磁流体磁化率—温度测量中的二阶相变现象
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对肿瘤磁感应热疗中的温度测量和射频加热效率等关键问题,借助蒙特卡罗仿真和实验测试等手段研究磁流体在生物医学温度窗口内的统计热力学行为,最终发现磁纳米粒子受温度调制的聚集体分离二阶相变现象,为活体内磁纳米粒子温度测量模型的修正及肿瘤热疗法加热系统的设计提供理论依据。论文的主要研究工作如下:
     (1)提出基于磁化曲线离散化的粒径分析方法获取了磁流体中聚集体类型的信息。该方法不同于现有的光学、声学等实验方法,而是从磁学测量和信息理论的角度获取粒径分布中隐含的聚集体信息,发现磁流体中二聚体含量占优势,仅有少量三聚体和多聚体存在。
     (2)采用蒙特卡罗模拟方法研究温度对磁流体中聚集分离行为的影响。基于Cluster-moving算法的Metropolis蒙特卡罗模拟方法,通过仿真磁纳米粒子间存在相互作用的情况下二维磁流体系统的行为,得到了不同温度下的磁纳米粒子聚集体型貌。研究发现,组成聚集体的粒子个数以及聚集体的体积分数均随温度的升高而减小,说明聚集体中的粒子发生了分离,且较多粒子组成的聚集体是逐步分裂成单体的;同时,相同类型的不同聚集体可能具有不同的磁矩。
     (3)建立基于聚集体分离二阶相变过程的温度模型,得到磁化率倒数与温度的具体函数关系,以及聚集体分离的相变温度。在朗道二阶相变理论的基础上,通过选择聚集体的体积分数作为序参量,推导聚集体分离的二阶相变模型,并由此对描述无相互作用的单体磁纳米粒子磁化曲线的经典朗之万方程进行修正,从而建立了基于聚集体分离二阶相变的磁化率倒数与温度的数学模型。由于磁流体中的聚集体发生分离,300~340 K温度范围内磁流体样品的磁化率倒数与温度的关系不符合居里定律描述的线性关系,而是呈现向上弯曲的非线性。实验数据的非线性与理论推导相互印证,据此可得到聚集体完全分离成单体的相变温度。
     (4)建立交变磁场频率与聚集体分离相变温度的数学模型,分析提高热疗法中磁纳米粒子加热效率的方法。低频交变磁场激励下的磁流体磁化率倒数与温度的实验曲线发现,表征聚集体分离过程的临界温度随随频率的升高而减小,即频率越高提供给聚集体分离的能量越大,使得只需要较低的加热温度就能使聚集体完全分离成单体。非线性拟合结果表明,聚集体分离的相转变临界温度与交变磁场频率之间的数学模型较好地解释了二者之间的定量关系。因此可通过设计具有较低聚集体分离相变温度的磁流体来提高热疗效率,并选择合适的频率,使聚集体在较低温度时就能完全分离成单体,从而工作在单体状态下继续加热。
Aiming at the two key problems of temperature measurement and RF heating efficiency in magnetic induction hyperthermia for cancer therapy, this dissertation studies the statistical thermodynamics behavior of ferrofluid in the biomedical temperature range by means of Monte Carlo simulation and experimental testing. From the study, we find a second-order phase transition phenomenon of cluster disruption modulated by temperature, which provides the theoretical basis for modifying the magnetic nanoparticle temperature measurement model and designing the heating system in cancer hyperthermia.The main research achievements of this dissertation are as follows:
     (1) Propose a particle size estimation method based on discretization of the magnetization curve to obtain the cluster type information in ferrofluid. This method is from the prospects of magnetic measurement and information theory, which is different from the current optic and acoustic methods. According to the solved particle size distribution function, we find that the content of dimer is larger than any other types of clusters, but there are still some trimers or polymers coexisting in the ferrofluid.
     (2) Using the Monte Carlo method to study the impact of temperature on the cluster disruption behavior. The Metropolis and Cluster-moving algorithms are adopted in the Monte Carlo method to simulate the two-dimentional ferrofluid system with interparticle interactions under small external magnetic field and thus the characterization of clusters at different temperatures is obtained. The results show that the content of different types of clusters consisting of different number of particles reduces with increasing the temperature, which indicates the clusters disrupt when temperature increases; and the polymers may disrupt gradually to monomers; meanwhile, different clusters with the same type could have different magnetic moments.
     (3) Establish the second order phase transition model of cluster disruption, and obtain a modified model of the inverse susceptibility versus temperature and the transition temperature of cluster disruption. Based on the Landau's theory of second-order phase transition, by choosing the volume fraction of clusters as an order parameter, the second-order phase transition model of cluster disruption is deduced. According to this model, we modify the classical Langevin model which only describes a non-interaction system by including both of the contributions from monomers and clusters, and thus establish a mathematical model of the relationship of inverse susceptibility and temperature. Because the clusters disrupt in ferrofluid, the inverse susceptibility versus temperature curve measured from the sample in the temperature range of 300-340 K does not obey the linear relationship described by Curie law, but shows an up-bending superlinearity. The nonlinearity of experimental data and the theoretical analysis confirm with each other, based on this, we obtain the transition temperature of clusters disrupting to monomers.
     (4) Establish a model to describe the relationship between the frequency of AC magnetic field and the cluster disruption transition temperature; analyze the method of promoting the magnetic nanoparticle's heating efficiency. From the experimental data of the inverse susceptibility versus temperature cuve under low-frequency AC applied field, we find that the transition temperature which characterizes the cluster disruption process decreases with the increasing frequency, i.e., the higher the frequency is, the more energy the cluster disruption process can get, which makes the clusters disrupt at a lower heating temperature. The nonlinear fitting results using the modified Langevine model at different frequencies shows that the mathematical model describing the relationship between the transition temperature of cluster disruption and the AC field frequency explains the quantitative relationship of the frequency and transition temperature very well. Therefore, designing a ferrofluid sample with low cluster disruption transition temperature could be a possible way to improve heating efficiency, and meanwhile choose a proper frequency to make the clusters disrupt at a low temperature and let them work in the monomer state to heat the tumors.
引文
[1]郭中华,唐露新,唐劲天等.交变磁场加热治疗肿瘤测控技术的研究进展.中国医疗器械杂志,2006,30(1):39-43.
    [2]John B. Weaver, Adam M. Rauwerdink and Eric W. Hansen. Magnetic nanoparticle temperature estimation. Medical Physics.2009,36(5):1822-1828.
    [3]Chin-Yih Hong, C.C. Wu, Y.C. Chiu, et al. Magnetic susceptibility reduction method for magnetically labeled immunoassay. Applied Physics Letters,2006,88(21):212512.
    [4]Mark Klokkenburg, Roel P. A. Dullens, Willem K. Kegel, et al. Quantitative real-space analysis of self-assembled structures of magnetic dipolar colloids. Physical Review Letters, 2006,96(3):037203.
    [5]Massimo Bonini, Emiliano Fratini and Piero Baglioni. SAXS study of chain-like structures formed by magnetic nanoparticles. Materials Science and Engineering C,2007, 27(5-8):1377-1381.
    [6]L.L. Castro, M.F. da Silva, A.F. Bakuzis, et al. Monodisperse ferrofluids clusterization: a Monte Carlo study. Journal of Magnetism and Magnetic Materials,2005,289(3): 230-233.
    [7]A. Sinyagin, A. Belov and N. Kotov. Monte Carlo simulation of linear aggregate formation from CdTe nanoparticles. Modelling and Simulation in Materials Science and Engineering,2005,13(3):389-399.
    [8]L.L. Castro, M.F. da Silva, A.F. Bakuzis, et al. Aggregate formation on polydisperse ferrofluids:A Monte Carlo analysis. Journal of Magnetism and Magnetic Materials,2005, 293(1):553-558.
    [9]P.C. Morais, P.P. Gravina, K. Skeff Neto, B.M. Lacava. Birefringence of maghemite-based magnetic fluid in the highly concentrated regime. Thin Solid Films, 2006,515(1):226-230.
    [10]F. Pelegrini, A.R. Pereira and P.C. Morais. Ferromagnetic resonance line of ferrite ferrofluids at high microwave power. Journal of Magnetism and Mangetic Materials,2005, 289(3):84-86.
    [11]F. Marty Ytreberg and Susan R. Mckay. A Quasi-Equilibrium Analysis to Predict the Dependence of Ferrofluid Aggregate Properties on Field Ramping Rate. IEEE Transactions on Magnetics,2003,39(5):2648-2650.
    [12]P.C. Morais. From magnetic fluid up to complex biocompatible nanosized magnetic system. Bulletin of the polish academy of sciences, technical sciences,2008,56(3): 253-262.
    [13]R. Itri, J. Depeyrot, F.A. Tourinho, et al. Nanoparticle chain-like formation in electrical double-layered magnetic fluids evidenced by small-angle X-ray scattering. The European Physical Journal E,2001,4(2):201-208.
    [14]R.W. Chantrell, A. Bradbury, J. Popplewell, et al. Particle cluster configuration in magnetic fluids. Journal of Physics D:Applied Physics,1980,13(7):L119-L122.
    [15]W.X. Fang, Z.H. He, X.Q. Xu, et al. Magnetic-field-induced chain-like assembly structures of Fe3O4 nanoparticles. Europhysics Letters,2007,77(6):p68004-pl-6
    [16]Guangjun Cheng, Danilo Romero, Gerald T. Fraser, et al. Magnetic-field-induced assemblies of cobalt nanoparticles. Langmuir,2005,21(26):12055-12059.
    [17]Anrong Wang, Jian Li, and Rongli Gao. The structural force arising from magnetic interactions in polydisperse ferrofluids. Applied Physics Letters 2009,94(21):212501.
    [18]Alexey O. Ivanov, Sofia S. Kantorovich, Valentin S. Mendelev, et al. Ferrofluid aggregation in chains under the influence of a magnetic field. Journal of Magnetism and Magnetic Materials,2006,300(1):e206-e209.
    [19]Arkadiusz Jozefczak. Detection of structural transformations in magnetic fluids for biomedical application by ultrasound. Molecular and Quntum Acoustics,2007,28: 137-149.
    [20]Wenzhong Liu, Jing Zhong, Qing Xiang, et al. Discretization of magnetization curves and their application in size estimation of nano-sized ferrofluid. IEEE Transactions on Nanotechnology, in press.
    [21]D Eberbeck, F Wiekhorst, U Steinhoff, et al. Aggregation behaviour of magnetic nanoparticle suspensions investigated by magnetorelaxometry. Jounal of Physics: Condensed Matter,2006,18(38):2829-2846.
    [22]Junaid M. Laskar, John Philip, and Baldev Raj. Experimental investigation of magnetic-field-induced aggregation kinetics in nonaqueous ferrofluids. Physical Review E, 2010,82(2),021402.
    [23]M. Klokkenburg and B.H. Erne. Comparison of reversible and irreversible dipolar assemblies in a ferrofluid. Journal of Magnetism and Magnetic Materials.2006,306(1): 85-91.
    [24]P. Licinio. Equilibrium chain dynamics in magnetic fluids. Journal of Magnetism and Magnetic Materials,2002,252(11):238-240.
    [25]M. Klokkenburg, B.H. Erne, V. Mendelev, et al. Magnetization behavior of ferrofluids with cryogenically imaged dipolar chains. Journal of Physics:Condensed Matter,2008, 20(20):204113.
    [26]P.C. Morais, L.B. Silveira, A.C. Oliveira, et al. Initial dynamic susceptibility of biocompatible magnetic fluids. Review of Advanced Material Science,2008,18(6): 536-540.
    [27]S. Masoud Hosseini, Alireza Fazlali, E. Ghasemi, et al. Rheological properties of a y-Fe2O3 paraffin-based ferrofluid. Journal of Magnetism and Magnetic Materials,2010, 322(23):3792-3796.
    [28]J.C. Bacri, R. Perzynski, V. Cabuil, et al. Phase diagram of an ionic magnetic colloid: experimental study of the effect of ionic strength. Journal of Colloid and Interface Science, 1989,132(1):43-53.
    [29]A. Yu Zubarev and L. Yu Iskakova. Condensation phase transitions in ferrofluids. Physica A:Statistical and Theoretical Physics,2004,335(3-4):325-338.
    [30]C. Holm and J.J. Weis. The structure of ferrofluids:A status report. Current Opinion in Colloid & Interface Science,2005,10(3-4):133-140.
    [31]Philip J. Camp. Structure and phase behavior of a two-dimensional system with core-softened and long-range repulsive interactions. Physics Review E,2003,68(61): 061506.
    [32]Susamu Taketomi, Rosetta V. Drew and Robert D. Shull. Peculiar magnetic aftereffect of highly diluted frozen magnetic fluids. Journal of Magnetism and Magnetic Materials,2006,307(1):77-84.
    [33]Konstantin I Morozov and Mark I shliomis. Ferrofluids:flexibility of magnetic particle chains. J. Phys.:Condens. Matter,2004 (16) 2807-3818.
    [34]P.C. Morais, G.R.R. Goncalves, A.F. Bakuzis, et al. Experimental evidence of dimer disruption in ionic ferrofluid:a ferromagnetic resonance investigation. Journal of Magnetism and Magnetic Materials.2001,225(1-2):84-88.
    [35]An-Hui Lu, E.L. Salabas, and Ferdi Schuth. Magnetic nanoparticles:synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed.2007,46(8): 1222-1244.
    [36]童乃虎,徐宏,古宏晨.新型水基磁流体的制备及其生物磁热效应研究.功能材料,2006,37(4):555-558.
    [37]施锋,吴敏.磁流体在交变磁场中的热效应.生物化学与生物物理进展.2000,27(3):281-283.
    [38]Ting-Yu Liu, Shang-Hsiu Hu, Dean-Mo Liu, et al. Biomedical nanoparticle carriers with combined thermal and magnetic responses. Nano Today,2009,4:52-65.
    [39]Helen W Davies and J Patrick Llewellyn. Magneto-optic effects in ferrofluids. J. Phys. D:Appl. Phys.,1980,13(12):2327-2336.
    [40]D. Jamon, F. Donatini, A. Siblini, et al. Experimental investigation on the magneto-optic effects of ferrofluids via dynamic measurements. Journal of Magnetism and Magnetic Materials,2009,321 (9):1148-1154.
    [41]J. Bracri and R. Perzynski. Ferrofluids:Magneto-optic effects in time dependent magnetic fields. Lecture Notes in Physics,1993,415:85-97.
    [42]Luis Martinez, Franjo Cecelja, Ryszard Rakowski. A novel magneto-optic ferrofluid material for sensor applications. Sensor and Actuators A,2005,123(124):438-443.
    [43]B. Payet, J. Dufour, L. Jorat, et al. A magneto-optical method for viscosimetric measurements. Measurement Science and Technology,1999,10(11):1054-1058.
    [44]M. De Volder and D. Reynaerts. Development of a hybrid ferrofluid seal technology for miniature pneumatic and hydraulic actuators. Sensor and Actuators A:Physical,2009, 152(2):234-240.
    [45]O. Baltag, D. Costandache and A. Salceanu. Tilt measurement sensor. Sensors and Actuators A:Physical,2000,81(1):336-339.
    [46]M.S. Crainic and Z. Schlett. A flow transducer for cold water using ferrofluids. Journal of Magnetism and Magnetic Materials,2004,268(1-2):8-19.
    [47]Q.A. Pankhurst, J. Connolly, S.K. Jones and J. Dobson. Application of magnetic nanoparticles in biomedicine. Journal of Physics D:Applied Physics,2003,36(13): R167-R181.
    [48]An-Hui Lu, E. L. Salabas, and Ferdi Schiith. Magnetic nanoparticles:sythesis, protection, functionalization and application. Angewandte Chemie International Edition, 2007,46(8):1222-1244.
    [49]Leonard Fass. Imaging and cancer:A review. Molecular Oncology,2008,2:115-152.
    [50]Philipp Bruners, Till Braunschweig, Michael Hodenius, et al. Thermoablation of malignant kidney tumors using magnetic nanoparticles:an in vivo Feasibility study in a rabbit model. Cardiovasc Intervent Radiol,2010,33(1):127-134.
    [51]P.C. Morais. Photoacoustic spectroscopy as a key technique in the investigation of nanosized magnetic particles for drug delivery systems. Journal of Alloys and Compounds, 2009,483(1-2):544-548.
    [52]C. Scherer and A.M. Figueiredo Neto. Ferrofluids:Properties and Applications. Brazilian Journal of Physics,2005,35(3):718-727.
    [53]J. Popplewell. Technological application of ferrofluids. Phys. Technol.1984,15(6): 150-156.
    [54]K. Raj, B. Moskowitz, R. Casciari. Advances in ferrofluid technology. Journal of Magnetism and Magnetic Material,1995,149(1-2):174-180.
    [55]F. Shamsipour, A.H. Zarnani, R. Ghods, et al. Conjugation of monoclonal antibodies to superparamagnetic iron oxide nanoparticles for detection of her2/neu antigen on breast cancer cell lines. Avicenna Journal of Medical Biotechnology,2009,1(1):27-31.
    [56]Jia-Jyun Lin, Jenn-Shing Chen, Shih-Jer Huang, et al. Folic acid-Pluronic F127 magnetic nanoparticle clusters for combined targeting diagnosis and terapy applications. Biomaterials,2009,30(28):5114-5124.
    [57]L. Levy, Y. Sahoo, K.S. Kim, et al. Nanochemistry:sythesis and characterization of multifunctional nanoclinics for biological applications. Chem. Mater.2002,14(1): 3715-3721.
    [58]Tarl W. Prow, Imran Bhutto, Rhonda Grebe, Koichi Uno, et al. Nanopartice-delivered biosensor for reactive oxygen species in diabetes. Vision Research,2008,48(3):478-485.
    [59]Petr I. Nikitin, Petr M. Vetoshko and Tatiana I. Ksenevich. New typer of biosensor based on magnetic nanoparticle detection. Journal of Magnetism and Magnetic Materials, 2007,311(1):445-449.
    [60]Shu-Jen Han and Shan Wang. Magnetic nanotechnology for biodetection. Journal of the Association for Laboratory Automation,2010,15(2):93-98.
    [61]Hyo-Bong Hong, Hans-Joachim Krause, Ki-Bong Song, et al. Detection of two different influenza A viruses using a nitrocellubose membrane and a magnetic biosensor. Journal of Inmmunological Methods,2011,365(1):95-100.
    [62]Davide Brambilla, Benjamin Le Droumaguet, Julien Nicolas, et al. Nanotechnologies for Alzheimer's disease:diagnosis, therapy and safety issues. Nanomedicine: Nanotechnology, Biology, and Medicine,2011, in press.
    [63]Beata Chertok, Allan E. David, Victor C. Yang, et al. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials,2010,31(24):6317-6324.
    [64]Ulrike Schroder and Bernhard A. Sabel. Nanoparticles, a drug carrier system to pass the blood brain barrier, permit central analgesic effects of i.v. dalargin injections. Brain Research,1996,710(1):121-124.
    [65]L. Zhang, D. Pornpattananangkul, C.M.J. Hu, et al. Development of nanoparticles for antimicrobial drug delivery. Current Medicinal Chemistry,2010,17(6):585-594.
    [66]K.J. Widder, A. E. Senyei and D.G. Scarpelli. Magnetic microspheres:a model system for site specific drug delivery in vivo. Proceedings of the Society for Experimental Biology and Medicine.1978,158(2):141-146.
    [67]A. Senyei, K. Widder and C. Czerlinski. Magnetic guidance of drug carrying microspheres. Journal of Applied Physics.1978,49(6):3578-3583.
    [68]C. Alexiou, W. Arnold, R.J. Klein, et al. Locoregional cancer treatment with magnetic drug targeting. Cancer Research,2000,60(23):6641-6648.
    [69]Rahisuddin, Pramond K. Sharma, Mohd Salim, et al. Application of ferrofluid:as a targeted drug delivery system in nanotechnology. International Journal of Pharmaceutical Sciences Review and Research,2010,5(3):115-119.
    [70]Farah Benyettou, Imene Chebbi, Laurence Motte, et al. Magnetoliposome for alendronate delivery. Journal of Materials Chemistry,2011,21(13):4813-4819.
    [71]Rupa R. Sawant and Vladimir P. Torchilin. Liposomes as'smart'pharmaceutical nanocarriers. Soft Matter,2010,6(17):4026-4044.
    [72]M. Babincova, P. Cicmanec, V. Altanerova, et al. AC-magnetic field controlled drug release from magnetoliposomes:design of a method for site-specific chemotherapy. Bioelectrochemistry,2002,55(1-2):17-19.
    [73]Rajesh Singh, James W. Lillard Jr. Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology,2009,86(3):215-223.
    [74]V. Wagner, A. Dullaart, A.K. Bock, et al. The emerging nanomedicine landscape. Nature Biotechonology,2006,24(10):1211-1217.
    [75]E. Munnier, S. Cohen-Jonathan, C. Linassier et al. Novel method of doxorubicin-SPION reversible association for magnetic drug targeting. International Journal of Pharmaceutics,2008,363(1-2):170-176.
    [76]Chritoph Alexiou, Roland Jurgons, Roswitha Schmid, et al. In vitro and in vivo investigations of targeted chemotherapy with magnetic nanoparticles. Journal of Magnetism and Magnetic Materials,2005,293(1):389-393.
    [77]Mu-Yi Hua, Hao-Li Liu, Hung-Wei Yang, et al. The effectiveness of a magnetic nanoparticle-based delivery system for BCNU in the treatment of gliomas. Biomaterials, 2011,32(2):516-527.
    [78]Sarbari Acharya, Fahima Dilnawaz and Sanjeeb K. Sahoo. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials,2009, 30(29):5737-5750.
    [79]唐劲天.肿瘤磁感应治疗.北京:人民卫生出版社,2009.
    [80]Andreas Jordan, Regina Scholz, Peter Wust, et al. Magnetic fluid hyperthermia (MFH):cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. Journal of Magnetism and Magnetic Materials,1999, 201(1-3):413-419.
    [81]A. Nacev, C. Beni, O. Bruno, et al. The behaviors of ferromagnetic nanoparticles in and around blood vessels under applied magnetic fields. Journal of Magnetism and Magnetic Materials,2011,323(6):651-668.
    [82]Peter Wust, Uwe Gneveckow, Manfred Johannsen, et al. Magnetic nanoparticles for interstitial thermotherapy:feasibility, tolerance and achieved temperatures. International Journal of Hyperthermia,2006,22(8):673-685.
    [83]I. Apostolova and J.M. Wesselinowa. Possible low-Tc nanoparticles for use in magnetic hyperthermia treatments. Solid State Communications,2009,149(25):986-990.
    [84]K.L. McNerny, Y. Kim, D.E. Laughlin, et al. Chemical synthesis of monodisperse y-Fe-Ni magnetic nanoparticles with tunable Curie temperatures for self-regulated hyperthermia. Journal of Applied Physics,2010,107(9):09A312.
    [85]Aihua Yao, Fanrong Ai, Deping Wang, et al. Synthesis, characterization and in vitro cytotoxicity of self-regulating magnetic implant material for hyperthermia application. Materials Science and Engineering C,2009,29(8):2525-2529.
    [86]R. Hergt, R. Hiergeist, M. Zeisberger, et al. Enhancement of AC-losses of magnetic nanoparticles for heating applications. Journal of Magnetism and Magnetic Materials, 2004,280(2-3):358-368.
    [87]S. Mornet, S. Vasseur, F. Grasset, et al. Magnetic nanoparticle design for medical diagnosis and therapy. Progress in Solid State Chemistry.2006,34(2-4):237-247.
    [88]Maria F. Casula, Patrizia Floris, Claudia Innocenti, et al. Magnetic resonance imaging contrast agents based on iron oxide superparamagnetic ferrofluids. Chemical Materials, 2010,22(5):1739-1748.
    [89]N. Kohler, GE. Fryxel and M. Zhang. A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. Journal of American Chemical Society.2004,126(23):7206-7211.
    [90]Ranjan Ganguly, Brian Zellmer and Ishwar K. Puri. Field-induced self-assembled ferrofluid aggregation. Physics of Fluid,2005,17(9):097104
    [91]A.O. Ivanov. Initial magnetic susceptibility of ferrocolloids:the influence of chain aggregation. Colloid Journal,2004,66(6):679-687.
    [92]Kyle J. M. Bishop, Christopher E. Wilmer, Siowling Soh, et al. Nanoscale forces and their uses in self-assembly. Small,2009,5(14):1600-1630.
    [93]D. Heinrich, A. R. Goni and C. Thomsen. Dynamics of magnetic-field-induced clustering in ionic ferrofluids from Raman scattering. The Journal of Chemical Physics, 2007,126(12):124701.
    [94]马有文,田秋,曹茂盛等.纳米颗粒分散方法与机理.中国粉体技术,2002,8(3):28-31.
    [95]You-Yeon Won. Imaging nanostructured fluids using Cryo-TEM. Korean J. Chem. Eng.2004,21(1):296-302.
    [96]M. Knobel, W.C. Nunes, L.M. Socolovsky, et al. Superparamagnetism and other magnetic features of granular materials:a review on ideal and real systems. Journal of Nanoscience and Nanotechnology,2008,8(6):2836-2857.
    [97]J. P. Huang, Z. W. Wang and C. Holm. Computer simulations of the structure of colloidal ferrofluids. Physical Review E,2005,71(6):061203.
    [98]Akira Satoh, Roy W. Chantrell, Shin-Ichi Kamiyama, et al. Two-dimensional Monte Carlo simulations to capture thick chainlike clusters of ferromagnetic particles in colloidal dispersions. Journal of Colloid and Interface Science,1996,178(2):620-627.
    [99]Akira Satoh. Three-dimentional Monte Carlo simulations of internal aggregate structures in a colloidal dispersion composed of rod-like particles with magnetic moment normal to the particle axis. Journal of Colloid and Interface Science,2008,318(1):68-81.
    [100]Juan J Cerdo, Sofia Kantorovich and Christian Holm. Aggregate formation in the ferrofluid monolayers:simulations and theory. Journal of Physics:Condensed Matter, 2008(20):204125.
    [101]K. Binder. Monte Carlo methods for the study of phase transitions and phase equilibria. The European Physical Journal B,2008,64(3-4):307-314.
    [102]D. Baldomir, J. Rivas, D. Serantes et al. Magnetocaloric effects in magnetic nanoparticle systems:A Monte Carlo study. Journal of Non-Crystalline Solids,2007, 353(8):790-792.
    [103]Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, et al. Equation of state calculations by fast computing machines. The Journal of Chemical Physics,1953,21(6):1087-1092.
    [104]Akira Satoh. A new technique for Metropolis Monte Carlo simulation to capture aggregate structures of fine particles:Cluster-moving Monte Carlo algorithm. Journal of Colloid and Interface Science,1992,150(2):461-472.
    [105]Masayuki Aoshima and Akira Satoh. Two-dimensional Monte Carlo simulations of a poly disperse colloidal dispersion composed of ferromagnetic particles for the case of no external magnetic field. Journal of Colloid and Interface Science,2004(280):83-90.
    [106]J.L. Viota, J.D.G. Duran, F. Gonzalez-Caballero, et al. Magnetic properties of extremely bimodal magnetite suspensions. Journal of Magnetism and Magnetic Materials, 2007,314(2):80-86.
    [107]Yingtian Pan, Xiande Liu, Chongwu Du, et al. An effective correction to the theoretical curve of magnetobirefringence of magnetic fluid. Journal of Applied Physics, 1992,71(8):3937-3939.
    [108]A.F. Pshenichnikov and A.V. Levedev. Magnetic susceptibility of concentrated ferroclloids. Colloid Journal,2005,67(2):218-130.
    [109]吴慧,王簃兰.二巯基丁二酸临床应用进展.环境与职业医学,2010,27(9):568-570.
    [110]Young-wook Jun, Yong-min Huh, Jin-sil Choi, et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. Journal of the American Chemical Society,2005,127(16):5732-5733.
    [111]Z.P. Chen, Y. Zhang, S. Zhang, et al. Preparation and characterization of water-soluble monodisperse magnetic iron oxide nanoparticles via surface double-exchange with DMSA. Colloids and Surfaces A:Physicochem. Eng. Aspects,2008, 316(1-3):210-216.
    [112]P.S. Haddad, T.M. Martins, L.M. Li, et, al. Structural and morphological investigation of magnetic nanoparticles based on iron oxides for biomedical applications. Material Science and Engineering C,2008,28(4):489-294.
    [113]M.P. Garcia, R.M. Parca, P.C. Morais, et al. Morphological analysis of mouse lungs after treatment with magnetite-based magnetic fluid stabilized with DMSA. Journal of Magnetism and Magnetic Materials,2005,293(1):277-282.
    [114]Raquel Mejias, Sonia Perez-Yague, Lucia Gutierrez, et al. Dimercaptosuccinic acid-coated magnetite nanoparticles for magnetically guided in vivo delivery of interferon gamma for cancer immunotherapy. Biomaterials,2011,32(11):2938-2952.
    [115]詹佑邦,方福矩.关于气液连续相变.大学物理,1990,(5):18-19.
    [116]郭革新,周国香,王爱坤等.关于自由能的一些讨论.大学物理,2003,23(6):19-22.
    [117]郝柏林.朗道百年.物理,2008,37(9):666-671.
    [118]H. Eugene Stanley. Introduction to phase transitions and critical phenomena. Oxford: Clarendon Press,1971.
    [119]Robert E. Kopp, Cody Z. Nash, Atsuko Kobayashi, et al. Ferromagnetic resonance spectroscopy for assessment of magnetic anisotropy and magnetostatic interactions:a case study of mutant magnetotactic bacteria. Journal of Geophysical Research,2006,111: B12S25.
    [120]A. F. Bakuzis, P. C. Morais and F. A. Tourinho. Investigation of the magnetic anisotropy in manganese ferrite nanoparticles using magnetic resonance. Journal of Magnetic Resonance Series A,1996,122(1):100-103.
    [121]P.C. Morais, A.L. Tronconi, F.A. Tourinho, et al. Investigation of the Brownian relaxation and hydrodynamic radius in magnetic nanoparticles. Solid State Communications,1997,101(9):693-697.
    [122]Qing Xiang, Paulo Cesar Morais, Wenzhong Liu, et al. AC field dependence of cluster disruption in magnetic fluids. Journal of Applied Physics,2011,109(7):07B317.
    [123]R.E. Rosensweig. Heating magnetic fluid with alternating magnetic field. Journal of Magnetism and Magnetic Materials,2002,252(1-3):370-374.
    [124]A. Skumiel, A. Jozefczak, M. Timko, et al. The heating effect of the biocompatible ferrofluid in an alternating magnetic field. International Journal of Thermophysics,2007, 28(5):1461-1469.
    [125]R.R. Anderson and J.A. Parrish. Selective phtothermolysis:precise microsurgery by selective absorption of pulsed radiation. Science,1983,220(4596):524-526.
    [126]W. Coffey, Y.L. Raikher, M.I. Shiliomis, et al. Advances in chemical physics series: Relaxation phenomena in condensed matter. New York:Wiley,1994.596-751.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700