La_(0.67)Ca_(0.33)MnO_3的电子能态密度以及Nd_(1-x)Zr_xMnO_3的磁化逆转现象研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类钙钛矿结构的稀土锰氧化物因为其显著的CMR效应而引起了人们的兴趣。这类材料不仅在自旋电子器件中具有潜在的应用价值,其本身也为凝聚态和材料物理的研究提供了良好的场所。本论文中,我们利用溶胶—凝胶法分别制备了空穴和电子掺杂的稀土锰氧化物,并对其物理性质进行了较为系统的研究。
     在晶粒连通性比较好且经过抛光处理的La_(0.67)Ca_(0.33)MnO_3块体上用磁控溅射的方法制备了La_(0.67)Ca_(0.33)MnO_3/Al2O3/Al隧道结,通过分析不同温度下dI/dV-V曲线得到了La_(0.67)Ca_(0.33)MnO_3在费米面附近电子能态密随温度的变化关系。我们发现,居里温度之下电子能态密度对能量的依赖程度要大于居里温度附近以及之上的依赖程度;用公式G (V ) = G0 [1 +(| V |/V *) n]对费米能级附近(|E - E_F|≤0.3eV)不同温度下的隧穿电流与电压的关系曲线进行了拟合,拟合结果显示,体系在低温下表现出很好的金属性质,并且属于强无序体系,电子—电子相互作用比较明显。
     成功地合成了Nd_(1-x)Zr_xMnO_3 (x=0,0.05,0.1)以及Pr1-xZrxMnO3 (x=0,0.05,0.1)化合物。XPS分析结果表明,Zr掺杂后的Nd_(1-x)Zr_xMnO_3 (x=0.05,0.1)和Pr1-xZrxMnO3 (x=0.05,0.1)样品中Mn以Mn2+和Mn~(3+)离子的形式存在,说明样品是电子掺杂型的。Nd_(1-x)Zr_xMnO_3的FC以及ZFC的M-T曲线中,磁化强度均出现了负值,即出现了磁化逆转现象。而同属于轻稀土元素且在元素周期表中与Nd相邻、离子半径相近的元素Pr掺杂的系列样品Pr1-xZrxMnO3 (x=0.05,0.1)在整个温度范围内都没有表现出磁化逆转现象,结合前人的研究结果我们提出,Nd_(1-x)Zr_xMnO_3 (x=0.05,0.1)中磁化强度逆转现象是由两套亚铁磁排列的子晶格Mn2+/Mn~(3+) (M23)和Mn~(3+)/Mn~(3+) (M33)以及它们与Nd~(3+)离子之间负的f-d交换作用共同引起的, Nd~(3+)在13 K以下完全有序,净磁矩与磁场方向相反,导致负的磁化强度。Nd_(1-x)Zr_xMnO_3 (x=0,0.05)的比热与温度的关系进一步证明了上述观点。
Manganites with porverskite structures have attracted researchers’attention not only because their wide prospect of application in electron spin devices, but also they provide platforms for basic research. In this thesis, we prepare hole-doped and electrons-doped manganites by pechini process, and investigate their physical properties systematically.
     LCMO/AlO/Al tunnel junction was fabricated with magnetic sputtering technology on the LCMO bulk with good connectivity between grain boundaries which was sufficiently polished. Temperature dependence of density of states (DOS) was investigated via the dI/dV-V curve. It was found that far below the courier temperature the DOS had stronger dependence on energy than that for temperature near and above courier temperature. We fitted the tunneling conductance near the Fermi-level with the equation , the results shows that the system reveals good metallic property and the effect of electron-electron interaction can be quite prominent.
     Nd_(1-x)Zr_xMnO_3 and Pr1-xZrxMnO3 compounds was successfully synthesized by sol-gel process, the x-ray photoemission spectroscopy investigation shows that, the Mn cations of the sample are in the divalent and trivalent states after Zr was introduced means that the systems were electron doped. In addition, for Nd_(1-x)Zr_xMnO_3, the M-T curve during both ZFC and FC process shows negative magnetization, which was also called magnetic reversal .In comparison, Pr, being similar with Nd, which belongs to the light thulium material, has no sign of magnetic reversal in higher temperature region. Combining the previous study, we proposed that the appearance of magnetic reversal during the higher temperature region was result from the competition between two antiferromagnetic coupled lattices Mn2+/Mn~(3+) and Mn~(3+)/Mn~(3+), while in low temperature region It may related with the ordering of Nd~(3+) ions .and the peak of the specific heat in low temperature provides an effective evidence for the ordering of Nd~(3+) ions in low temperature.
引文
[1] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petroff, et al, Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices, Phys. Rev. Lett., 1988, 61: 2472~2475
    [2] M. McCormack, S. Jin, T. H. Tiefel, et a1, Very large magnetoresistance in perovskite-like La-Ca-Mn-O thin films, App1. Phys. Lett., 1994, 64: 3045
    [3] S. Jin, T. H. Tiefel, M. McCormack, et a1, Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films, Science, 1994, 264: 413~415
    [4] N. A. Babushkina, E. A. Chistotina, O. Yu.Gorbenko, et a1, Modification of the ground state in Sm-Sr manganites by oxygen isotope substitution, Phys. Rev. B, 2003, 67:100410-1~100410-4
    [5] S. Mori, C. H. Chen, S.-W. Cheong, Pairing of charge-ordered stripes in (La,Ca)MnO3 Nature, 1998, 392: 473~476.
    [6] Y. Tomioka, A. Asamitsu, H. Kuwahara, et a1, Magnetic-field-induced metal-insulator phenomena in Pr1-xCaxMnO3 with controlled charge-ordering instability, Phys. Rev. B, 1996, 53: R1689~R1692
    [7] M. Fath, S. Freisem, A. A. Menovsky, et a1, Spatially Inhomogeneous Metal-Insulator Transition in Doped Manganites, Science, 1999, 285: 1540-1542
    [8] Elbio Dagotto, Takashi Hotta and Adriana Moreo, Colossal magnetoresistant materials: the key role of phase separation, Physics Reports, 2001, 344: 1
    [9] H. A. Jahn, E. teller, Proc. Roy. Soc. A., 1937, 161:220~224
    [10] W. E. Pickett and D. J. Singh, Electronic structure and half-metallic transport in the La1-xCaxMnO3 system, Phys. Rev. B, 1996, 53: 1146
    [11] T. Saitoh, et a1, Electronic structure of La1-xSrxMnO3 studied by photoemission and x-ray-absorption spectroscop, Phys. Rev. B, 1995, 5l: 13942.
    [12] A. Fujimori, et a1, Doping-induced changes in the electronic structure of LaxSr1-xTiO3: Limitation of the one-electron rigid-band model and the Hubbard model, Phys. Rev. B, 1992, 46: 9841
    [13] J. W. Allen, et a1, Resonant photoemission study of Nd2-xCexCuO4-y: Nature of electronic states near the Fermi level, Phys. Rev. Lett., 1990, 64: 595
    [14] R. Vonhelmolt, J. Wecker, B. Holzapfel, et a1, Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films, Phys.Rev. Lett., 1993, 71: 2331~2333
    [15] C. Zener, Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure, Phys. Rev., 1951, 82: 403
    [16] A. J. Millis, P. B.Littlewood and B. I. Shraiman, Double exchangealone does not explain the resistivity of La1-xSrxMnO3, Phys. Rev. Lett., 1995, 74: 5144
    [17] A. J. Millis, Boris I. Shraiman, and R. Mueller, Dynamic Jahn-Teller Effect and Colossal Magnetoresistance in La1-xSrxMnO3, Phys. Rev. Lett., 1996, 77: 175
    [18] X. W. Li, A. Gupta, Low-field magnetoresistive properties of polycrystalline and epitaxial perovskite manganite films, App1. Phys. Lett., 1997, 71: 1124
    [19] H. Y. Hwang, S. W. Cheong, et al, Spin-Polarized Intergrain Tunneling in La2/3Sr1/3MnO3, Phys. Rev. Lett., 1996, 77: 2041~2044
    [20] P. Schiffer, A. P. Ramirez, W. Bao, et al, Low Temperature Magnetoresistance and the Magnetic Phase Diagram of La1-xCaxMnO3, Phys. Rev. Lett. 1995, 75: 3336~3339
    [21] J. M. Liu, Q. Huang, et al, Effect of oxygen nonstoichiometry on electrotransport and low-field magnetotransport property of polycrystalline La0.5Sr0.5MnO3-δthin films, Phys. Rev. B, 2000, 62: 8976~8982
    [22] J. Li, J. -M. Liu, H. P. Li, H. C. Fang, C. K. Ong, Magnetoresistance in oxygen deficient La0.75Sr0.25MnO3?δthin films prepared by pulsed laser deposition. J. Magn. Magn. Mater, 1999, 202: 285~291
    [23] E. O. WoIlan, W. C. Koehler, Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds [(1-x)La,xCa]MnO3, Phys. Rev., 1955, 100: 545
    [24] Y. Tokura, Y. Tomioka, Colossal magnetoresistive manganites. J. Magn. Magn. Mater, 1999, 200: 1~23
    [25] J. B. Goodenough, Theory of the Role of Covalence in the Perovskite-Type Manganites [La,M(II)]MnO3, Phys. Rev. 1955, 100: 564
    [26] Mori, C. H. Chen and S.-W. Cheong. S. Pairing of charge-ordered stripes in (La,Ca)MnO3 Nature. 1998, 392: 473~476
    [27] S. Dong, S. Dai, X. Y. Yao, et a1, Jahn-Teller distortion induced charge ordering in the CE phase of manganites, Phys. Rev. B, 2006, 73: 104404
    [28] Y. Tomioka, A. Asamitsu, Y. Moritomo, H. Kuwahara, and Y. Tokura, Collapse of a Charge-Ordered State under a Magnetic Field in Pr1/2Sr1/2MnO3,Phys. Rev. Lett., 1995, 74: 5108
    [29] Qingshan Yuan, Thilo Kopp, Charge ordering in half-doped Pr(Nd)0.5Ca0.5MnO3 under a magnetic field, Phys. Rev. B, 2002, 65: 174423
    [30] Joonghoe Dho, N. H. Hur, Thermal relaxation of field-induced irreversible ferromagnetic phase in Pr-doped manganites, Phys. Rev. B, 2003, 67: 214414
    [31] A. Asamitsu, Y. Tomioka, II. Kuwahara, et a1, Current switching of resistive states in magnetoresistive manganites, Nature, 1997, 388: 50
    [32] N. K. Pandey, R. P. S. M. Lobo, R. C. Budhanil, Electric-field-tuned metallic fraction and dynamic percolation in a charge-ordered manganite, Phys. Rev. B, 2003, 67: 054413
    [33] Y. Moritomo, H. Kuwahara, Y. Tomioka, et a1, Pressure effects on charge-ordering transitions in Perovskite manganites, Phys. Rev. B, 1997, 55: 7549
    [34] V. Kiryukhin, D. Casa, J. P. Hill, et a1, An X-ray-induced insulator?metal transition in a magnetoresistive manganite, Nature, 1997, 386: 813; A. Barnab6, A. Maignan, M. Hervieu, et a1, Extension of colossal magnetoresistance properties to small A site cations by chromium doping in Ln0.5Ca0.5MnO3 manganites, App1. Phys. Lett, 1997, 71: 3907
    [35] J. Vitins and P. Wachter, Doped EuTe: A mixed magnetic system, Phys. Rev. B, 1975, 12: 3829~3839
    [36] J. M. de Teresa, M.R. Ibarra, P.A. Algarabel, et al., Evidence for magnetic polarons in the magnetoresistive perovskites, Nature, 1997, 386, 256~259
    [37] J. B. Goodenough and J.S. Zhou, New forms of phase segregation, Nature, 1997, 386: 229~230
    [38] S. Yunoki, J. Hu, A. L. Malvezzi, A. Moreo, N. Furukawa, and E. Dagotto, Phase Separation in Electronic Models for Manganites, Phys. Rev. Lett., 1998, 80: 845
    [39] M. Mayr, A. Moreo, J.A. Vergés, et al., Resistivity of mixed-phase manganites, Phys. Rev. Lett., 2001, 86:135~138
    [40] M. Uehara, S. Mori, C.H. Chen, and S.W. Choeng, Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites, Nature, 1999, 399: 560~563
    [41] E. Dagotto, T. Hotta, and A. Moreo, Colossal magnetoresistant materials: the key role of phase separation, Physics Reports, 2001, 344: 1~153
    [42] P. Mandal and S. Das, Transport properties of Ce-doped RMnO3 (R=La, Pr, and Nd) manganites Phys. Rev. B, 1997, 56: 15073
    [43] B. I. Min, S. K. Kwon, B. W. Lee, J.-S. Kang, Electronic structures of electron-doped manganite: La0.7Ce0.3MnO3. Journal of Electron Spectroscopy and Related Phenomena, 2001, 114~116: 801~805
    [44] J. Yang, W. H. Song, R. L. Zhang, Y. Q. Ma, B. C. Zhao, Z. G. Sheng, G. H. Zheng, J. M. Dai, Y. P. Sun, The effect of oxygen stoichiometry on electrical transport and magnetic properties of La0.9Te0.1MnOy, Solid State Communications, 2004, 131: 393
    [45] J. Yang, B. C. Zhao, R. L. Zhang, Y. Q. Ma, Z. G. Sheng, W. H. Song, Y. P. Sun, The effect of grain size on electrical transport and magnetic properties of La0.9Te0.1MnO3, Solid State Communications, 2004, 132: 83
    [46] J. Yang, W.H. Song, Y.Q. Ma, R.L. Zhang, B.C. Zhao, Z.G. Sheng, G.H. Zheng, J.M. Dai. and Y.P. SunInsulator–metal transition and the magnetic phase diagram of La1?xTexMnO3 (0.1≤x≤0.6) Materials Chemistry and Physics, 2005, 94: 62~68
    [47] Dong-yi Guan, Qing-li Zhou, Kui-juan Jin, et al, Phys. Stat. sol. (a), Original Paper Simulation of the temperature-dependent resistivity of La1-xTexMnO3. Physica status solidi (a). 2005, 202: 2776~2780
    [48] T. Y. Cheng, C. C. Hsieh, J. Y. Juang, J.-Y. Lin, K. H. Wu, T. M. Uen, Y. S. Gou, C. H. Hsu, The magneto-transport properties of epitaxial La0.7Sn0.3MnO3 manganite thin films, Physica B, 2005, 365: 141
    [49] Sujoy Roy and Naushad Ali, Charge transport and colossal magnetoresistance phenomenon in La1–xZrxMnO3, J. Appl. Phys., 2001, 89: 7425
    [50] J.-S. Kang, Y. J. Kim, B. W. Lee, C. G. Olson and B. I. Min, The valence state of Ce in electron-doped manganites: La0.7Ce0.3MnO3, J. Phys: Condens Matter, 2001, 13: 3779
    [51] J. M. D. Coey, Powder magnetoresistance (invited), J. Appl. Phys., 1999, 85: 5576
    [52] S. W. Han, J.-S. Kang, K. H. Kim et al, Photoemission and x-ray absorption spectroscopy study of electron-doped colossal magnetoresistive manganite La0.7Ce0.3MnO3 films, Phys. Rev. B, 2004, 69: 104406
    [53] P. Raychaudhuri, S. Mukherjee, A. K. Nigam, J. John, U. D. Vaisnav, R. Pinto, and P. Mandal, Transport and magnetic properties of laser ablatedLa0.7Ce0.3MnO3 films on LaAlO3, J. Appl. Phys., 1999, 86: 5718
    [54] Takeshi Yanagida, Teruo Kanki, Bertrand Vilquin, Hidekazu Tanaka, and Tomoji Kawai, Metal-insulator transition and ferromagnetism phenomena in La0.7Ce0.3MnO3 Formation of thin films: Ce-rich nanoclusters, Phys. Rev. B, 2004, 70: 184437
    [55] Takeshi Yanagida, Teruo Kanki, Bertrand Vilquin, Hidekazu Tanaka, Tomoji Kawai, Transport and magnetic properties of Ce-doped LaMnO3 thin films Applied Surface Science, 2005, 244: 355
    [56] akeshi Yanagida, Teruo Kanki, and Betrand vilquin, Hidekazu Tanaka, Tomoji Kawai, Transport and magnetic properties of La0.9Ce0.1MnO3 thin films, J. Appl. Phys., 2005, 97:033905
    [57] D. J. Wang, Y. W. Xie, B. G. Shen and J. R. Sun, The transport properties of La0.8Zr0.2MnO3 film, J. Phys.: Condens. Matter, 2005, 18: 741
    [58] D. J. Wang, J. R. Sun, S. Y. Zhang, G. J. Liu, B. G. Shen, H. F. Tian and J. Q. Li, Hall effect in La0.7Ce0.3MnO3+ films with variable oxygen content, Phys. Rev. B, 2006, 73: 144403
    [59] D. J. Wang, C. M. Xiong, G. J. Liu, Y. W. xie, B. G. Shen, J. R. Sun, Effects of oxygen content on the transport property of La0.7Ce0.3MnO3+δfilm, Physica B2006, 371:187
    [60] C. Mitra, P. Raychaudhuri, J. Johh, S. K. Dhar, A. K. Nigam, and R. Pinto, Growth of epitaxial and polycrystalline thin films of the electron doped system La1–xCexMnO3 through pulsed laser deposition, J. Appl. Phys., 2001, 89:524
    [61] R. C. Jaklevic and J. Lambe, Molecular Vibration Spectra by Electron Tunneling, Phys. Rev. Lett., 1966, 17: 1139~1140
    [62] Leo Esaki, New Phenomenon in Narrow Germanium p-n Junctions, Phys. Rev., 1958, 109: 603~604
    [63] B. D. Josephson, Possible new effects in super conductive tunneling, Phys. Lett., 1962, 1: 251~253; supercurrent through barriers, Adv. Phy., 1974, 14: 419~451; The discovery of tunneling supercurrents, science, 1974, 184: 527~530
    [64] H. R. Zeller and I. Giaever, Tunneling, Zero-Bias Anomalies, and Small Superconductors, Phys. Rev., 1969, 181: 789~799
    [65] E. W. Muller, T. T. Tsong, Field Ion Microscopy, Principles and Applications, New York: Elsevier
    [66] G. Binning, H. Rohrer, Ch. Gerber, and E. Weibel Surface Studies by Scanning Tunneling Microscopy, Phys. Rev. Lett., 1982, 49, 57~61
    [67] G. Binnig, H. Rohrer, Ch.Gerber, and E. WeibelPhysica (Utrecht) 107B+C, Proceeding of the sixteenth International Coference on Low-Temperature Physics, Los Angeles, 1981, 1335: 19~25
    [68] G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, 7×7 Reconstruction on Si(111) Resolved in Real Space, Phys. Rev. Lett., 1983, 50: 120
    [69] J. Tersoff and D. R. Hamann, Theory and Application for the Scanning Tunneling Microscope, Phys. Rev. Lett., 1983, 50: 1998
    [70] N. García, C. Ocal, and F. Flores, Model Theory for Scanning Tunneling Microscopy: Application to Au(110) (1×2), Phys. Rev. Lett., 1983, 50: 2002~2005
    [71] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of Superconductivity. Phys. Rev. 1957, 108: 1175~1204
    [72] Ivar Giaever, Energy Gap in Superconductors Measured by Electron Tunneling, Phys. Rev. Lett., 1960, 5: 147
    [73] A. Selloni, P. Carnevali, et al,. Voltage-dependent scanning-tunneling microscopy of a crystal surface: Graphite, Phys. Rev. B, 1985, 31: 2602~2605
    [74] J. A. Stroscio, R. M. Feenstra and A. P. Fein, Electronic Structure of the Si (111) 2×1 Surface by Scanning-Tunneling Microscopy, Phys. Rev. Lett., 1986, 57: 2579
    [75] J. A. Stroscio and R. M. Feenstra, in Scanning Tunneling Microscopy, edited by J. A. Stroscio and W. J. Kaiser, Methods of Experimental Physics, Academic, New York, 1993, 27
    [76] N. D. Lang, Spectroscopy of single atoms in the scanning tunneling microscope, Phys. Rev. B, 1986, 34: 5947
    [77] R. J. Hamers, in Scanning Tunneling Microscopy and Spectroscopy. Theory, Techniques, and Applications, edited by Dawn A. Bonnell, VCH, New York, 1993
    [78] J. Simmons, Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film, J. Appl. Phys., 1963, 34: 1793
    [79] Vu Thien Binh, S. T. Purcell, N. Garcia and J. Doglioni, Field-emission electron spectroscopy of single-atom tips, Phys. Rev. Lett., 1992, 69: 2527
    [80] R. Weisendanger, Scanning Probe Microscopy Methods and Applications, Cambridge University Press, Cambridge, U.K., 1994
    [81] P. M?rtensson and R. M. Feenstra, Geometric and electronic structure of antimony on the GaAs (110) surface studied by scanning tunneling microscopy, Phys. Rev. B, 1989, 39: 7744
    [82] R. M. Feenstra, Tunneling spectroscopy of the (110) surface of direct-gap III-V semiconductors, Phys. Rev. B, 1994, 50: 4561
    [83] Vladimir A. Ukraintsev, Data evaluation technique for electron-tunneling spectroscopy, phys. Rev. B, 1996, 53: 11176
    [84] M. I. Katsnelson, V. Yu. Irkhin, L. Chioncel, A. I. Lichtenstein, and R. A. de Groot, Half-metallic ferromagnets: From band structure to many-body effects, Reviews of Modern Physics, 2008, 80: 315
    [85] P. Wahl, L. Diekh?ner, M. A. Schneider, K. Kern, Background removal in scanning tunneling spectroscopy of single atoms and molecules on metal surfaces, Review of Scientific Instruments, 2008, 79: 043104
    [86] A. Sperl, J. Kr?ger, N. Néel, H. Jensen, R. Berndt, A. Franke, and E. Pehlke, Unoccupied states of individual silver clusters and chains on Ag(111), Physical Review B, 2008, 77: 085422
    [87] S. Seiro, Y. Fasano, I. Maggio-Aprile, E. Koller, O. Kuffer, and ?. Fischer, Polaronic signature in the metallic phase of La0.7Ca0.3MnO3 films detected by scanning tunneling spectroscopy, Physical Review B, 2008, 77: 020407
    [88] M. Passoni and C. E. Bottani, Transfer Hamiltonian analytical theory of scanning tunneling spectroscopy, Physical Review B, 2007, 76: 115404
    [89] L. Berbil-Bautista, S. Krause, M. Bode, and R. Wiesendanger, Spin-polarized scanning tunneling microscopy and spectroscopy of ferromagnetic Dy(0001)/W(110) films, Physical Review B, 2007, 76: 064411
    [90] Amlan Biswas, Suja Elizabeth, A.K. Raychaudhuri, and H.L. Bhat, Density of states of hole-doped manganites: A scanning tunneling microscopyspectroscopy study Phys. Rev. B 1998, 59: 5368
    [91] M. Fath, S. Friesem, A. A. Menovsky, Y. Tomioka, J. Aarts, and J. A. Mydosh, Spatially nhomogeneous Metal-Insulator Transition in Doped Manganites, Science, 1999, 285: 1540
    [92] T. Becker, C. Streng, Y. Luo, V. Moshnyaga, B. Damaschke, N. Shannon, and K. Samwer, Intrinsic Inhomogeneities in Manganite Thin Films Investigatedwith Scanning Tunneling Spectroscopy, Phys. Rev. Lett., 2002, 89: 237203
    [93] J. Mitra, A. K. Raychaudhuri, Ya. M. Mukovskii, and D. Shulyatev, Depletion of the density of states at the Fermi level in metallic colossal magnetoresistive manganites, Phys. Rev. B, 2003, 68,:134428
    [94] B. L. Altshuler and A. G. Aronov, in Electron-Electron Interactions in Disordered Systems, edited by A. L. Efros and M. Pollak, North-Holland, Amsterdam, 1985
    [95] D. S. Dessau, T. Saitoh, C.H. Park, Z.X. Shen, P. Villella, N. Hamada, Y. Moritomo, and Y. Tokura, k-Dependent Electronic Structure, a Large“Ghost”Fermi Surface, and a Pseudogap in a Layered Magnetoresistive Oxide, Phys. Rev. Lett., 1998, 81: 1192
    [96] D. D. Sarma, et al, Temperature-dependent photoemission spectral weight in La0.6Sr0.4MnO3, Phys. Rev. B, 1996, 53: 6873
    [97] J. - H. Park, C. T. Chen, S. -W. Cheong, W. Bao, G. Meigs, V. Chakarian, and Y. U. Idzerda, Electronic Aspects of the Ferromagnetic Transition in Manganese Perovskites, Phys. Rev. Lett., 1996, 76: 4215
    [98] A. L. Efros, V. L. Ngnen, and B. I. Shlovskii, Impurity band structure in lightly doped semiconductors, J. Phys. C, 1979, 12: 1869
    [99] A. K. Raychaudhuri, K. P. Rajeev, H. Srikanth, and N. Gayathri, Metal-insulator transition in perovskite oxides: Tunneling experiments, Phys. Rev. B, 1995, 51: 7421
    [100] Guo-meng Zhao, V. Smolyaninova, W. Prellier, and H. Keller, Electrical Transport in the Ferromagnetic State of Manganites: Small-Polaron Metallic Conduction at Low Temperatures, Phys. Rev. Lett., 2000, 84: 6086
    [101] J. Mitra, A. K. Raychaudhuri, N. Gayathri, and Ya. M. Mukovskii, Point-contact spectroscopy of single crystal La0.75Sr0.25MnO3 and resistivity due to electron-phonon interaction ,Phys. Rev. B, 2002, 65,:140406
    [102] Y. Okimoto, T. Katsufuji, T. Ishikawa, A. Urushibara, T. Arima, and Y. Tokura, Anomalous Variation of Optical Spectra with Spin Polarization in Double-Exchange Ferromagnet: La1-xSrxMnO3, Phys. Rev. Lett., 1995, 75: 109
    [103] Y. Okimoto, T. Katsufuji, T. Ishikawa, T. Arima, and Y. Tokura, Variation of electronic structure in La1-xSrxMnO3 (0≤x≤0.3) as investigated by optical conductivity spectra, Phys. Rev. B, 1997, 55: 4206
    [104] Amlan Biswas and A. K. Raychaudhuri, Tunnelling spectroscopy and thedensity of states of La0.8Ca0.8MnO3, J. Phys.: Condens. Matter, 1996, 8: L739
    [105] J. Y. T. Wei, N. C. Yeh, and R. P. Vasquez, Tunneling Evidence of Half-Metallic Ferromagnetism in La0.7Ca0.3MnO3, Phys. Rev. Lett., 1997, 79: 5150
    [106] J. Mitra, A. K. Raychaudhuri, Ya. M. Mukovskii, and D. Shulyatev, Depletion of the density of states at the Fermi level in metallic colossal magnetoresistive manganites, Phys. Rev. B, 2003, 68: 134428
    [107] J. J. Hamilton, E. L. Keatley, H. L. Ju, A. K. Raychaudhuri, V. N. Smolyaninova, and R. L. Greene, Low-temperature specific heat of La0.67Ba0.33MnO3 and La0.8Ca0.2MnO3, Phys. Rev. B, 1996, 54: 14926
    [108] T. Okuda, A. Asamitsu, Y. Tomioka, T. Kimura, Y. Taguchi, and Y. Tokura, Critical Behavior of the Metal-Insulator Transition in La1-xSrxMnO3, Phys. Rev. Lett., 1998, 81: 3203
    [109] F. Bartolomé, J. Bartolomé, and J. Campo, Negative magnetization and phase segregation in NdMnO3+δ, Physica B, 2002, 312: 769
    [110] F. Bartolomé, J. Herrero-Albillos, L. M. García, and J. Bartolomé, Element-specific magnetometry on negatively magnetized NdMnO3+ , J. Appl. Phys., 2005, 97: 10A503
    [111] I. O. Troyanchuk, et al, Spin-reorientational transitions in low-doped Nd1-xCaxMnO3 manganites: the evidence of an inhomogeneous magnetic state, J. Phys.: Condens. Matter, 2003, 15: 8865
    [112] Shixiong Zhang, Shun Tan, Wei Tong, and Yuheng Zhang, Magnetic properties in the electron-doped bulk manganites Nd1?xCexMnO3, Phys. Rev. B, 2005,72: 014453
    [113] G. J. Snyder, C. H. Booth, F. Bridges, R. Hiskes, S. DiCarolis, M. R. Beasley, and T. H. Geballe, Local structure, transport, and rare-earth magnetismin the ferrimagnetic perovskite Gd0.67 Ca0.33 MnO3, Phys. Rev. B, 1997 55:6453.
    [114] I. O. Troyanchuk, D. D. Khalyavin, S. V. Trukhanov, and H. Szymczak, Magnetic phase diagrams of the manganites Ln1-xBaxMnO3 (Ln = Nd, Sm), J. Phys.: Condens. Matter, 1999, 11,: 8707
    [115] O. Pena, M. Bahout, K. Ghanimi, P. Duran, D. Gutierrez, and C. Moure, Spin reversal and ferrimagnetism in (Gd,Ca)MnO3. J. Mater. Chem. 2002, 12: 2480~2485
    [116] O. Pena, M. Bahout, D. Gutierrez, P. Duran, and C. Moure, Interactingnetworks and spin polarization in (Dy, Ca)MnO3, Solid State Sci., 2003, 5,:1217
    [117] J. Hemberger, S. Lobina, H.- A. K. von Nidda, N. Tristan, V. Y. Ivanov, A. A. Mukhin, A. M. Balbashov, and A. Loidl, Complex interplay of 3d and 4f magnetism in La1?xGdxMnO3, Phys. Rev. B, 2004, 70: 024414
    [118] Yanwei Ma M. Guilloux-Viry, P. Barahona, and O. Pe?a, Observation of magnetization reversal in epitaxial Gd0.67Ca0.33MnO3 thin films, Appl. Phys. Lett., 2005, 86: 062506
    [119] O. Pe?a, M. Bahout, Yanwei Ma, D. Gutiérrez, P. Durán, C. Moure, Interacting networks and spin reversal in (RE, Ca)MnO3, Physica C, 2004, 408~410: 641~642
    [120] S. Jin, T.H. Tiefel, M. McCormack, et al., Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films, Science, 1994, 264: 413~415; J. Appl. Phys. 1994, 76: 6929~6933
    [121] M. B. Salamon and M. Jaime, The physics of manganites: structure and transport, Rev. Mod. Phys., 2001, 73: 583~628
    [122] K. S. Shankar, S. Kar, G. N. Subbanna, and A. K. Raychaudhuri, Enhanced ferromagnetic transition temperature in nanocrystalline lanthanum calcium manganese oxide (La0.67Ca0.33MnO3), Solid State Commun., 2004, 129: 479~483
    [123] P. Dey and T.K. Nath, Effect of grain size modulation on the magneto- and electronic- transport properties of La0.7Ca0.3MnO3 nanoparticles: The role of spin-polarized tunneling at the enhanced grain surface, Phys. Rev. B, 2006, 73: (214425–1)~(214425–14)
    [124] C. Krishnamoorthy, K. Sethupathi, V. Sankaranarayanan, et al., Magnetic and magnetoresistivity properties of nanocrystalline Nd0.7Sr0.3MnO3, J. Magn. Magn. Mater., 2007, 308: 28~34
    [125] J. B. Barner and S. T. Ruggiero, Tunneling in artifical Al2O3 tunnel barriers and Al2O3-metal multilayers, Phys. Rev. B, 1989, 39:2060~2071
    [126] S. Soltanian, X. L. Wang, H. K. Liu and S. X. Dou,Effects of grain size and grain boundaries on `the transport and magnetic properties of charge-ordered Nd0.5Sr0.5MnO3 material, Supercond. Sci. Technol., 2002, 15: 423~426
    [127] W. Wulfhekel, B. Heinrich, M. Klaua, T. Monchesky, F. Zavaliche, R. Urban, and J. Kirschner (unpublished)
    [128] See, et al, Tunneling Phenomena in Solids, edited by E. Burstein and S. Lundqvist (Plenum, New York, 1969)
    [129] D. A. Rabson et al, Pinholes may mimic tunneling, J. Appl. Phys., 2001, 89: 2786
    [130] Johan J. Akerman, Tunneling criteria for magnetic-insulator-magnetic structures, App1. Phys. Lett., 2001, 79: 3104
    [131] Johan. J,A. kerman. Criteria for ferromagnetic-insulator-ferromagnetic tunneling, Journal of Magnetism and Magnetic Materials, 2002, 240: 86~91
    [132] J. Mitra, Mandar Paranjape, and A. K. Raychaudhuri, Temperature dependence of density of states near the Fermi level in a strain-free epitaxial film of the hole-doped manganite La0.7Ca0.3MnO3, Phys. Rev. B, 2005, 71: 094426
    [133] A. K. Raychaudhuri, K. P. Rajeev, H. Srikanth, and N. Gayathri, Metal-insulator transition in perovskite oxides: Tunneling experiments, Phys. Rev. B, 1995, 51: 7421
    [134] B. L. Altshuler and A. G. Aronov, in Electron-Electron Interactions in Disordered Systems, edited by A. L. Efros and M. Pollak (North-Holland, Amsterdam, 1985)
    [135] V. A. Cherepanov, L. Yu. Barkhatova, A. N. Petrov, and V. I. Voronin, Oxygen Nonstoichiometry and Crystal and Defect Structure of PrMnO3+y and NdMnO3+y, J. Solid State Chem., 1995, 118: 53
    [136] Z. Jirák, J. Hejtmanek, E. Pollert, M. Marysko, M. Dlouha, and S. Vratislav, Canted structures in the Mn3+/Mn4+perovskites, J. Appl. Phys., 1997, 81: 5790
    [137] C. Ritter, M.R. Ibarra, J.M. DeTeresa, P.A. Algarabel, C. Marquina, J. Blasco, J. Garcia, S. Oseroff, and S.-W. Cheong, Influence of oxygen content on the structural, magnetotransport, and magnetic properties of LaMnO3+δ, Phys. Rev. B, 1997, 56: 8902
    [138] R. D. Shannon et al., Revised Effective Ionic Radii and systematic Studys Of Interatomic Distance in Halides and Chalcogenides, Phys. Rev. B, 1976, 32: 751~767
    [139] XPS Database Main Search Menu http://srdata.nist.gov/xps/main_search_men u. aspx
    [140] J. Hemberger, M. Brando, R. Wehn, V. Yu. Ivanov, A. A. Mukhin, A. M. Balbashov, Magnetic properties and specific heat of RMnO3 (R=Pr, Nd), Phys. Rev. B, 2004, 69: 064418
    [141] I. O. Troyanchuk, V. A. Khomchenko, GMChobot, A. IKurbakov, A. N. Vasil’ev, V. V. Eremenko, V. A. Sirenko, M. Yu Shvedun, H. Szymczak and R. Szymczak Spin-reorientational transitions in low-doped Nd1?xCaxMnO3 manganites: the evidence of an inhomogeneous magnetic state, J. Phys.: Condens. Matter, 2003, 15: 8865~8880
    [142] A Mu?oz, J A Alonso, M J Martínez-Lope, J L García-Mu?oz and M T Fernández-Díaz ,Magnetic structure evolution of NdMnO3 derived from neutron diffraction data, J.Phys.: Condens. Matter, 2000, 12: 1361~1376
    [143] R. Kybo and T.Nagamiya, Solid State Physics, 1960, 595
    [144] R. M. Moon, W. C. Koehler, and John Farrell, Magnetic Structure of Rare-Earth-Cobalt (RCo2) Intermetallic Compounds, J. Appl. Phys., 1965, 36: 978
    [145] M. A. Ruderman and C. Kittel, Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons, Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons Phys. Rev., 1954, 96: 99

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700