功能化磁性纳米微球的构筑及在模拟印染废水处理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
印染废水一般很难直接进行降解,直接排放会给环境带来很大危害。纳米材料吸附作为一种处理印染废水的新方法日益得到关注。功能化的磁性Fe_3O_4纳米材料具有强的磁响应性,应用于印染废水处理中,使其易于分离和回收,是一种理想的吸附剂。本研究的目的就是以功能化磁性纳米微球为吸附剂,着重探讨其对染料的吸附性能。
     依据上述目的,本研究主要包括以下几个方面:
     1.以FeCl_3·6H_2O和FeSO_4·7H_2O为原料,NH3·H_2O为沉淀剂,采用化学共沉淀法制备得到粒径约为15 nm的Fe_3O_4磁性微球。
     研究了铁盐物料比例、晶化温度、反应pH和碱源的选择等条件对所合成Fe_3O_4磁性微球性能的影响,并利用TEM、XRD、VSM、TGA、FT-IR等对其进行表征。结果表明:Fe_3O_4磁性粒子为尖晶石结构,热稳定性和磁响应性较好,饱和磁强度可达62.78 emu·g~(-1)。
     2.在磁性Fe_3O_4粒子的存在下,合成两种功能化修饰的磁性Fe_3O_4微球。采用3-氨丙基三乙氧基硅烷(APTES)对Fe_3O_4磁性微球进行硅烷化修饰,使其末端具有丰富的-NH_2,在经过酰胺化反应,得到末端含有丰富的-COOH的磁性微球。采用TEM、XRD、VSM、TGA、FT-IR等手段对合成的磁性材料进行了性能表征。结果表明:-NH_2和-COOH官能基团已经成功修饰到Fe_3O_4表面,修饰后的磁性微球保持了Fe_3O_4的尖晶石结构,饱和磁化强度有所下降,分别为56.98 emu·g~(-1)和53.63 emu·g~(-1),但是在磁场中仍可以实现很好的固液分离,对下一步的染料吸附没有造成不良影响。
     3.以亚甲基蓝(MB)和乙基紫(EV)模拟印染废水,研究了氨基功能化磁性微球对其的吸附行为。以中性红(NR)和甲基橙(MO)模拟印染废水研究了羧基功能化磁性微球的吸附行为,并且考察了pH、染料初始浓度、吸附时间、离子强度和吸附温度等因素对吸附性能的影响,最后研究了磁性微球的重复利用。
     实验结果表明:
     1)氨基功能化磁性微球对MB的吸附受pH的影响较大;45 min内吸附基本达到平衡,实验数据可用准二级速率方程进行拟合;吸附为吸热过程,在298-333 K时,焓变△H为3.77 kJ/mol;等温吸附曲线可用Langmuir等温模型表示,饱和吸附量qm为70.42 mg/g,吸附平衡常数K为0.2160 L/mg。氨基功能化磁性微球对EV的吸附在pH为9.5时,吸附效果最佳;随着浓度的增加,吸附量增大;吸附为吸热过程,在298-328 K内,焓变△H为3.54 kJ/mol,且饱和吸附容量qm为29.06 mg/g,升高温度有利于吸附进行。2)羧基功能化磁性微球对NR的吸附在pH为4.5时,吸附量最大;15 min内吸附
     基本达到平衡;在一定的浓度范围内,离子强度对吸附量没有影响;吸附为吸热过程,在298-333 K内,焓变△H为4.10 kJ/mol;等温吸附曲线符合Langmuir模型,饱和吸附量qm为32.48 mg/g,吸附平衡常数K为0.0247 L/mg。羧基磁性微球对MO的最佳吸附浓度C0为80 mg/L;吸附为吸热过程,在298-323K内,焓变为△H为3.84 kJ/mol;等温吸附曲线符合Langmuir模型,饱和吸附量qm为56.82 mg/g,吸附平衡常数K为0.1107 L/mg。
Generally, dyeing wastewater is difficult to degradate directly and it is harm to discharge. As a new processing method, nanomaterials have been paid more and more attention. Due to the magnetic properties of functional Fe_3O_4 nanometer particles, it has great applications in the fields of dyeing wastewater. It has been a kind of ideal adsorbent, which is apt to be separated and recycled. The purpose was to have emphatical research on the adsorption performance of dyes using functional magnetic nano microspheres as adsorbent in the study.
     Based on the purpose above mentioned, the main contents of this research mainly included the following aspects:
     1. The 15 nm Fe_3O_4 magnetic particles were successfully prepared by chemical co-precipitation method. FeCl_3·6H_2O and FeSO_4·7H_2O were used as raw materials and the NH3·H_2O was used as precipitating agent.
     Some influence factors such as material ration, crystallization temperature, pH, the choice of alkali source on the characteristic of the magnetic Fe_3O_4 particles were investigated and the properties of the product were characterized by TEM, XRD, VSM, TGA and FT-IR. The results showed that Fe_3O_4 magnetic particles with spinel structure had good thermal stability and high magnetic responsiveness, and its saturation magnetization value reached 62.78 emu·g~(-1).
     2. Based on the existence of magnetic Fe_3O_4 particles, the author synthetized two kinds of magnetic Fe_3O_4 microspheres with functionalized modifications.
     Fe_3O_4 magnetic particles surface was modified by the -NH_2 group via silanization reagent (3-aminopropyl triethoxysilane), then further amidation reaction was made to obtain sufficient -COOH group at the surface of particles. The characteristic of the Fe_3O_4 magnetic material were characterized by TEM, XRD, VSM, TGA and FT-IR. The results showed that the -NH_2 and -COOH groups were successfully modified to the surface of Fe_3O_4 magnetic particles. The modified magnetic particles remained its spinel structure, which saturation magnetization with slight decrease were 56.98 and 53.63 emu·g~(-1) respectively. The modified magnetic particles still perform good solid-liquid separation, and it has no harmful effect for further dye adsorption.
     3. The adsorption of methylene blue (MB) and ethyl violet (EV) by amino functional magnetic microspheres were studied, and similar research were made to neutral red (NR) and methyl orange (MO) with carboxyl functional magnetic microspheres. Various influencing factors such as pH, initial concentration, adsorption time, ionic strength and temperature to adsorptive characteristic and the regeneration of magnetic microspheres and were studied.
     The experiments result showed as follows:
     1) The adsorption of MB by Amino functionalization magnetic microspheres was abviously affected by pH. Adsorption balance could be reached in 45 mins, and the experiment data was fitting the preudo-second-order equation. The adsorption was endothermic process with enthalpy change of 3.77 kJ/mol at 298-333K. The isotherm adsorption data accorded with the Langmuir model with a maximum adsorption amount of 70.42 mg/g and an adsorption equilibrium constant of 0.2160 L/mg. For the adsorption of EV by Amino functionalization magnetic microspheres, the adsorption amount which exhibits a maximum at the pH~9.5 increased with the increase of concentration. The process was endothermic process with enthalpy change of 3.54 kJ/mol at 298-328K and a maximum adsorption capacity of 29.06 mg/g. Following the increase of temperature, the adsorption of EV increased either.
     2) For the adsorption of NR by carboxyl functional magnetic microspheres,adsorption amount exhibit the most amount at the pH~4.5. The adsorption balance could be reached in 15 mins. At a certain concentration range, ionic strength barely had influence on the adsorption amount. The adsorption was endothermic process with the enthalpy change of 4.10 kJ/mol at 298-328K. The isotherm adsorption data accorded with the Langmuir model with a maximum adsorption amount of 32.48 mg/g and an adsorption equilibrium constant of 0.0247 L/mg. The adsorption to MO exhibits the most amount at optimal concentration of 80 mg/L. The process was a decalescence with the enthalpy change of 3.84 kJ/mol at 298-323K. The isotherm adsorption data accorded with the Langmuir model with a maximum adsorption amount of 56.82 mg/g and an adsorption equilibrium constant of 0.1107 L/mg.
引文
[1]奚旦立,陈季华,马春燕.印染废水处理现状及存和问题[C].全国纺织印染废水深度处理度回用和圬亦选标排放学术研讨会,2005.
    [2]彭会清,许开.印染废水处理现状与进展[J].四川纺织科技,2003,(2):11-14.
    [3]王金梅,王庆生,刘长占,等.粉煤灰的改性及吸附作用的研究[J].工业用水与废水,2005,36(1):44-47.
    [4]邓书平,牟淑杰.阳离子PDMDAAC改性粉煤灰处理印染废水的试验研究[J].2008,4:32-34.
    [5]夏新华,黄毅.微电解/炉灰渣吸附法处理印染废水[J].中国给水排水,2008,24(18):78-79.
    [6] Bae Jae Hyun,Song Dong Ik,Jeon Yong Woong. Adsorption of an-ionic dye and surfactant from water onto organomorillonite [J]. Separation Science and Technology, 2000, 35(3):353-365.
    [7]李济吾,朱利中,蔡伟建.微波增强有机膨润土合成-废水处理一体化吸附染料的效率与机理[J].环境科学,2006,27(11):2212-2216.
    [8]钟璟,尤晓栋.膜分离技术处理印染废水的研究[J].染料与染色,2003,40(1):49-50.
    [9]陶媛,胡棋昊,王黎明,等.超声技术降解染料废水的实验研究[J].高电压技术,2002,28(12):47-56.
    [10]祝社民,陈英文,张利民,等.新型混凝剂在废水中的应用研究[J].环境污染治理技术与设备,2005(11):42-45.
    [11] Swaminathan K, Sandhya S, Carmalin S A. Decolorization and degradation of H-acid and other dyes using ferrous-hydrogen peroxide system[J]. Chemosphere, 2003, 50(5): 619-625.
    [12] Ipek G, Gulerman A S, Filizb D. Importance of H2O2/Fe2+ratio in Fenton's treatment of a carpet dyeing wastewater[J]. Journal of Hazardous Materials B, 2006, 13(6):763-769.
    [13]涂代惠,罗长林,杨长龙. TiO2膜化催化氧化法深度处理印染废水[J].中国给水排水,2003,19(2):53-55.
    [14] Fu X Z, Clark L A, Yang Q, et al. Enhanced photo-catalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2[J]. Science Technology, 1996, 30: 647-653.
    [15] Bégin-Colin S, Cirot T, Caěr G L, et al. Kinetis and mochanisms of phase transformation Induced by ball-milling in anatase TiO2[J]. Journal of Solid State Chemistry, 2000, 149(1):41-48.
    [16]许佩瑶,王淑娜,王德洪.高浓度印染废水的电解-内电解复合处理[J].印染, 2004, (8): 26-28.
    [17] Isik M, Sponza D T. Biological treatment of acid dyeing wastewater using a sequential anaerobic/aerobic reactor system[J]. Enzyme and Microbial Technology, 2006, 38(7): 887-892.
    [18]程永前,蒋大和,陆雍森.白腐真菌脱色降解染料废水的试验研究[J].给水排水,2006, 32(6):52-54.
    [19]高大文,文湘华,钱易.自然(非灭菌)环境白腐真菌降解活性艳红染料[J].中国科学,2007,37(4):402-407.
    [20]张建辉,薛德胜,周又和.浓Fe3O4磁性液体流变性质实验研究[J].磁性材料及器件,2007,38(6):25-28.
    [21]马明,朱毅,张宇,等.四氧化三铁纳米粒子与癌细胞相互作用的初步研究[J].东南大学学报,2003,33(2):205-207.
    [22] Zhang Yong, Zhang Jing. Surface modification of monodisperse magnetite nanoparticles for improved intracellular uptake to breast cancer cells [J]. Journal of Collid and Interface Science, 2005, 283(2): 352-357.
    [23]李凤生,罗付生,杨毅.磁响应纳米四氧化三铁/壳聚糖复合微球的制备及特性[J].磁性材料及器件,2002,33 (6):1-4.
    [24] Sun Yongkang, Duan Lei, Guo Zhirui, et a1. An improved way to prepare superparamagnetic magnetite-silica core-shell nanoparticles for possible biological application [J]. Journal of Magnetism and Magnetic Materials, 2005, 285(1/2): 65-70.
    [25]周一平,刘归,周克省.纳米Fe3O4/PANI复合体系的微波电磁特性研究[J].湖南大学报,2006,33(6):81-84.
    [26]张冠东,官月平,单国彬,等.纳米Fe3O4颗粒的表面包覆及其在磁性氢化铝载体制备中的应用[J].过程工程学报,2002,2(4):319-324.
    [27]朱亦仁,李爱梅.纳米Fe2O3/Fe3O4光催化法处理造纸废水的研究[J].太阳能学报,2007,28(10):1125-1129.
    [28]付云芝,牟敏仁,向伟,等.共沉淀法合成小粒径单分散Fe3O4纳米颗粒[J].广东化工,2009,36(9):2-4.
    [29] Fried T, Shemer G, Markovich G. Ordered two-dimensional arrays of ferrite nanoparticles[J]. Adv Mater, 2001, 13(15):1158-1160.
    [30] Sun Yongkang, Ma Ming, Zhang Yu, et al. Synthesis of nanometer-size maghemite particles from magnetite[J].Colloids and surfaces A: Physicochemical and Engineering Aspects, 2004, 245(1/3):15-19.
    [31]陈亭汝,孙瑾. Fe3O4磁性纳米粒子的共沉淀法制备研究[J].应用化工,2009,38(2):226-228.
    [32]施利毅.纳米材料[M].上海:华东理工大学出版社,2006,30.
    [33]吴明在,张启花,刘艳美,等.水热法制备Fe3O4粒子及其形貌控制[J].安徽大学学报,2009,33(3):60-64.
    [34] Fan R, Chen X H, Gui Z, et a1. A new simple hydrothermal preparation of nanocrystalline magnetite Fe3O4[J]. Materials Research Bulletin, 2001, 36(3): 497-501.
    [35]倪星元.纳米材料制备技术[M].北京:化学工业出版社,2007,38.
    [36]周孙英,林晨,芮兴.反相微乳液法制备纳米四氧化三铁颗粒[J].福建医科大学学报,2009,43(2):148-152.
    [37] Zhou Z H, Wang J, Liu X, et a1.Synthesis of Fe3O4 nanoparticles from emulsions[J]. J Mater Chem, 2001, 11(6): 1704-1709.
    [38] Massart R. Preparation of magnetite nanoparticles[J]. IEEE Trans Magn, 198l, 17: l247-l250.
    [39] Molday R S. Magnetic iron dextran microspheres[P]. US: 4452773, 1984-06-05.
    [40] Shen L, Laibinis P E, Haton T A. Bilayer surface tantstabilized magnetic fluids: Synthesis and interactions at interfaces[J]. Langmuir, 1999, 447-453.
    [41]郑举功,陈泉水,杨婷.磁性Fe3O4纳米粒子的合成及表征[J].磁性材料及器件,2008,39(6):36-39.
    [42]李砅,侯乙东,李旦振,等.纳米Fe3O4磁性粒子的制备及物性研究[J].无机材料学报,2003, 18(4): 929-932.
    [43]周洁,马明,张宇,等.不同尺寸Fe3O4磁性颗粒的制备和表征[J].东南大学学报,2005,35(4):615-618.
    [44] N J Tang , W Zhong, H Y Jiang, et al. Nanostructured magnetite(Fe3O4)thin film sprepared bysol–gel method [J]. Journal of Magnetism and Magnetic Materials, 2004, 282: 92-95.
    [45]谢钢,张秋禹,李铁虎.磁性高分子微球[J].高分子通报,2001,6:38-45
    [46]夏金兰,廖鹏飞,聂珍媛.羧甲基壳聚糖磁性纳米复合物的制备与表征[J].中南大学学报(自然科学版),2006,37(6): 1076-1080.
    [47] Emir B D, Ebru K, Cengiz B, et al. Magnetic chitosan microspheres: preparation and characterization[J]. React Funct Polym, 2002, 50(3): 225-232.
    [48]李玉慧,彭婷婷,张丽,等.羧甲基壳聚糖磁性纳米粒子的合成及应用[J].应用化学, 2010,27(1):87-91.
    [49]阎立峰,谭琳,杨帆,等.壳核型磁性纳米纤维素微球的超声制备及表征[J].化学物理学报,2004,17(6):762-766.
    [50]丁玲,李曦,张超灿.表面功能化聚苯乙烯磁性微球的制备及表征[J].化工新型材料,2010,38(10):50-53.
    [51]司宝财,王华,梁中岳,等.聚苯乙烯-丙烯酰胺磁性颗粒的制备与表征[J].应用科技,2007,34(4):60-63.
    [52]陈日清,金立维,段丽艳,等.微晶纤维素丙烯酸酯复合磁性微球的制备[J].生物质化学工程,2009,43(1):1-4.
    [53] Gupta A K, Wells S. Surface modified superparamagnetic noparticles for drug delivery:preparation, characterization, and cytotoxicity studies[J]. IEEE Trans Nanobioscience, 2004, 3(1): 66-73
    [54]张和鹏,张秋禹,张宝亮,等. 1,1-二苯基乙烯存在下无皂乳液聚合制备磁性复合微球[J].高分子学报,2010,(5):508-515.
    [55] Wormuth K J. Superparamagnetic Latex via Inverse Emulsion Polymerization[J]. Colloid and Interface Science, 2001, 241(2):366-377.
    [56]艾凡荣,姚爱华,黄文旵,等.磁场-温度双重响应性复合微球的制备与表征[J].高等学校化学学报,2010,31(9):1701-1705.
    [57]黄菁菁,曾少敏,徐祖顺,等.微波辐射乳液聚合制备磁性高分子微球高分子[J].材料科学与工程,2007,23(6):203-206.
    [58]陈炜,于德梅,张晶,等. P(St-GMA)/Fe3O4磁性聚合物微球的制备及表征[J].化学学报,2009,67(11):1247-1251
    [59]刘学涌,常昆,王晓川,等.氨基两亲高分子磁性微球的制备与表征[J].高分子学报,2005,(4):519-523.
    [60]刘峥,吕慧丹.具有磁导向性的交联环糊精聚合物微球的合成与性能[J].化工新型材料2006,34(1):20-23.
    [61] Lindlar B, Boldt M, Eiden-A ssmann S,et al. Advanced Materials, 2004, 14(22):1656-1658.
    [62] Zhang J, Coombs N, Kumacheva E. A new approach to hybrid nanocomposite materials with periodic structures[J]. J Am Chem Soc, 2004, 124(49): 14512-14513.
    [63]吴雪辉,郭祀远,李琳.磁性阳离子交换树脂的化学转化制备及机理研究[J].高分子材料科学与工程,2001,17(4):1-3.
    [64] Victor Matsura, Yannick Guari,Joulia Larionova et al. Synthesis of magnetic silica-based nanocomposites containing Fe3O4 nanoparticles[J]. Z Mater. Chem. 2004, 14: 3026-3033.
    [65] Sang Bok Kim,Chen Cai, Jaemin Kim et al. Surface modification of Fe3O4 and FePt magnetic nanoparticles with organometallic complexes[J], 2009, 28(18):5341-5348.
    [66] Ming Ma, Yu Zhang, Wei Yu, et al. Preparation and characterization of magnetite nanoparticle coated by amino silane[J]. Colloids and Surfaces A: Physicochem. Eng. As-pects, 2003, 212 (2/3), 219-226.
    [67] Shen Y F, Tang J, Nie Z H, et al. Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification[J]. Separation and Purification Technology, 2009, 68(3):312–319.
    [68] Liao Minhung, Chen Donghwang. Preparation and characterization of a novel magnetic nano-adsorbent[J]. Materials chemistry, 2002, (12): 3654-3659
    [69] Kim D H, Lee S H, Im K H. Surface-modified magnetite nanoparticles for hyperthermia: Preparation, characterization, and cytotoxicity studies[J]. Current Applied Physics, 2006, 6 (S1):e242–e246.
    [70]李新学,范方明,王江黎,等.微乳液法制备核壳型磁性Eu3+-Fe3O4-TiO2纳米复合粒子[J].当代化工,2008,37(3):234-237.
    [71] Ma Zhiya, Guan Yueping, Liu Huizhou. Affinity adsorption of albumin on cibacron blue F3GA-coupled non-porous micrometer-sized magnetic polymer microspheres[J]. Reactive andon a carboxymethylated chitosan-conjugated magnetic nano-adsorbent[J]. Macromolecular bioscience, 2005, (5):254-261
    [84]周利民,尚超,刘峙嵘.乙二胺改性磁性壳聚糖纳米粒子对酸性染料的吸附特性[J].物理化学学报,2011,27(3):677-682.
    [85]马淞江,李方文.磁性磺化煤吸附水溶性有机染料的研究[J].湖南科技大学学报, 2006, 21(3): 90-92.
    [86] Wu Z J, Wu J H, X H. Organosilane-functionalized Fe3O4 composite particles as effective magnetic assisted adsorbents[J]. 2006, 279: 167-174.
    [87]何秋星,李伟洲,陈权启.水热法制备纳米Fe3O4的研究[J].广西大学学报(自然学科版),2002,30(12):170-174.
    [88]邹涛,郭灿雄,段雪,等.强磁性纳米Fe3O4纳米粒子的制备及其性能研究[J].精细化工,2002,19(12):707-710.
    [89] Galindo-GonzAlez C, Vicente J D, Ramos-Tejada M M, et al. Preparation and sedimentation behavior in magnetic fields of magnetite-covered clay panicles[J]. Langmuir, 2005, 21(10):4410-4419.
    [90] M Ma, Y Zhnag, W Yu, H Y Shen,et al. Preparation and characterization of magnetite nanoparticles coated by maino silnae[J]. Colloids Surf. A: Physicochem. Eng. Aspects., 2003, 212: 219-226.
    [91] Y Zhnag, N Kohle, M Q Zhnag. Suracfe modification of superparmaganetic magnetite nanoparticles and their inrtacellular uptake[J]. Biomaetrals, 2002, 23: 1553-1561.
    [92]金芸,游革新.印染废水处理新进展[J].武汉科技学院学报,2005,9(18):50-52.
    [93]郑广宏,于蕾,夏邦天,等.臭氧技术处理印染废水研究进展[J].工业用水与废水,2009,40(2):6-10.
    [94]尹亮,陈章和,赵树进.微生物对偶氮染料的脱色及其基因工程研究进展[J].生物技术,2007,17(6):86-89.
    [95]周利民,刘峙嵘,黄群武.聚甲基丙烯酸-Fe3O4纳米吸附剂的吸附性能[J].中国环境科学,2007,27(1):137-140.
    [96]武荣成,曲久辉.表面改性Fe3O4去除水中酸性红B的研究[J].环境科学学报,2004,24(3):on a carboxymethylated chitosan-conjugated magnetic nano-adsorbent[J]. Macromolecular bioscience, 2005, (5):254-261
    [84]周利民,尚超,刘峙嵘.乙二胺改性磁性壳聚糖纳米粒子对酸性染料的吸附特性[J].物理化学学报,2011,27(3):677-682.
    [85]马淞江,李方文.磁性磺化煤吸附水溶性有机染料的研究[J].湖南科技大学学报, 2006, 21(3): 90-92.
    [86] Wu Z J, Wu J H, X H. Organosilane-functionalized Fe3O4 composite particles as effective magnetic assisted adsorbents[J]. 2006, 279: 167-174.
    [87]何秋星,李伟洲,陈权启.水热法制备纳米Fe3O4的研究[J].广西大学学报(自然学科版),2002,30(12):170-174.
    [88]邹涛,郭灿雄,段雪,等.强磁性纳米Fe3O4纳米粒子的制备及其性能研究[J].精细化工,2002,19(12):707-710.
    [89] Galindo-GonzAlez C, Vicente J D, Ramos-Tejada M M, et al. Preparation and sedimentation behavior in magnetic fields of magnetite-covered clay panicles[J]. Langmuir, 2005, 21(10):4410-4419.
    [90] M Ma, Y Zhnag, W Yu, H Y Shen,et al. Preparation and characterization of magnetite nanoparticles coated by maino silnae[J]. Colloids Surf. A: Physicochem. Eng. Aspects., 2003, 212: 219-226.
    [91] Y Zhnag, N Kohle, M Q Zhnag. Suracfe modification of superparmaganetic magnetite nanoparticles and their inrtacellular uptake[J]. Biomaetrals, 2002, 23: 1553-1561.
    [92]金芸,游革新.印染废水处理新进展[J].武汉科技学院学报,2005,9(18):50-52.
    [93]郑广宏,于蕾,夏邦天,等.臭氧技术处理印染废水研究进展[J].工业用水与废水,2009,40(2):6-10.
    [94]尹亮,陈章和,赵树进.微生物对偶氮染料的脱色及其基因工程研究进展[J].生物技术,2007,17(6):86-89.
    [95]周利民,刘峙嵘,黄群武.聚甲基丙烯酸-Fe3O4纳米吸附剂的吸附性能[J].中国环境科学,2007,27(1):137-140.
    [96]武荣成,曲久辉.表面改性Fe3O4去除水中酸性红B的研究[J].环境科学学报,2004,24(3):435-439.
    [97]魏燕芳.胺基化磁性壳聚糖微球对甲基橙的吸附研究[J].信阳师范学院学报(自然科学版),2009,22(3):441-444.
    [98] Ren Y M, Zhang M, Zhao D.Synthesis and properties of magnetic Cu(II)ion imprinted composite adsorbent for selective removal of copper[J]. Desalination, 2008, 228: 135-149.
    [99] Ramnani S P, Sabharwal S.Adsorption behavior of Cr(VI) onto radiation cross linked chitosan and its ossible application for the treatment of wastewater containing Cr(VI)[J].React.Funct.Polym, 2006, 66: 902-909.
    [100] Kadirvelu K, Thamaraiselvi K, Namasivayam C. Adsorption of nickel(II)from aqueous solution onto activated carbon prepared from coirpith[J].Sep.Purif Technol.2001, 24: 497-505.
    [101]周利民,王一平,黄群武.乙二胺改性壳聚糖磁性微球吸附Hg2+和UO2+[J].核化学与放射化学,2007,29(3):184-188.
    [102]董海丽,任晓燕.磁性壳聚糖微球对大豆乳清废水中蛋白质的吸附作用[J].食品科学,2007,28(7):205-207.
    [103]张丽芳,魏德洲.预处理青霉菌吸附中性红的研究[J].环境污染与防治,2008,30 (12):1-6.
    [104]黄洪,颜环环,雷鸣.中性红在柚子皮上的吸附机制研究[J].环境污染与防治,2010,32(10):41-45.
    [105]张华,陈晨,梁晓飞,等.活性炭/聚丙烯腈纤维对溶液中的甲基橙染料吸附动力学研[J].环境工程学报,2008,2(3):324-327.
    [106]张宏,张敬华,韩润平,等.酸化花生壳对甲基橙的生物吸附研究[J].化工新型材料,2010,38(4):104-107.
    [107]刘淑芬,李冀辉,杨丽娜.膨胀石墨对直接染料废水吸附脱色研究[J].化工环保,2006,26(3):182-184.
    [108]孙振范,李玉光. TiO2纳米膜上吸附态甲基橙的光催化降解反应活性研究[J].化学学报,2002,60(11):1965-1972.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700