(5):27-36.
    [144]胡书春,周祚万.磁性高分子微球研究进展[J].材料科学与工程学报,2003,21(4):616-619.
    [145]Liong M.,Lu J.,Kovochich M.,Xia T.,Ruehm S.G,Nel A.E.,Tamanoi F.,Zink J.I.Multifunctional inorganic nanoparticles for imaging,targeting,and drug delivery[J].ACS Nano,2008,2(5):889-896.
    [146]Hou Y.,Ye J.,Gui Z.,Zhang G Z.Temperature-modulated photoluminescence of quantum dots[J].Langmuir,2008,24(17):9682-9685.
    [147]Jiang J.,Gu H.W.,Shao H.L.,Devlin E.,Papaefthymiou G C.,Ying J.Y.Bifunctional Fe_3O_4-Ag heterodimer nanoparticles for two-photon fluorescene imaging and magnetic manipulation[J].Adv.Mater.,2008,20(23):4403-4407.
    [148]Ma D.L.,Guan J.W.,Normandin F.,D(?)nomm(?)e S.,Enrignt G,Veres T.,Simard B.Multifunctional nano-architecture for biomedical application[J].Chem.Mater.,2006,18(7):1920-1927.
    [149]Lin Y.-S.,Wu S.-H.,Hung Y.,Chou Y.-H.,Chang C.,Lin M.-L.,Tsai C.-P.,Mou C.-Y.Multifunctional composite nanoparticles:magnetic,luminescent,and mesoporous[J].Chem.Mater.,2006,18(22):5170-5172.
    [150]Deng Y.H.,Yang W.L.,Wang C.C.,Fu S.K.A novel approach for preparation of thermoresponsive polymer magnetic microspheres with core-shell structure[J].Adv.Mater.,2003,15(20):1729-1732.
    [151]Deng Y.H.,Wang C.C.Shen X.Z.,Yang W.L.,Jin L.,Gao H.,Fu S.K.Preparation,characterization,and application of multistimuli-responsive microspheres with fluorescence-labeled magnetic cores and thermoresponsive shells[J].Chem.Eur.J.,2005,11(21):6006-6013.
    [152]Guo J.,Yang W.L.,Deng Y.H.,Wang C.C.,Fu S.K.Organic-dye-coupled magnetic nanoparticles encaged inside thermoresponsive PNIPAM microcapsutes [J].Small,2005,1(7):737-743.
    [153]Guo J.,Yang W.L.,Wang C.C.,He J.,Chen J.Y.Poly(N-isopropylacrylamide)-coated luminescent/magnetic silica microspheres:preparation,characterization,and biomedical applications[J].Chem.Mater.,2006,18(23):5554-5562.
    [154]Ge J.P.,Huynh T.,Hu Y.X.,Yin Y.D.Hierararchichal magnetite/silica nanoassemblies as magnetically recoverable catalyst-supports[J].Nano Lett.,2008,8(3):931-934.
    [155]Rubio-Retama J.,Zafeiropoulos N.E.,Serafinelli C.,Rojas-Reyna R.,Voit B.,Cabarcos E.L.,Stamm M.Synthesis and characterization of thermosensitive PNIPAM microgels covered with superparamagnetic γ-Fe_2O_3 nanoparticles[J].Langmuir,2007,23(20):10280-10285.
    [156]Pian A.,Bhattacharya S.,Lu Y.,Boyko V.,Adler H.-J.P.Temperature-sensitive hybrid microgels with magnetic properties[J].Langmuir,2004,20:10706-10711.
    [157]Sauzedde F.,Ela(i|¨)ssari A.,Pichot C.Hydrophilic magnetic polymer latexes.2.encapsulation of adsorbed iron oxide nanoparticles[J].Colloid Polym.Sci.,1999,277:1041-1050.
    [158]Suzuki D.,Kawaguchi H.Stimuli-sensitive core/shell template particles for immobilizing inorganic nanoparticles in the core[J].Colloid Polym.Sci.,2006, 284:1443-1445.
    [159]Wong J.E.,Gaharwar A.K.,M(u|¨)ller-Schulte D.,Bahadur D.,Richtering W.Dual-stimuli responsive PNIPAm microgel achieved via layer-by-layer assembly:magnetic and thermoresponsive[J].J.Colloid Interface Sci.,2008,324:47-54.
    [1]Hoffman A.S.Hydrogels for biomedical applications[J].Adv.Drug Delivery Reviews,2002,54(1):3-12.
    [2]Zhang J.T.,Huang S.W.,Cheng S.X.,Zhuo R.X.Preparation and properties of poly(N-isopropylacrylamide)/poly(N-isopropylacrylamide) interpenetrating polymer network for drug delivery[J].J.Polym.Sci.Part A:Polym.Chem.,2004,42(5):1249-1254.
    [3]Nayak S.,Lee H.,Chmielewski J.,Lyon L.A.Folate-mediated cell targeting and cytotoxicity using thermoresponsive microgels[J].J.Am.Chem.Soc.,2004,126(33):10258-10259.
    [4]Ichikawa H.,Fukumori Y.A novel positively thermosensitive controlled-release microcapsule with membrane of nano-sized poly(N-isopropylacrylamide) gel dispersed in ethylcellulose matrix[J].J.Controlled Release,2000,63:107-119.
    [5]Murthy N.,Thng Y.X.,Schuck S.,Xu M.C.,J.Fr(?)chet M.J.A novel strategy for encapsulation and release of proteins:hydrogels and microgels with acid-labile acetal cross-linkers[J].J.Am.Chem.Soc.,2002,124(42):12398-12399.
    [6]Hu Z.B.,Chen Y.Y.,Wang C.J.,Zheng Y.D.,Li Y.Polymer gels with engineered environmentally responsive surface patterns[J].Nature,1998,393(6681):149-153.
    [7]Yang C.C.,Tian Y.Q.,Jen A.K.-Y.,Chen W.C.New environmentally responsive fluorescent N-isopropylacrylamide copolymer and its application to DNA sensing[J].J.Polym.Sci.Part A:Polym.Chem.,2006,44(19):5495-5504.
    [8]Kawaguchi H.,Fujimoto K.Smart latexes for bioseperation[J].Bioseparation,1998,7:253-258.
    [9]Carter S.,Rimmer S.,Rutkaite R.,Swanson L.,Fairclough J.P.A.,Sturdy A.,Webb M.Highly branched poly(N-isopropylacrylamide) for use in protein purification[J].Biomacromolecules,2006,7(4):1124-1130.
    [10]Bergbreiter D.E.,Case B.L.,Liu Y.S.,Caraway J.W. Poly(N-isopropylacrylamide) soluble polymer supports in catalysis and synthesis [J].Macromolecules,1998,31(18):6053-6062.
    [11]Bergbreiter D.E.,Liu Y.S.,Osburn P.L.Thermomorphic rhodium(Ⅰ) and palladium(0) catalysts[J].J.Am.Chem.Soc.,1998,120(7):4250-4251.
    [12]Schild H.G.Poly(N-isopropylacrylamide):experiment,theory and application [J].Prog.Polym.Sci.,1992,17(2):163-249.
    [13]Pelton R.H.,Chibante P.Preparation of aqueous lattices with N-isopropylacrylamide[J].Colloids Surf.,1986,20(3):247-256.
    [14]Zhou S.Q.,Chu B.Synthesis and volume phase transition of poly(methacrylic acid-co-N-isopropylacrylamide) microgel particles in water[J].J.Phys.Chem.B,1998,102(8):1364-1371.
    [15]Matsumura Y.,Iwai K.Thermo-responsive behavior and microenvironments of poly(N-isopropylacrylamide) microgel particles as studied by fluorescent label method[J].J.Colloid Interface Sci.,2006,296(1):102-109.
    [16]Ma X.M.,Tang X.Z.Flocculation behavior of temperature-sensitive poly(N-isopropylacrylamide) microgels containing polar side chains with -OH groups[J].J.Colloid Interface Sci.,2006,299(1):217-224.
    [17]Dingenouts N.,Norhausen Ch.,Ballauff M.Observation of the volume transition in thermosensitive core-shell latex particles by small-angle X-ray scattering[J].Macromolecules,1998,31(25):8912-8917.
    [18]Santos A.M.,Ela(i|¨)ssari A.,Martinho J.M.G.,Pichot C.Synthesis of cationic poly(methyl methacrylate)-poly(N-isopropylacrylamide) core-shell latexes via two-stage emulsion copolymerization[J].Polymer,2005,46(4):1181-1188.
    [19]Sun Q.H.,Deng Y.L.In situ synthesis of temperature-sensitive hollow microspheres via interfacial polymerization[J].J.Am.Chem.Soc.,2005,127(23):8274-8275.
    [20]Ela(i|¨)ssari A.,Ganachaud F.,Pichot C.Biorelevant latexes and microgels for the interaction with nucleic acids[J].Top.Curr.Chem.,2003,227:169-193.
    [21]Prazeres T.J.V.,Santos A.M.,Martinho J.M.G.,Ela(i|¨)ssari A.,Pichot C.Adsorption of oligonucleotides on PMMA/PNIPAM core-shell latexes:polarity of the PNIPAM shell probes by fluorescene[J].Langmuir,2004,20(6):6834-6840.
    [22]Lu Y.,Mei Y.,Drechsler M.,Ballauff M.Thermosensitive core-shell particles as carriers for Ag nanoparticles:modulating the catalytic activity by a phase transition in networks[J].Angew.Chem.Int.Ed.,2006,45(5):813-816.
    [23]Ballauff M.Nanoscopic polymer particles with a well-defined surface:synthesis,characterization,and properties[J].Macromol.Chem.Phys.,2003,204(2):220-234.
    [24]Senff H.,Richtering W.,Norhausen Ch.,Weiss A.,Ballauff M.Rheology of a temperature sensitive core-shell latex[J].Langmuir,1999,15(1):102-106.
    [25]Okubo M.,Ahmad H.Adsorption behaviors of emulsifiers and biomolecules on temperature-sensitive polymer particles[J].Colloid Polym.Sci.,1996,274:112-116.
    [26]Lu Y.,Wittemann A.,Ballauff M.,Drechsler M.Preparation of polystyrene-poly(N-isopropylacrylamide)(PS-PNIPAM) core-shell particles by photoemulsion polymerization[J].Macromol.Rapid.Commun.,2006,27(14):1137-1141.
    [27]Xiao X.C.,Chu L.Y.,Chen W.M.,Wang S.,Xie R.Preparation of submicrometer-sized monodispersed thermoresponsive core-shell hydrogel microspheres[J].Langmuir,2004,20(13):5247-5253.
    [28]Suzuki D.,Kawaguchi H.Gold nanoparticle localization at the core surface by using thermosensitive core-shell particles as a template[J].Langmuir,2005,21(25):12016-12024.
    [29]Jones C.D.,Lyon L.A.Synthesis and characterization of multiresponsive core-shell microgels[J].Macromolecules,2000,33(22):8301-8306.
    [30]Zha L.S.,Zhang Y.,Yang W.L.,Fu S.K.Monodisperse temperature-sensitive microcontainers[J].Adv.Mater.,2002,14(15):1090-1092.
    [31]Nayak S.,Gan D.J.,Serpe M.J.,Lyon L.A.Hollow thermoresponsive microgels[J].Small,2005,1(4):416-421.
    [32]Singh N.,Lyon L.A.Au nanoparticle templated synthesis of pNIPAm nanogels [J].Chem.Mater.,2007,19():719-726.
    [33]Zhang Y.W.,Jiang M.,Zhao J.X.,Ren X.W.,Chen D.Y.,Zhang G.Z.A novel route to thermossensitive polymeric core-shell aggragates and hollow spheres in aqueous media[J].Adv.Func.Mater.,2005,15(4):695-699.
    [34]Shiga K.,Muramatsu N.,Kondo T.Preparation of poly(D,L-lactide) and copoly(lactide-glycolide) microspheres of uniform size[J].J.Pharm.Pharmacol.,1996,48:891-895.
    [35]Duracher D.,Sauzedde F.,Ela(i|¨)ssari A.,Perrin A.,Pichot C.Cationic amino-containing N-isopropylacrylamide-styrene copolymer latex particles:1-particle size and morphology vs.polymerization process[J].Colloid Polym.Sci.,1998,276(3):219-231.
    [36]Tsuji S.,Kawaguchi H.Self-assembly of poly(N-isopropylacrylamide)-carrying microspheres into two-dimensional colloidal arrays[J].Langmuir,2005,21(6):2434-2437.
    [37]Kawaguchi H.,Sugi Y.,Ohtsuka Y.Copolymerization of styrene with acrylamide derivatives in an emulsifier-free aqueous medium[J].J.Appl.Polym.Sci.,1981,26(5):1649-1657.
    [1]Nasongkla N.,Bey E.,Ren J.,Ai H.,Khemtong C.,Guthi J.S.,Chin S.-F.,Sherry A.D.,Boothman D.A.,Gao J.Multifunctional polymeric micelles as cancer-targeted,MRI-ultrasensitive drug delivery systems[J].Nano Lett.,2006,6(11):2427-2430.
    [2]Gao J.H.,Liang G.L.,Cheung J.S.,Pan Y.,Kuang Y.,Zhao F.,Zhang B.,Zhang X.X.,Wu E.X.,Xu B.Multifunctional yolk-shell nanoparticles:a potential MRI contrast and anticancer agent[J].J.Am.Chem.Soc.,2008,130(35):11828-11833.
    [3]Kim J.,Kim H.S.,Lee N.,Kim T.,Kim H.,Yu T.,Song I.C.,Moon W.K.,Hyeon T.Multifunctional uniform nanoparticles composed of a magnetic nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescene imaging and for drug delivery[J].Angew.Chem.Int.Ed.,2008,47(44):8438-8441.
    [4]Choi J.-s.,Jun Y.-w,Yeon S.-I.,Kim H.C.,Shin J.-S.,Cheon J.Biocompatible heterostructured nanoparticles for multimodal biological detection[J].J.Am.Chem.Soc.,2006,128(50):15982-15983.
    [5]Van der Bruggen B.,Jansen J.C.,Figoli A.,Geens J.,Boussu K.,Drioli E.Characteristics and performance of a "universal" membrane suitable for gas seperation,pervaporation,and nanofiltration application[J].J.Phys.Chem.B,2006,110,13799-13803.
    [6]Bao J.,Chen W.,Liu T.T.,Zhu Y.L.,Jin P.Y.,Wang L.Y.,Liu J.F.,Wei Y.G,Li Y.D.Bifunctional Au-Fe_3O_4 nanoparticles for protein separation[J].ACS Nano,2007,1(4):293-298.
    [7]Okamoto Y.,Kitagawa F.,Otsuka K.Online concentration and affinity separation of biomolecules using multifunctional particles in capillary electrophoresis under magnetic field[J].Anal.Chem.,2007,79(8):3041-3047.
    [8]Dong W.J.,Cogbill A.,Zhang T.R.,Ghosh S.,Tian Z.R.Multifunctional,catalytic nanowire membranes and the membrane-based 3D devices[J].J.Phys. Chem.B,2006,110(34):16819-16822.
    [9]Mandal S.,Das A.,Srivastava R.,Sastry M.Keggin ion mediated synthesis of hydrophobized Pd nanoparticles for multifunctional catalysis[J].Langmuir,2005,21(6):2408-2413.
    [10]Liong M.,Lu J.,Kovochich M.,Xia T.,Ruehm S.G.,Nel A.E.,Tamanoi F.,Zink J.I.Multifunctional inorganic nanoparticles for imaging,targeting,and drug delivery[J].ACS Nano,2008,2(5):889-896.
    [11]Jiang J.,Gu H.W.,Shao H.L.,Devlin E.,Papaefthymiou G.C.,Ying J.Y.Bifunctional Fe_3O_4-Ag heterodimer nanoparticles for two-photon fluorescene imaging and magnetic manipulation[J].Adv.Mater.,2008,20(23):4403-4407.
    [12]Li M.-J.,Chen Z.F.,Yam V.W.-W,Zu Y.B.Multifunctional rethenium(Ⅱ)polypyridine complex-based core-shell magnetic silica nanocomposites:magnetism,luminescence,and electrochemiluminescence[J].ACS Nano,2008,2(5):905-912.
    [13]Hou Y.,Ye J.,Gui Z.,Zhang G.Z.Temperature-modulated photoluminescence of quantum dots[J].Langmuir,2008,24(17):9682-9685.
    [14]Guo J.,Yang W.L.,Wang C.C.,He J.,Chen J.Y.Poly(N-isopropylacrylamide)-coated luminescent/magnetic silica microspheres:preparation,characterization,and biomedical application[J].Chem.Mater.,2006,18(23):5554-5562.
    [15]Deng Y.H.,Wang C.C.Shen X.Z.,Yang W.L.,Jin L.,Gao H.,Fu S.K.Preparation,characterization,and application of multistimuli-responsive microspheres with fluorescence-labeled magnetic cores and thermoresponsive shells[J].Chem.Eur.J.,2005,11(21):6006-6013.
    [16]Chaterji,S.;Kwon,I.K.;Park,K.Smart polymeric gels:redefining the limits of biomedical devices[J].Prog.Polym.Sci.,2007,32:1083-1122.
    [17]Schild H.G.Poly(N-isopropylacrylamide):experiment,theory and application [J].Prog.Polym.Sci.,1992,17(2):163-249.
    [18]Qiu Y.,Park K.Environment-sensitive hydrogels for drug delivery[J].Adv.Drug Delivery Rev.,2001,53(3):321-339.
    [19]Nolan C.M.,Gelbaum L.T.,Lyon L.A.1H NMR investigation of thermally triggered insulin release from poly(N-isopropylacrylamide) microgels[J].Biomacromolecules,2006,7(10):2918-2922.
    [20]Kim J.,Serpe M.J.,Lyon L.A.Hydrogel microparticles as dynamically tunable microlenses[J].J.Am.Chem.Soc.,2004,126(31):9512-9513.
    [21]Kim J.,Nayak S.,Lyon L.A.Bioresponsive hydrogel microlenses[J].J.Am.Chem.Soc.,2005,127(26):9588-9592.
    [22]Lu Y.,Mei Y.,Drechsler M.,Ballayff M.Thermosensitive core-shell particles as carriers for Ag nanoparticles:modulating the catalytic activity by a phase transition in networks[J].Angew.Chem.Int.Ed.,2006,45(5):813-816.
    [23]Sauzedde,F.;Elaissari,A.;Pichot,C.Hydrophilic magnetic polymer latexes.2.encapsulation of adsorbed iron oxide nanoparticles[J].Colloid Polym.Sci.,1999,277:1041-1050.
    [24]Rubio-Retama J.,Zafeiropoulos N.E.,Serafinelli C.,Rojas-Reyna R.,Voit B.,Cabarcos E.L.,Stamm M.Synthesis and characterization of thermosensitive PNIPAM microgels covered with superparamagnetic γ-Fe_2O_3 nanoparticles[J].Langmuir,2007,23(20):10280-10285.
    [25]Wong J.E.,Gaharwar A.K.,M(u|¨)ller-Schulte D.,Bahadur D.,Richtering W.Dual-stimuli responsive PniPAm microgel achieved via layer-by-layer assembly:magnetic and thermoresponsive[J].J.Colloid Interface Sci.,2008,324:47-54.
    [26]Deng Y.H.,Yang W.L.,Wang C.C.,Fu S.K.A novel approach for preparation of thermoresponsive polymer magnetic microspheres with core-shell structure[J].Adv.Mater.,2003,15(20):1729-1732.
    [27]Ge J.P.,Huynh T.,Hu Y.X.,Yin Y.D.Hierarchical magnetite/silica nanoassemblies as magnetically recoverable catalyst-supports[J].Nano Lett.,2008,8(3):931-934.
    [28]Glotzer,S.C.;Solomon,M.J.Anisotropy of building blocks and their assembly into complex structures[J].Nat.Mater.,2007,6(8):557-562.
    [29]Agrawal M.,Rubio-Retama J.,Zafeiropoulos N.E.,Gaponik N.,Gupta S.,Cimrova V.,Lesnyak V.,L(?)pez-Cabarcos E.,Tzavalas S.,Rojas-Reyna R., Eychm(u|¨)ller A.,Stamm M.Switchable photoluminescence of CdTe nanocrystals by temperature-responsive microgels[J].Langmuir,2008,24:9820-9824.
    [30]Karg M.,Lu Y.,Carb(?)-Argibay E.,Pastoriza-Santos I.,P(?)rez-Juste J.,Liz-Marz(?)n L.M.,Hellweg T.Multiresponsive hybrid cooloids based on gold nanorods and poly(NIPAM-co-allylacetic acid) microgels:temperature- and pH-tunable plasmon resonance[J].Langmuir,2009,25:3163-3167.
    [31]Sauzedde F.,Ela(i|¨)ssari A.,Pichot C.Hydrophilic magnetic polymer latexes.1.adsorption of magnetic iron oxide nanoparticles onto various cationic latexes[J].Colloid Polym.Sci.,1999,277:846-855.
    [32]St(o|¨)ber W.,Fink A.,Bohn E.Controlled growth of monodisperse silica spheres in the micron size range[J].J.Colloid Interface Sci.,1968,26:62-69.
    [33]Zhang F.,Wang C.C.Preparation of thermoresponsive core-shell polymeric microspheres and hollow PNIPAM microgels[J].Colloid Polym.Sci.,2008,286:889-895.
    [34]Duracher D.,Sauzedde F.,Ela(i|¨)ssari A.,Perrin A.,Pichot C.Cationic amino-containing N-isopropylacrylamide-styrene copolymer latex particles:1-particle size and morphology vs.polymerization process[J].Colloid Polym.Sci.,1998,276:219-231.
    [35]Hoare T.,Pelton R.Highly pH and temperature responsive microgels functionalized with vinulacetic acid[J].Macromolecules,2004,37(7):2544-2550.
    [36]Pich A.,Bhattacharya S.,Lu Y.,Boyko V.,Adler H.J.Temperature-sensitive microgels with magnetic properties[J].Langmuir,2004,20(24):10706-10711.
    [37]L(?)pez-Cabarcos E.,Mecerreyes D.,Sierra-Martin B.,Romero-Cano M.S.,Strunz P.,F(?)rnandez-Barbero A.Structural study of poly(N-isopropylacrylamide)microgels interpenetrated with polypyrrole[J].Phys.Chem.Chem.Phys.,2004,6:1396-1400.
    [1]Tang Z.Y.,Kotov N.A.One-dimensional assemblies of nanoparticles:preparation,and promise[J].Adv.Mater.,2005,17(8):951-962.
    [2]Pileni M.P.Nanocrystal self-assemblies:fabrication and collective properties[J].J.Phys.Chem.B,2001,105(17):3358-3371.
    [3]Braun E.,Eichen Y.,Sivan U.,Ben-Yoseph G.DNA-templated assembly and electrode attachment of a conducting silver wire[J].Nature,1998,391(6669):775-778.
    [4]Zhao L.L.,Kelly K.L.,Schatz G.C.The extinction spectra of silver nanoparticle arrays:influence of array structure on plasmon resonance wavelength and width [J].J.Phys.Chem.B,2003,107(30):7343-7350.
    [5]Tang Z.Y.,Ozturk B.,Wang Y.,Kotov N.A.Simple preparation strategy and one-dimensional energy transfer in CdTe nanoparticle chains[J].J.Phys.Chem.B,2004,108(22):6927-6931.
    [6]Petit C.,Russier V.,Pileni M.P.Effect of the structure of cobalt nanocrystal organization on the collective magnetic properties[J].J.Phys.Chem.B,2003,107(38):10333-10336.
    [7]Lalatonne Y.,Richardi J.,Pileni M.P.Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals[J].Nat.Mater.,2004,3(2):121-125.
    [8]Favier F.,Waiter E.C.,Zach M.P.,Benter T.,Penner R.M.Hydrogen sensors and switches from electrodeposited palladium mesowire arrays[J].Science,2001,293(5538):2227-2230.
    [9]Minko S.,Kiriy A.,Gorodyska G.,Stamm M.Mineralization of single flexible polyelectrolyte molecules[J].J.Am.Chem.Soc.,2002,124(34):10192-10197.
    [10]Zhang D.B.,Qi L.M.,Ma J.M.,Cheng H.M.Formation of silver nanowires in aqurous solutions of a double-hydrophilic block copolymer[J].Chem.Mater.,2001,13(9):2753-2755.
    [11]Keren K.,Krueger M.Gilad R.,Ben-Yoseph G.,Sivan U.,Braun E.Sequence-specific molecular lithography on single DNA molecules[J].Science,2002,297(5578):72-74.
    [12]Harnack O.,Ford W.E.,Yasuda A.,Wessels J.M.Tris(hydroxymethyl)phosphine-capped gold particles templated by DNA as nanowire precursors[J].Nano Lett.,2002,2(9):919-923.
    [13]Ford W.E.,Harnack O.,Yasuda A.,Wessels J.M.Platinated DNA as precursors to templated chains of metal nanoparticles[J].Adv.Mater.,2001,13(23):1793-1797.
    [14]Fu X.Y.,Wang Y.,Huang L.X.,Sha Y.L.,Gui L.L.,Lai L.H.,Tang Y.Q.Assemblies of metal nanoparticles and self-assembled peptide fibrils - formation of double helical and single-chain arrays of metal nanoparticles[J].Adv.Mater.,2003,15(11):902-906.
    [15]Walsh D.,Arcelli L.,Ikoma T.,Tanaka J.,Mann S.Dextran templating for the synthesis of metallic and metal oxide sponges[J].Nat.Mater.,2003,2(6):386-390.
    [16]Cao Y.,Zhou Y.M.,Shan Y.,Ju H.X.,Xue X.J.,Wu Z.H.(Ti,Sn)O_2 solid solution self-aigned into "sandwich" array on grafted modification collagen matrix[J].Adv.Mater.,2004,16(14):1189-1192.
    [17]Yin L.W.,Bando Y.,Zhu Y.C.,Golberg D.,Li M.S.A two-stage route to coaxial cubic-aluminum-nitride-boron-nitride composite nanotubes[J].Adv.Mater.,2004,16(11):929-933.
    [18]Han W.Q.,Zettl A.Coating single-walled carbon nanotubes with tin oxide[J].Nano Lett.,2003,3(5):681-683.
    [19]Banerjee S.,Kahn M.G.C.,Wong S.S.Rational chemical strategies for carbon nanotube functionalization[J].Chem.Eur.J.,2003,9(9):1898-1908.
    [20]Keng P.Y.,Shim I.,Korth B.D.,Douglas J.F.,Pyun J.Synthesis and self-assembly of polymer-coated ferromagnetic nanoparticles[J].ACS Nano,2007,1(4):279-292.
    [21]Rabani E.Structure and electrostatic properties of passivated CdSe nanocrystals [J].J.Chem.Phys.2001,115:1493-1497.
    [22]Banfield J.F.,Welch S.A.,Zhang H.Z.,Thomsen Ebert T.,Lee Penn R.Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products[J].Science,2000,289(5840):751-753.
    [23]Peng Z.A.,Peng X.G Mechanisms of the shape evolution of CdSe nanocrystals[J].J.Am.Chem.Soc.,2001,123(7):1389-1395.
    [24]Cheng G J.,Romero D.,Fraser G.T.,Walker A.R.H.Magnetic-field-induced assemblies of cobalt nanoparticles[J].Langmuir,2005,21(26):12055-12059.
    [25]Xiong Y.,Ye J.,Gu X.Y.,Chen Q.W.Synthesis and assembly of magnetite nanocubes into flux-closure rings[J].J.Phys.Chem.C,2007,111(19):6998-7003.
    [26]Tripp S.L.,Pusztay S.V.,Ribbe A.E.,Wei A.Self-assembly of cobalt nanoparticle rings[J].J.Am.Chem.Soc.,2002,124(27):7914-7915.
    [27]Klokkenburg M.,Vonk C.,Claesson E.M.,Meeldijk J.D.,Ern(?)B.H.,Philipse A.P.Direct imaging of zero-field dipolar structures in colloidal dispersions of synthetic magnetite[J].J.Am.Chem.Soc.,2004,126(51):16706-16707.
    [28]Kirschvink J.L.,Walker M.M.,Diebel C.E.Magnetite-based magnetoreception[J].Curr.Opin.Neurobiol.,2001,11(4):462-467.
    [29]Gao J.H.,Zhang B.,Zhang X.X.,Xu B.Magnetic-dipolar-interaction-induced self-assembly affords wires of hollow nanocrystals of cobalt selenide[J].Angew.Chem.Int.Ed.,2006,45(8):1220-1223.
    [30]Bowles S.E.,Wu W.,Kowalewski T.,Schalnat M.C.,Davis R.J.,Pemberton J.E.,Shim I.,Korth B.D.,Pyun J.Magnetic assembly and pyrolysis of functional ferromagnetic colloids into one-dimensional carbon nanostructures[J].J.Am.Chem.Soc.,2007,129(28):8694-8695.
    [31]Xiong Y.,Chen Q.W.,Tao N.,Ye J.,Tang Y.,Feng J.S.,Gu X.Y.The formation of legume-like structures of Co nanoparticles through a polymer-assisted magnetic-field-induced assembly[J].Nanotechnology,2007,18(34):345301-34505.
    [32]Ge J.P.,Hu Y.X.,Biasini M.,Beyermann W.P.,Yin Y.D.Superparamagnetic magnetite colloidal nanocrystal clusters[J].Angew.Chem.Int.Ed.,2007,46(23):4342-4345.
    [33]Narayanaswamy A.,Xu H.F.,Pradhan N.,Peng X.G.Crystalline nanoflowers with different chemical compositions and physical properties grown by limited ligand protection[J].Angew.Chem.Int.Ed.,2006,45(32):5361-5364.
    [34]de Faria D.L.A.,Venancio Silva S.,de Oliveira M.T.Raman microspectroscopy of some iron oxides and oxyhydroxides[J].J.Raman Spectrosc.1997,28,873-878.
    [35]Tavares J.M.,Weis J.J.,Telo da Gama M.M.Quasi-two-dimensional dipolar fluid at low densities:Monte Carlo simulations and theory[J].Phys.Rev.E.,2002,65(6):061201-061211.
    [36]Butter K.,Bomans P.H.H.,Frederik P.M.,Vroege G.J.,Philipse A.P.Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy[J].Nat.Mater.,2003,2(2):88-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700