主动电磁轴承—裂纹柔性转子系统动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统的滚动轴承或滑动轴承支承的转子系统相比,主动电磁轴承支承的转子系统中,转子裂纹故障的动力学特性要复杂得多,其中有许多问题需要解决,如:裂纹对电磁轴承控制系统稳定性的影响、裂纹对电磁轴承-转子系统的动力学特性的影响、电磁轴承控制器对裂纹转子故障的动力学特性影响、电磁轴承-转子系统中裂纹故障的诊断方法等。本文以电磁轴承-裂纹柔性转子系统的动力学特性研究为主要目标,分别对电磁轴承的2DOF PID控制器设计、H∞控制器设计、裂纹转子的数学模型、电磁轴承-裂纹柔性转子系统的动力学模型、电磁轴承控制器参数对裂纹转子系统的动力学特性影响等问题开展了研究。
     2DOF PID (two-degree-of-freedom PID)控制既有良好的抗外干扰能力,又具有很好的目标值跟踪特点,将其应用于电磁轴承的控制中,建立了2DOF PID控制电磁轴承的数学模型,通过仿真分析,选取了2DOF PID控制的控制参数,并在所建立的电磁轴承-柔性转子系统实验平台上进行实验,实验结果表明,所设计的2DOF PID控制器能使电磁轴承实现稳定悬浮运行,保证柔性转子系统能平稳地通过其一阶弯曲临界转速。
     利用H∞控制具有良好的鲁棒性及抑制干扰的特点,设计了电磁轴承的H∞控制器。为克服在采用转子系统的有限元数学模型设计H∞控制器时,选取加权函数W1(s)、W2(s)及W3(s)异常困难的问题,采用集总参数法,将转子系统的物理参数集总到电磁轴承的支承点,选取加权函数设计出了H∞控制器,并在所建立的电磁轴承-柔性转子系统实验平台上进行实验,实验结果表明,该H∞控制器能使电磁轴承实现稳定悬浮运行,保证柔性转子系统能平稳地通过其一阶弯曲临界转速。
     根据呼吸裂纹转子的刚度数学模型,采用有限元方法,建立了PD控制的电磁轴承-裂纹柔性转子系统的动力学方程,并进行仿真分析,研究了电磁轴承的控制器参数P增益和D增益对裂纹转子系统动力学特性的影响,对比分析了与传统弹性支承-裂纹转子系统的动力学特性的异同,结合电磁轴承的等效刚度受偏置电流影响的特点,分析了PD控制的电磁轴承偏置电流I0对裂纹柔性转子系统动力学特性的影响。
     建立了最优控制的电磁轴承-裂纹柔性转子系统的动力学方程,并进行了仿真分析,研究了最优控制的控制器参数加权矩阵Q和R对裂纹转子系统动力学特性的影响,对比分析了与传统支承-裂纹柔性转子系统的动力学特性的异同,结合电磁轴承的等效刚度受偏置电流影响的特点,分析了最优控制的电磁轴承偏置电流I0对裂纹柔性转子系统的动力学特性的影响。
     在电磁轴承-柔性转子系统实验平台上,在不改变转子系统的固定条件的前提下,将柔性转子系统的转轴通过线切割加工出一条横向切槽,在切槽中嵌入铜片并与切槽一侧强力粘接的办法得到与实际裂纹尽可能相似的横向裂纹。当实验平台中的电磁轴承分别采用2DOF PID控制器和H∞控制器时,在控制器参数不变的情况下,在电磁轴承-裂纹柔性转子系统实验平台上进行了裂纹柔性转子的稳态响应实验,不平衡响应实验,加速响应实验和减速响应实验等动力学特性实验,分析了当实验台的电磁轴承采用不同控制器时,转子横向裂纹对电磁轴承-柔性转子系统振动特性的影响,实验结果表明,转子裂纹到一定深度将导致电磁轴承-柔性转子系统失稳,且监测转子的振动是检测电磁轴承-柔性转子系统中转子裂纹故障的有效方法。
Compared to the rotor system supported by the traditional bearing such as ball bearings and plain bearings, dynamics characteristics of a cracked flexible rotor system supported by active magnetic bearings are such more complex. Therefore, many problems need to study, such as, the influence of cracks on the stability of the active magnetic bearing controller, the influence of cracks on the dynamic characteristics of the active magnetic bearing-rotor system, the influence of the active magnetic bearing controller on the dynamic characteristics of the cracked rotor, the diagnostic approach of the crack fault in active magnetic bearing-rotor system.The purpose of this paper is to study the dynamic characteristics of the active magnetic bearing-cracked flexible rotor systems, including designing the2DOF PID controller, H∞controller of the active magnetic bearings, building the mathematical model of cracked flexible rotor systems, the dynamic model of the active magnetic bearing-cracked flexible rotor systems and analysing the influence of the parameters of the bearing controller on the dynamic characteristics of the cracked flexible rotor system.
     2DOF PID controller, which has a performance in the optimal tuning for the disturbance response and the one for the set-point response, is used in the control of the active magnetic bearing-rotor systems. The mathematical model of the2DOF PID controller is built. The control parameters are selected by simulation. The experiments on a experimental platform of an active magnetic bearing-flexible rotor systems validate that the designed2DOF PID controller can easily make the rotor system smoothingly pass through the first flexible critical speed.
     The H∞controller with good robustness and ability of anti-disturbance is designed. In order to overcome the problem of choosing the weighting functions W1(s)、W2(s) and W3(s), the lumped parameter method is used. The physical parameters of the rotor system are lumped to the position of the active magnetic bearings and the weighting functions W1(s)、W2(s) and W3(s) are chosen and the H∞controller is designed. The experiments on the experimental platform of the active magnetic bearing-flexible rotor systems indicate that the H∞controller can make the rotors smoothingly pass through the first flexible critical speed.
     Based on the breathing stiffness model of the cracked rotor and finite element method, the equation of the cracked rotor-active magnetic bearing with PD controller is built. The influence of the parameters P and D of the controller on the dynamic characteristics of the cracked flexible rotor system is analysed, theoretically the differences between the cracked rotor system supported respectively by the traditional bearing and the active magnetic bearing are compared. The influence of the bias current Io of the PD controller on the dynamic characteristics of the cracked rotor system is discussed.
     The equation of the ctive magnetic bearing-cracked flexible rotor with optimum control is built and the simulation is conducted. The influence of the weighting matrixes Q and R in the optimum controller on the dynamic characteristics of cracked rotor system is analysed, the differences between the cracked rotor system supported respectively by the traditional bearings and the active magnetic bearing are compared. The influence of the bias current Io of the optimum controller on the dynamic characteristics of the cracked rotor system is discussed.
     On the experimental platform of the active magnetic bearing-flexible rotor system. under no changing the fixed conditions of the flexible rotor system, a transverse grooving with the depth of4mm is acquired by wire-electrode cutting. A copper sheet is inset in the transverse grooving and glued one side of the copper sheet to one side of the transverse grooving, so the transverse cracked flexible rotor acquired is similar to a real cracked rotor. Dynamics experiments of cracked flexible rotor that include steady-state response experiments, unbalance response experiments, acceleration response and deceleration response experiments, were done on the active magnetic bearings-cracked flexible rotor systems experimental platform with the unchanged controller parameters of active magnetic bearings used2DOF PID controller and H∞controller. Dynamics characteristics of the tansverse crack of flexible rotor were analyzed when the active magnetic bearings-flexible rotor systems experimental platform used different active magnetic bearings controller. Experimental results show that the depth of crack causes the active magnetic bearings-flexible rotor system instability, and the monitorings of the rotor's vibration are effective manners to detect the rotor crack faults of the active magnetic bearings-flexible rotor system.
引文
[1]虞烈,袁崇军译.主动磁轴承基础、性能及应用[M].北京:新时代出版社,1997年3月.
    [2]虞烈.可控磁悬浮转子系统[M].北京:科学出版社,2003.
    [3]胡业发,周祖德,江征风.磁力轴承的基础理论和应用[M].北京:机械工业出版社,2006.
    [4]Maslen E.H, Schweitzer G. Magnetic bearings:theory, design, and application to rotating machinery[M]. New York:Springer,2009.
    [5]常春江,杨荣.电磁轴承及其应用第一部分电磁轴承的发展及其应用前景[J].航空发动机,2003,29(1):46-49.
    [6]张金淼.H∞控制理论在磁悬浮轴承系统中的应用研究[硕士学位论文].南京航空航天大学,2005年3月.
    [7]章淑锳.磁悬浮轴承柔性转子系统的H∞控制研究[硕士学位论文].南京航空航天大学,2011年3月.
    [8]张德魁,赵雷,赵鸿滨,等.磁悬浮轴承内圆磨床电主轴及其控制[J].轴承,2000,11:11-13.
    [9]杨国军,于溯源.HTR-10磁轴承转子动力学的初步研究[J].核动力工程,2003,24(6):514-516.
    [10]张剀,赵雷,赵鸿宾.磁轴承飞轮控制系统设计中LQR方法的应用研究[J].机械工程学报,2004,40(2):127-131.
    [11]谷会东,赵雷,石磊,等.电磁轴承支承挠性转子过临界控制器设计[J].清华大学学报(自然科学版),2005,45(6):101-103.
    [12]谷会东,赵雷,赵鸿宾HTR-10MW电磁轴承转子系统辨识[J].核动力工程,2005,26(6):609-613.
    [13]张剀,戴兴建,张小章.磁轴承超临界高速电机系统控制器设计[J].清华大学学报(自然科学版),2010,50(11):1785-1788.
    [14]张晓友,金永德.五轴控制型磁轴承控制系统设计[J].哈尔滨工业大学学报,1994,26(2):41-47.
    [15]张晓友,金永德.五轴控制型磁轴承动力学与控制[J].宇航学报,1995,16(1):79-83.
    [16]孙岩桦,罗岷,虞烈.基于自适应陷波器的电磁轴承不平衡补偿方法[J].振动工程学报,2000,13(4):610-615.
    [17]杨静,虞烈.电磁轴承过临界转速的非线性极点配置[J].轴承,2002,11:1-4.
    [18]沈钺,孙岩桦,王世琥,等.磁悬浮飞轮系统陀螺效应的抑制[J].西安交通大学学报,2003,37(11):1105-1109.
    [19]苏文军,孙岩桦,虞烈.可控磁悬浮系统的转子周期性振动抑制[J].西安交通大学学报,2010,44(7):55-58.
    [20]朱烷秋,吴鹏,曾励,等.磁轴承控制器的设计及仿真研究[J].南京航空航天大学学报,1999,31(3):318-323.
    [21]黄飞,徐龙祥.高速离心干燥机用电磁轴承控制系统的开发[J].轴承,2003,10:1-3.
    [22]曾学明.磁轴承电控系统研究[博士学位论文].南京航空航天大学,2002年.
    [23]牟鸿.主动磁轴承不平衡补偿的研究[硕士学位论文].南京航空航天大学,2003年3月.
    [24]汪希平.电磁轴承系统的刚度阻尼特性分析[J].应用力学学报,1997,14(3):95-100.
    [25]汪希平,崔卫东,刘令.经典控制理论在电磁轴承系统控制中的应用[J].控制理论与应用,1997,14(6):837-841.
    [26]万金贵.电磁轴承转子系统的动力学特性分析[硕士学位论文].上海大学,1999年.
    [27]汪希平,张直明,于良,等.电磁轴承在透平制氧膨胀机中的应用研究进展[J].中国机械工程,2000,11(4):379-381.
    [28]汪希平,陈学军.陀螺效应对电磁轴承系统设计的影响[J].机械工程学报,2001,37(4):48-52.
    [29]汪希平.电磁轴承及其系统设计方法[J].机械工程学报,2002,38(5):1-6.
    [30]吴国庆.用于数控机床的磁悬浮支承系统及其控制技术[博士学位论文].上海大学,2006年.
    [31]龙志强,肖劲伟,刘少克,等.空间飞行器姿态控制用磁轴承飞轮研究[J].系统工程与电子技术,2004,26(1):52-55.
    [32]吴刚,刘昆,张育林.磁悬浮飞轮技术及其应用研究[J].宇航学报,2005,26(3):386-390.
    [33]胡业发,周祖德,王晓光,吴华春.磁力轴承转子系统的力藕合和力矩藕合分析[J].机械工程学报,2002,38(12):25-28.
    [34]苏义鑫,王娟,胡业发.磁悬浮轴承的变参数PID控制[J].武汉理工大学学报(信息与管理工程版),2004,26(2):35-37.
    [35]黄义,胡业发.基于DSP的磁悬浮轴承数字控制系统的研究与应用[J].武汉理工大学学报(信息与管理工程版),2005,27(5):185-188.
    [36]魏彤,房建成.磁悬浮控制力矩陀螺的动框架效应及其角速率前馈控制方法的研究[J].宇航学报,2005,26(1):19-23.
    [37]房建成,孙津济.一种磁悬浮飞轮用新型永磁偏置径向磁轴承[J].北京航空航天大学学报,2006,32(11):1304-1307.
    [38]田希晖,房建成,刘刚.一种磁悬浮飞轮增益预调交叉反馈控制方法[J].北京航空航 天大学学报,2006,32(11):1029-1303.
    [39]韩邦成,房建成,郭家富.不平衡质量对磁悬浮CM6转子运动特性的影响分析及实验[J].宇航学报,2008,29(2):585-589.
    [40]刘强,房建成,韩邦成.磁悬浮反作用飞轮磁轴承动反力分析及实验[J].北京航空航天大学学报,2010,36(7):821-825.
    [41]祝长生.电磁轴承支承的柔性转子在轴承失效后坠落过程中的瞬态响应[J].航空学报,2005,26(3):349-355.
    [42]祝长生.主动电磁轴承失效后柔性转子坠落在备用轴承上的瞬态响应实验研究[J].航空学报,2009,30(8):1537-1543.
    [43]周丹,祝长生.基于磁通观测器的主动电磁轴承用功率放大器[J].中国电机工程学报,2009,29(30):90-97.
    [44]蒋科坚,祝长生.基于在线识别对转速不敏感的主动电磁轴承转子系统不平衡振动控制[J].中国电机工程学报,2010,30(6):93-99.
    [45]周丹,祝长生.主动电磁轴承电流型开关功率放大器的调制技术[J].机械工程学报,2010,46(20):1-8.
    [46]蒋科坚,祝长生.主动电磁轴承转子系统自适应不平衡补偿控制[J].浙江大学学报(工学版),2011,45(3):503-509.
    [47]周丹,祝长生.电磁轴承中磁通观测器的研究[J].中国电机工程学报,2011,31(36):153-161.
    [48]唐明,祝长生.力扰动对无传感器电磁轴承位移解调的影响[J].浙江大学学报(工学版),2013,47(4),698-704.
    [49]Tang Ming, Zhu Chang-sheng, Yu Jie.Self-sensing active magnetic bearing using real-time duty cycle[J] Journal of Zhejiang University Science C,2013 Vol.14 No.8 P.600-611.
    [50]牟伟兴.磁悬浮轴承柔性转子系统的变参数控制研究[硕士学位论文].南京航空航天大学,2010年.
    [51]Schmcrling J.M, Mammon J.C. Investigation of the Tennessee Valley Authority Gallation Unit No.2 turbine rotor burst[C]. Proceedings of the American Power Conference, Chicago.1976,38:545-554.
    [52]Jack A.R, Paterson A.N. Cracking in 500 MW LP rotor shafts[C]. IMechE Conference on the Influence of Environment on Fatigue.1977,107 (77):75-83.
    [53]Haas H. Grossschaden durch Turbinen-oder Generator laufer, entstanden im Bereich bis zur Schleuderdrehzahl[J]. Maschinenschaden.1977,50(6):195-204.
    [54]Greco J., Agnew J.R, Erhardt K., et al. Cumberland steam plant-cracked IP rotor coupling[C]. Proceedings of the American Power Conference, Chicago.1978,40: 502-514.
    [55]Bohnstedt J, Leopold L. Schaden und Reparaturen an Dampfturbincn[J]. Maschinenschaden.1985,58(4):81-88.
    [56]Ishida Y. Cracked rotors:Industrial machine case histories and nonlinear effects shown by simple Jeffcott rotor[C]. Mechanical Systems and Signal Processing.2008,22(4): 805-817.
    [57]Rankin A.W, Seguin B.R. Report of the investigation of the turbine wheel fracture at tanners creek[J]. Transactions of the ASME.1956,78(10):1527-1546.
    [58]Schabtach C, Fogleman E.L, Rankin A.W, et al. Report of the investigation of two generator rotor fractures[J]. Transactions of the ASME.1956,78(10):1567-1584.
    [59]Emmert H.D. Investigation of large steam-turbine spindle failure[J]. Transactions of the ASME.1956,78 (10),1547-1565.
    [60]Yoshida M. Steam turbine rotor accidents and its countermeasure[J]. Turbomachinery. 1976,4(11):728-737.
    [61]饶苏波,何健康,周福宏.韶关发电厂6号机转子裂纹原因分析及处理对策[J].汽轮机技术.1996,38(3):181-185.
    [62]李立印.具有横向裂纹的单盘转子的扭转振动响应[硕士学位论文].东北工学院,1988年1月.
    [63]王能谦.涡轮轴裂纹振动监测研究[硕士学位论文].西北工业大学,1982年7月.
    [64]White R.R. Engineering Progress through Trouble[M]. London:The Institution of Mechanical Engineers,1975, Chapter 10.
    [65]Inagaki T, Hirabayashi M. Transverse vibrations of cracked rotors-examples of crack detection and vibration analysis[J]. Transactions of JSME.1990,56 (523):582-588.
    [66]Papadopoulos C.A, Dimarogonas A.D. Stability of cracked rotors in the coupled vibration mode[J]. Journal of Vibration Acoustics Stress and Reliability in Design, Transactions of the ASME.1988,110 (3):356-359.
    [67]吴昭同,杨世锡.旋转机械故障特征提取与模式分类新方法[M].北京:科学出版社,2012年1月.
    [68]左斌.主动电磁轴承-转子系统控制器的设计[硕士学位论文].浙江大学,2010年3月.
    [69]章琦.主动电磁轴承飞轮储能系统陀螺效应抑制研究[硕士学位论文].浙江大学,2012年5月.
    [70]Barthod C, Lemarquand G. Degrees of freedom control of a magnetically levitated rotor[J]. IEEE Transacions on Magnetics.1995,31(6):4202-4204.
    [71]Dolinar D, Stumberger G, Grcar B. Modeling and control of horizontal-shaft magnetic bearing system [C]. Proceedings of the IEEE International Symposium on Industrial Electronics. Slovenia,1999:1051-1055
    [72]Zhao L, Zhang K, Zhu R S, et al. Experimental research on momentum wheel suspended by active magnetic bearings[C]. Proceedings of the 8th International Symposium on Magnetic Bearings, University of Ibaraki,2002:605-609.
    [73]张剀,赵雷,赵鸿宾.电磁力超前控制在磁悬浮飞轮中的应用[J].机械工程学报,2004,40(7):175-179.
    [74]Rundell E, Decarlo A. A sliding mode observer and controller for stabilization of rotational motion of a vertical shaft magnetic bearing[J]. IEEE Transactions on Control Systems Techonology,1996,4(5):598-608.
    [75]Smith D, Weldon F. Nonlinear control of a rigid rotor magnetic bearing system: modeling and simulation with full sate feed-back [J]. IEEE Transactions on Magnetics. 1995,31(2):973-980.
    [76]李乙杰,李锐华.基于边界层法的电磁轴承滑模变结构控制研究[J].系统仿真学报,2005,17(8):1962-1965.
    [77]Schroder P, Green B. On-line genetic auto-tuning of mixed optimal magnetic bearing controllers[C]. International Conference on Control, Swansea, UK,1998(2):1123-1128
    [78]Matsumura F, Namerikawa T, Hagiwara K. Application of gain scheduled robust controller to a magnetic bearing[J]. IEEE Transactions on Control Systems Technology, 1996,4(5):484-493.
    [79]Hashimoto K, Matsumura F, Fujita M. Experimental comparison between and control for a magnetic suspension system with double flexible beam[C]. Proceedings of the 32nd Conference on Decision and Control, San Antonio TX,1993:2949-2954.
    [80]徐龙祥,张金淼,余同正.控制理论在磁悬浮轴承系统中的应用研究[J].中国机械工程,2006,17(10):1060-1064.
    [81]Nonami K. Synthesis of flexible rotor-magnetic bearing systems[J]. IEEE Transactions on Control Systems Technology,1996,4(5):503-512.
    [82]Schonhoff U, Luo J, Li G, et al. Implementation results of μ-synthesis control for an energy storage flywheel test rig[C]. Proceedings of the 7th International Symposium on Magnetic Bearings. Switzerland,2000,2:317-322.
    [83]孟令孔,邓智泉,王晓琳等.无轴承永磁同步电机悬浮子系统的LQR/LTR控制器设计[J].航空学报,2007,28(2):385-390.
    [84]叶建民.主动磁悬浮轴承集中控制器的研究[硕士学位论文].南京航空航天大学,2005年.
    [85]叶建民,徐龙祥.基于LQR理论的电磁轴承控制系统鲁棒稳定性分析[J].机械工程与自动化,2005,3:19-21.
    [86]Wauer J. On the dynamics of cracked rotors:a literature survey[J]. Applied Mechanics Review,1990,43(1):13-17.
    [87]Gasch R. A survey of the dynamic behaviour of a simple rotating shaft with a transverse crack[J]. Journal of Sound and Vibration,1993,160 (2):313-332.
    [88]Dimarogonas A.D. Vibration of cracked structures:a state of the art review[J]. Engineering Fracture Mechanics,1996,55(5):831-857.
    [89]Sabnavis G, Kirk R.G, Kasarda M, et al. Cracked shaft detection and diagnostics:a literature review[J]. Shock and Vibration Digest.2004,36(4):287-296.
    [90]Papadopoulos C.A. The strain energy release approach for modeling cracks in rotors:a state of the art review[J]. Mechanical Systems and Signal Processing.2008, 22(6):763-789.
    [91]Kumar C, Rastogi V. A brief review on dynamics of a cracked rotor[J]. International Journal of Rotating Machinery,2009,2009:161-167.
    [92]Bachschmid N, Pennacchi P, Tanzi E. Cracked rotors:a survey on static and dynamic behaviour including modelling and diagnosis[M]. Springer,2010.
    [93]朱厚军,赵玫.裂纹转子振动研究的现状与展望[J].汽轮机技术,2001,43(5):257-261.
    [94]邹剑.具有横向裂纹转子的振动特性与无损检测[博士学位论文].上海交通大学,2004年1月.
    [95]Chondros T.G In memoriam A D Dimarogonas (1938-2000)[J]. Journal of Sound and Vibration,2001,244(1):21-33.
    [96]林言丽.斜裂纹转子系统的动力学特性[博士学位论文].清华大学,2009年4月.
    [97]Dimarogonas A.D, Papadopoulos C.A. Vibration of cracked shafts in bending[J].Journal of Sound and Vibration,1983,91(4):583-593.
    [98]Papadopoulos C.A, Dimarogonas A.D. Coupling of Bending and Torsional Vibration of a Cracked Timoshenko Shaft[J].Ingenieur-Archiv,1987,57(4):257-266.
    [99]Papadopoulos C.A, Dimarogonas A.D. Stability of cracked rotors in the coupled vibration mode[J]. Journal of Vibration, Acoustics, Stress and Reliability in Design,1988, 110:356-359.
    [100]Papadopoulos C.A, Dimarogonas A.D. Coupled longitudinal and bending vibration of a rotating shaft with an open crack[J]. Journal of Sound and Vibration,1987,117(1):81-93.
    [101]Darpe A.K, Gupta K, Chawla A. Coupled bending, longitudinal and torsional vibrations of a cracked rotor[J]. Journal of Sound and Vibration,2004,269 (2004):33-60.
    [102]Kirmsher P.G The effect, of discontinuities on the natural frequency of beams[C]. Proceedings of American Society of Testing and Materials,1941,44:897-904.
    [103]Thomson W.J. Vibrations of slender bars with discontinuities in stiffness[J]. Journal of Applied Mechanics,1943,17,203-207.
    [104]Mayes I.W, Davies W.G.R. The vibrational behavior of a rotating shaft system containing a transverse crack[J]. IMechE Conference Publications:Vibrations in Rotating Machinery,1976,168(76):53-64.
    [105]Mayes I.W, Davies W.G.R. Analysis of the response of a multi-rotor-bearing system containing a transverse crack in a rotor[J]. Journal of Vibration, Acoustics, Stress and Reliability in Design,1984,106(1):139-145.
    [106]Green 1, Casy C. Crack detection in a rotor dynamic system by vibration monitoring-Part I:analysis[J]. Journal of Engineering for Gas Turbine and Power,2005,127 (2005):425-436.
    [107]Sinou J.J, Lees A.W. The influence of cracks in rotating shafts. Journal of Sound and Vibration[J].2005,285(5):1015-1037.
    [108]Mohammad A AL-Shudeifat, Butcher E.A, Stern C.R. General harmonic balance solution of a cracked rotor-bearing-disk system for harmonic and sub-harmonic analysis: analytical and experimental approach[J]. International Journal of Engineering Science, 2010,48:921-935.
    [109]Meng G, Gasch R. Stability and stability degree of a cracked flexible rotor supported on journal bearings[J]. Journal of Vibration and Acoustics-transactions of the ASME.2000, 122(2):116-125.
    [110]闻邦椿,顾家柳.高等转子动力学:理论,技术与应用[M].北京:机械工业出版社,2000.
    [111]朱厚军.裂纹轴刚度模型及裂纹转子动力特性的研究[博士学位论文].上海交通大学,2002年6月。
    [112]Gasch R. Dynamic behaviour of a simple rotor with a cross sectional crack[C]. Proc ImechE C178/76, Vibrations in Rotating Machinery,1976,123-128.
    [113]高建民,朱晓梅.转轴上裂纹开闭模型的研究[J].应用力学学报,1992,9(1):108-112.
    [114]Nelson H.D. A finite rotating shaft element using Timoshenko beam theory[J]. Journal of Mechanical Design,1980,102:793-803.
    [115]Nelson H D, Nataraj C. The dynamics of a rotor system with a cracked shaft[J]. Journal of Vibration, Acoustics, Stress and Reliability in Design,1986,108(2),189-196.
    [儿6]和兴锁,李信真,王争国.裂纹转子的振动响应研究[J].应用力学学报,1994,11(2):96-100.
    [117]赵玫.具有横向裂纹轴系振动特性及其诊断方法的研究[博士学位论文].上海交通大学,1986年12月.
    [118]蒋伟康.裂纹转子振动若干问题研究[博士学位论文].上海交通大学,1990年.
    [119]林言丽,褚福磊.裂纹转子的刚度模型[J].机械工程学报,2008,44(1):114-120.
    [120]王宗勇,林伟,闻邦椿.开闭裂纹转轴刚度的解析研究[J].振动与冲击,2010,29(9): 69-73.
    [121]向家伟,陈雪峰,何正嘉,等.基于区间B样条小波元的裂纹故障定量诊断[J].机械强度,2005,27(2):163-167.
    [122]郑吉兵.裂纹转子的动态响应、稳定性及分叉与混沌[博士学位论文].西北工业大学,1996年12月.
    [123]Bachschmid N, Diana G. The influence of unbalance on cracked rotors[C]. International Conference on Vibrations in Rotating Machinery,3rd, Heslington, England.1984: 193-198.
    [124]Sekhar A.S, Prabhu B.S. Conditon monitoring of cracked rotors through transient response[J]. Mechanism and Machine Theory,1998,33(8):1167-1175.
    [125]Sinou J.J, Lees A.W. A nonlinear study of a cracked rotor[J], European Journal of Mechanics/A Solids,2007,260,152-170.
    [126]Zou J, Chen J, Pu Y.P, et al. On the wavelet time-frequency analysis algorithm in identification of a cracked rotor [J]. Journal of Strain Analysis for Engineering Design, 2002,37(3):239-246.
    [127]Carlo B; Pietro S; Paolo T; et al. Theoretical analysis on dynamic behavior of cracked rotors[C]. Proceedings of The International Modal Analysis Conference,1991,2: 976-981.
    [128]薛士明,曹军义,林京,陈阳泉.分数阶阻尼裂纹转子的非线性动力学特性分析[J].西安交通大学学报,2012,46(1):76-80.
    [129]朱晓梅,高建民,郭一.裂纹转子通过参数共振区的瞬态特性[J].航空动力学报,1993,8(4):387-389.
    [130]朱晓梅,高建民.含裂纹转子在变速过程中的瞬态响应[J].固体力学学报,1996,16(1):65-69.
    [131]Sekhar A.S. Crack detection through wavelet transform for a run-up rotor[J]. Journal of Sound and Vibration,2003,259(2):461-472.
    [132]Sekhar A.S. Crack detection and monitoring in a rotor supported on fluid film bearing: start-up vs. run-down[J]. Mechanical Systems and Signal Processing,2003, 17(4):897-901.
    [133]邹剑,陈进,董广明.基于Wigner-Ville分布裂纹转子识别的仿真[J].上海交通大学学报,2004,38(7):1201-1204.
    [134]Shatof T.J. Using vibration analysis to determine the dynamic health of.turbine generators[J]. Power,1976,120(5):23-28.
    [135]Gasch R, Person M, Weitz B. Dynamic behaviour of the Laval rotor with a cracked hollow shaft-a comparison of crack models[C]. IMechE Conference Publications: Vibrations in Rotating Machinery,1988, C314/88:463-472.
    [136]Mayes, I.W, Steer A.G, Thomas G.B. The application of vibration monitoring for fault diagnosis in large turbo-generation[C], Proceedings of 6th Thermal Generation Specialists Meeting (International Union of Producers and Distributors of Electrical Energy), London,1980.17-27.
    [137]罗跃纲,金志浩,刘长利,闻邦椿.非线性摩擦力对碰摩转子-轴承系统混沌运动的影响[J].东北大学学报,2003,24(9):843-846.
    [138]罗跃纲,王培昌,闻邦椿.裂纹-碰摩转子-轴承系统周期运动稳定性[J].机械科学与技术,2006,25(6):705-707.
    [139]Ehrich F, Fredric F. Handbook of Rotordynamics[M]. Revised Ed. Kriegar Publishing Company, Malabar, FL,1999.
    [140]Imam I, Azzaro S.H, Bankert R.J, et al. Development of an on-line rotor crack detection and monitoring system[J]. Journal of Vibration, Acoustics, Stress and Reliability in Design,1989, 111(3):241-250.
    [141]Grabowski B. The vibrational behavior of a turbine rotor containing a transverse crack[J]. Journal of Mechanical Design.1980,102:140-146.
    [142]Grabowski B, Mahrenholtz O. Theoretical and experimental investigations of shaft vibrations in turbomachinery excited by cracks[C]. Proceedings international conference on rotordynamic problems in power plants, IFToMM. Rome,1982:507-514.
    [143]Darpe A.K, Gupta K, Chawla A. Transient response and breathing behaviour of a cracked Jeffcott rotor[J], Journal of Sound and Vibration.2004.272(1):207-243.
    [144]Darpe A.K. A novel way to detect transverse surface crack in a rotating shaft[J]. Journal of Sound and Vibration,2007,305(1):151-171.
    [145]杨积东,徐培民,闻邦椿.裂纹转子分岔、混沌行为研究[J].固体力学学报,2003,23(1):115-119.
    [146]董广明,陈进,邹剑.裂纹转子的振动特性与裂纹参数识别[J].上海交通大学学报,2004,38(6):857-861.
    [147]邹剑,陈进,董广明.基于极坐标圆的裂纹转子的振动分析[J].机械工程学报,2011,47(5):67-70.
    [148]Zheng J.B, Mi Z, Meng G. Bifurcation and chaos response of a nonlinear cracked rotor[J].International Journal of Bifurcation and Chaos,1998,8(3):597-607.
    [149]曾复,吴昭同,严拱标.裂纹转子的分岔与混沌特性研究[J].振动与冲击,2000,19(1):40-42.
    [150]秦卫阳,孟光.裂纹转子系统响应的阵发性混沌与时域分叉现象[J].上海交通大学学报,2002,36(6):824-828.
    [151]秦卫阳,孟光,任兴民.考虑摆振的裂纹转子运动及阵发性混沌[J].应用力学学报,2002,19(2):5-9
    [152]何永勇,褚福磊,郭丹,钟秉林.基于遗传算法的旋转机械转子裂纹识别的研究[J].机械工程学报,2001,37(10):69-74.
    [153]李舜酩,高德平.裂纹转子非线性振动特征的谐波小波与分形识别[J].航空动力学报,2004,19(5):581-586.
    [154]程礼,何正嘉,李宁,等.裂纹非线性呼吸行为对转子临界转速的影响[J].振动与冲击,2010,29(4):44-53.
    [155]刘元峰,赵玫,朱厚军.考虑碰摩的裂纹转子非线性特性研究[J].振动工程学报,2003,16(2):203-206.
    [156]杨丹,甘春标,杨世锡,等.含横向裂纹Jeffcott转子刚度及动力学特性研究[J].振动与冲击,2012,31(5):121-126.
    [157]蒲亚鹏,陈进,邹剑.柔性支撑下裂纹转子振动的拟周期特性[J].振动工程学报,2002,15(3):359-362.
    [158]万方义,许庆余,宋笔锋,等.滑动轴承-转子系统非线性裂纹故障特征及其实验研究[J].应用力学学报,2004,21(3):38-41.
    [159]秦卫阳,孟光.带挤压油膜的裂纹转子非线性响应特性分析[J].航空动力学报,2002,17(3),357-362.
    [160]于洪洁,吕和祥,裘春航.非稳态非线性油膜力作用下柔性轴裂纹转子的动力特性分析[J].固体力学学报,2002,23(4),439-445.
    [161]He Er-ming, Ren Xing-min, Qin Wei-yang. Chaotic response of cracked rotor supported on squeeze film damper and the routes to chaos[J].Chinese Journal of Aeronautics, 2002,15(3):145-149.
    [162]李晓峰,高燕,史铁林,等.带有油膜轴承的裂纹轴转子系统故障特征分析[J].华中科技大学学报(自然科学版),2003,31(5):62-64.
    [163]李振平,罗跃纲,姚红良,等.具有裂纹-碰摩耦合故障转子-轴承系统的动力学研究[J].应用力学学报,2003,20(3):136-140.
    [164]罗跃纲,闻邦椿.双跨转子—轴承系统裂纹—碰摩耦合故障的稳定性[J].机械工程学报,2008,44(4):123-127.
    [165]王立平,杜润生,史铁林,等.考虑轴承间隙时裂纹转子的故障状态及仿真分析[J].中国机械工程,2001,12(4):377-379.
    [166]焦映厚,陈照波,李海峰,等.滑动轴承-裂纹转子系统的非线性稳定性分析[J].哈尔滨工业大学学报,2004,36(10):1427-1430.
    [167]孙保苍,杨锦坤.气浮轴承支撑下裂纹-碰摩转子系统动力学分析[J].润滑与密封,2010,35(3):34-40.
    [168]Kasarda K, Bash T, Quinn D, et al. A new approach for health monitoring and detection of a shaft crack using an active magnetic actuator during steady-state rotor operation[C]. Proceedings of the ASME Turbo Expo 2007-Power for Land, Sea, and Air Montreal in Canada.2007,5:879-883.
    [169]Mani G, Quinn D, Kasarda M. Active health monitoring in a rotating cracked shaft using active magnetic bearings as force actuators[J]. Journal of Sound and Vibration, 2006,294(3):454-465.
    [170]Quinn D, Mani G, Kasarda M E F, et al. Damage detection of a rotating cracked shaft using an active magnetic bearing as a force actuator-analysis and experimental verification[J]. IEEE/ASME Transactions on Mechatronics,2005,10(6):640-647.
    [171]Zhou C, Friswell M I, Li J. Condition Monitoring of Cracked Shaft using Active Magnetic Bearings[J].Challenges of Power Engineering and Environment. Springer Berlin Heidelberg,2007:494-504.
    [172]Sawicki J T, Friswell M I, Pesch A H, et al. Condition monitoring of rotor using active magnetic actuator[J]. Proceedings of the ASME Turbo Expo:Power for Land, Sea and Air,2008.
    [173]Sawicki J T, Storozhev D L, Lekki J D. Exploration of NDE properties of AMB supported rotors for structural damage detection[J]. Transactions of the ASME-A-Engineering forGas Turbines and Power,2011,133(10):(102501)1-9.
    [174]Ishida Y, Inoue T. Detection of a rotor crack based on the nonlinear vibration diagnosis using periodic excitation[C]. ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference 2005, Long Beach California USA,2005.
    [175]Ishida Y, Inoue T. Detection of a rotor crack using a harmonic excitation and nonlinear vibration analysis[J]. Journal of vibration and Acoustics,2006.128(6):741-749.
    [176]Aenis M, Nordmann R. A precise force measurement in magnetic bearings for diagnosis purposes[C].The 5th International Symposium on Magnetic Suspension Technology, Santa Barbara California.1999.
    [177]Aenis M, Nordmann R. Active magnetic bearings for fault detection in a centrifugal pump[C]. The 7th International Symposium on Magnetic Bearings, Zurich Switzerland, 2000.
    [178]Aenis M, Knopf E, Nordmann R. Active magnetic bearings for the identification and fault diagnosis in turbomachinery[J]. Mechatronics,2002,12(8):1011-1021.
    [179]Nordmann R, Aenis M. Fault diagnosis in a centrifugal pump using active magnetic bearings[J], International Journal of Rotating Machinery,2004,10(3):183-191.
    [180]Zhu C.S, Robb D.A, Ewins D.J. The dynamics of a cracked rotor with an active magnetic bearing[J]. Journal of Sound and Vibration,2003,265(3):469-487.
    [181]祝长生,钟志贤.带主动电磁阻尼器的裂纹转子系统动力学[J].振动工程学报,2010,23(3):298-304.
    [182]钟志贤,祝长生.主动磁轴承控制器对Jeffcott转子裂纹故障特征的影响[J],中国电机工程学报,2012,32(005):105-110.
    [183]虞烈,刘恒.轴承-转子系统动力学[M].西安:西安交通大学出版社,2001.
    [184]钟一谔,何衍宗,王正,等.转子动力学[M].北京:清华大学出版社,1987.
    [185]顾家柳.转子动力学[M].北京:国防工业出版社,1985.
    [186]张文.转子动力学理论基础[M].北京:科学出版社,1990.
    [187]傅志方.振动模态分析与参数识别[M].北京:机械工业出版社,1990.
    [188]Ritonja J, Polajzer B, Dolinar D, et al. Active magnetic bearings control[C]. Control Conference (CCC),2010 29th Chinese. IEEE,2010:5604-5609.
    [189]Araki M. PID control system with reference feedforward (PID-FF control system)[C]. Proceedings of 23rd Society of Instrument and Control Engineers Annual Conference, 1984,31-32,.
    [190]Araki M, Taguchi H. Two-degree-of-freedom PID controllers[J]. International Journal of Control Automation and Systems,2003,1:401-411.
    [191]刘金琨.先进PID控制MATLAB仿真[M].电子工业出版社,2004.
    [192]晏劢堂.高速旋转机械振动[M].北京:国防工业出版社,1994.
    [193]Hayashi Hiroyuki, Saito Takashi, Shinoda Yoshihiko, et al. Model H∞ control of flexible rotor supported by magnetic bearings[J]. Transactions of the Japan Society of Mechanical Engineers, Part C,1997,63 (612):2725-2730.
    [194]Ulrich Schonhoff, Jihao Luo, Guoxin Li, et al. Implementation results of μ-ynthesis control for an energy storage flywheel test rig[C]. Proceedings of the 7th International Symposium on Magnetic Bearings, Switzerland, August,2000.
    [195]Lei Zhao, Hongwei Li, Huidong Gu, et al. Investigation of an AMBs-flexible rotor for pass through two bending mode frequencies[C]. Proceedings of the 10th International Symposium on Magnetic Bearings, Switzerland, August,2006.
    [196]李书鹏.磁悬浮轴承系统的鲁棒H∞控制研究[硕士学位论文].南京:南京航空航天大学,2007.
    [197]范素香.基于H∞控制理论的磁悬浮系统控制研究[硕士学位论文].长沙:中南大学,2004.
    [198]程敏.主动磁力轴承鲁棒控制算法研究及其控制系统设计[硕士学位论文].武汉:武汉理工大学,2008.
    [199]申铁龙.H∞控制理论及应用[M].北京:清华大学出版社,1996.
    [200]黄曼磊.鲁棒控制理论及应用[M].哈尔滨:哈尔滨工业大学出版社,2007.
    [201]游伟倩,陈怀海,贺旭东.高阶柔性结构系统振动控制中加权函数的选择[J].航空学报,2008,29(2):405-410.
    [202]姜偕富,徐文立.不确定输入时滞系统的滞后相关型鲁棒H∞控制[J].清华大学学报 (自然科学版),2003,43(7):912-915.
    [203]王萌,梅鲁雁,祝长生.主动电磁悬浮球系统的H∞控制器[J].机电工程.2010,27(9):14-17.
    [204]Al-Shudeifat M A, Butcher E A. New breathing functions for the transverse breathing crack of the cracked rotor system:Approach for critical and subcritical harmonic analysis[J]. Journal of Sound and Vibration,2011,330(3):526-544.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700