硅酸二钙涂层离子溶液促进人骨髓间充质干细胞成骨分化及其机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分人骨髓间充质干细胞的分离、培养及鉴定
     目的从人骨髓中分离培养hMSCs并对其细胞生物学特性进行观察。方法无菌条件下在健康志愿者髂棘处穿刺抽取骨髓,运用密度梯度离心法分离骨髓单个核细胞,培养在含10%胎牛血清的DMEM培养基中,再利用贴壁筛选法纯化获得人骨髓间充质干细胞,对其进行细胞生长和形态学的观察,流式细胞仪检测第3代hMSCs细胞表面标志并分析细胞周期。结果所分离培养出的细胞形态呈长梭形,漩涡状生长,纯度随传代次数增加而提高,8代以后细胞扩增速度变慢,细胞形态也发生改变。P3代骨髓间充质干细胞的表面标志CD90、CD105表达强阳性,而CD34、CD11b阴性。第1、3、5代hMSCs生长曲线呈S形,无显著性差异,均经历潜伏期、对数增殖期和停滞期三个时期。培养的第3代骨髓间充质干细胞中处于G0/G1期的细胞比例约为77.42%,处于S+G2/M期的细胞比例为22.58%左右。结论采用密度梯度离心结合贴壁筛选培养法可获得纯度较高且增殖活性强的人骨髓间充质干细胞,是一种简单、经济、有效的分离纯化骨髓间充质干细胞的方法。
     第二部分硅酸二钙涂层离子溶液对人骨髓间充质干细胞增殖及凋亡的影响
     目的通过硅酸二钙涂层离子溶液与人骨髓间充质干细胞复合培养,试图阐明硅酸二钙涂层离子溶液对人骨髓间充质干细胞增殖、细胞周期及凋亡的影响。方法将等离子喷涂的硅酸二钙涂层钛片浸泡在DMEM培养基中,37℃下静置72小时,电感耦合等离子体原子发射光谱仪(ICP)测定培养基中Si、Ca、P离子浓度的变化。骨髓间充质干细胞分别培养在四种培养基(OS-DS-、OS-DS+、OS+DS-、OS+DS+)中,MTT法测定细胞增殖情况,流式细胞仪检测hMSCs位于G0/G1、S、G2/M期的细胞数及增殖指数、细胞凋亡率。结果与OS-DS-培养基相比,OS-DS+、OS+DS+培养基中Si离子浓度显著升高(P<0.05);OS-DS+、OS+DS-和OS+DS+培养基中Ca离子浓度略有下降,但没有统计学差异;OS+DS-、OS+DS+培养基中P离子浓度明显增高。在培养的1~4天,OS-DS+和OS+DS+组细胞增殖率高于OS-DS-组,并分别在第2、3天时差异具有统计学意义;OS+DS-组的细胞数始终低于OS-DS-组,在第7天时有显著性差异(P<0.05)。流式细胞仪测定结果显示,在第4天时,OS-DS+和OS+DS+组处于G0/G1期的细胞比例明显低于OS-DS-组,G2/M期细胞比例明显高于OS-DS-组(P<0.05);OS+DS-组处于S期的细胞数在第4天时比OS-DS-组明显减少,而OS+DS+和OS-DS+组S期的细胞比例分别在第4、14天明显高于OS-DS-组。和OS-DS-组比较,OS+DS-和OS+DS+组细胞凋亡率在第7、14天显著增高,而OS-DS+组细胞凋亡率在第14天明显高于OS-DS-组(P<0.05)。结论硅酸二钙涂层离子溶液能促进人骨髓间充质干细胞的早期增殖,其促细胞增殖的能力可能与培养基中较高的硅离子浓度有关,通过加速骨髓间充质干细胞周期的转换而达到的。
    
     第三部分硅酸二钙涂层离子溶液促进人骨髓间充质干细胞成骨分化的研究
     目的通过检测骨髓间充质干细胞成骨分化过程中特异性基因的表达,探讨硅酸二钙涂层离子溶液对骨髓间充质干细胞成骨分化的影响。方法人骨髓间充质干细胞分别培养在四种培养基(OS-DS-、OS-DS+、OS+DS-、OS+DS+)中,采用对硝基苯磷酸盐法测定细胞内碱性磷酸酶(ALP)活性,茜素红S染色方法观察钙化结节的形成,以半定量RT-PCR检测转录因子Runx2、I型胶原、骨结合素及骨钙素的基因表达情况。结果在整个培养过程中OS+DS-、OS+DS+组ALP活性显著高于OS-DS-和OS-DS+组;在第7、14和21天时,OS+DS+组细胞内ALP活性明显高于OS+DS-组;从第7天起,OS-DS+组ALP活性高于OS-DS-组,并于第14天时差异具有统计学意义。在培养的第14天,OS-DS+、OS+DS-和OS+DS+组钙沉积的OD值均高于OS-DS-组,有显著性差异(P<0.05);与OS+DS-组相比,OS+DS+组钙沉积的OD值明显增高,差异具有统计学意义(P<0.05)。培养28天后,OS+DS+组钙化结节的数量和着色程度均较OS+DS-组明显增加,其他两组未见钙化结节形成。在第4、7、14天时,成骨诱导组hMSCs成骨分化相关标志基因的表达量显著高于非成骨诱导组;OS-DS+组Runx2与骨结合素mRNA表达水平分别在第7、14天明显高于OS-DS-组;在第14天,OS+DS+组各特异性基因的表达量均显著高于OS+DS-组。结论硅酸二钙涂层离子溶液自身能够在一定程度上诱导骨髓间充质干细胞向成骨细胞分化;和成骨诱导剂协同,则促进钙沉积及骨髓间充质干细胞的成骨分化。
     第四部分硅酸二钙涂层离子溶液促进人骨髓间充质干细胞成骨分化机制的研究
     目的探讨硅酸二钙涂层离子溶液促进人骨髓间充质干细胞成骨分化的可能分子机制。方法骨髓间充质干细胞分别培养在三组培养基(OS+DS-、OS+DS+、OS+DS+/PD)中,以Western blot方法检测细胞内ERK的磷酸化表达情况;加入ERK特异性抑制剂PD98059后,分别采用对硝基苯磷酸盐法、茜素红S染色方法测定碱性磷酸酶活性与钙沉积变化。结果与OS+DS-组相比,在第7、14及21天,OS+DS+组细胞内碱性磷酸酶活性显著增加(P<0.05),其作用可被ERK途径抑制剂PD98059阻断(P<0.01)。OS+DS+组钙沉积在第14天时明显高于OS+DS-组(P<0.05),其作用也可被PD98059抑制,差异具有统计学意义。hMSCs受到OS+DS+培养基作用后10 min,细胞中磷酸化的ERK表达显著增强(P<0.01),并维持在较高水平至60 min,随后磷酸化的ERK表达逐渐降低到基线水平。比较三组培养基作用10 min后ERK相对表达量,发现PD98059显著抑制ERK磷酸化的水平,有统计学差异(P<0.01)。结论硅酸二钙涂层离子溶液能够促进人骨髓间充质干细胞的成骨分化,ERK信号通路在此过程中发挥了调控作用。
PartⅠIsolation, culture and identification of human mesenchymal stem cells
     Objective To isolate and culture human mesenchymal stem cells (hMSCs) from bone marrow in vitro and observe their biological characteristics. Methods Bone marrow aspirates were obtained from the posterior iliac crest of healthy human donors under aseptic conditions. hMSCs were isolated from the marrow by Percoll density gradient centrifugation method. The nucleated cells were plated in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS). hMSCs were highly purified and expanded through adherence filtration. Cell morphology and proliferation status were observed by phase contrast microscope. Standard flow cytometry techniques were used to determine the cell surface epitope profile and cell cycle of hMSCs. Results The cells exhibited a fusiform shape and swirled when they assembled together. The amplification speed of hMSCs became slow and cell morphology changed after passage 8. The adherent cells did not express hematopoietic lineage markers CD34 and CD11b, while hMSCs collected from passage 3 were strongly positive for CD90 and CD105 markers. The growth curves of hMSCs from the first, third and fifth passage were S-shaped. The cell cycle analysis showed that the percentage of G0/G1 phase of cells from passage 3 was 77.42% and the percentage of S+G2/M phase was 22.58%. Conclusion The density gradient centrifugation technique in combination with adherence filtration is a simple, economical and efficient method to isolate and purify hMSCs.
     PartⅡEffect of ionic dissolution products of dicalcium silicate coating on human mesenchymal stem cells proliferation and apoptosis
     Objective To explore the influence of ionic dissolution products of dicalcium silicate coating on proliferation, cell cycle and apoptosis in human mesenchymal stem cells. Methods Ten pieces of plasma sprayed dicalcium silicate (DS) coatings were soaked in 200 ml DMEM for 72 h at 37℃in static conditions, then inductively coupled plasma atomic emission spectroscopy (ICP-AES) was employed to measure the concentrations of silicon (Si), calcium (Ca) and phosphorus (P). hMSCs were cultured in four media (OS-DS-, OS-DS+, OS+DS-, OS+DS+). The proliferation of hMSCs was determined using MTT assay. Cell cycle and apoptosis were analyzed by flow cytometry on days 4, 7 and 14. Results The concentration of Si in OS-DS+ and OS+DS+ was significantly higher than OS-DS-, Ca concentration decreased slightly, and P content of osteogenic medium (OS+DS-, OS+DS+) was higher than OS-DS- medium. Cell proliferation process in OS-DS+ and OS+DS+ was consistently higher than that in OS-DS- in the first 4 days of culture, and significant difference was seen at 2 and 3 days, respectively. Throughout the assay period, the number of hMSCs exposed to OS+DS- was generally lower than that in OS-DS-, and significant decrease did not become apparent until day 7 of culture. The percentage of G0/G1 phase of cells cultured in OS-DS+ and OS+DS+ was lower than that in OS-DS-, while the percentage of G2/M phase was higher on day 4. Smaller percentage of S phase was detected in hMSCs exposed to OS+DS- at 4 days, whereas bigger percentage of S phase was observed in OS+DS+ and OS-DS+ at 4 and 14 days, respectively. Apoptosis was markedly increased in OS+DS- and OS+DS+ on days 7 and 14, and in OS-DS+ on day 14 when compared to OS-DS-. Conclusion The ionic dissolution products of dicalcium silicate coating can promote the early proliferation of hMSCs by accelerating cell cycle, which may be attributed to the high concentration of silicon ion.
     PartⅢStudy of ionic dissolution products of dicalcium silicate coating on osteogenic differentiation in human mesenchymal stem cells
     Objective To investigate the effect of ionic dissolution products of dicalcium silicate coating on human mesenchymal stem cells osteogenic differentiation. Methods hMSCs were cultured in four media (OS-DS-, OS-DS+, OS+DS-, OS+DS+). Alkaline phosphatase (ALP) activity was assessed at the protein level. Calcium deposition was analyzed by Alizarin Red S staining. Reverse transcription-polymerase chain reaction (RT-PCR) was used for analysis of mRNA levels of runt-related transcription factor 2 (Runx2), collagen type I (Col-I), osteonectin (ON) and osteocalcin (OC). Results Throughout the cultivation period, hMSCs exposed to osteogenic medium (OS+) had significantly higher ALP activity than did cells exposed to growth medium (OS-). ALP activity of hMSCs cultured in OS+DS+ was significantly higher than that of cells cultured in OS+DS- on days 7, 14 and 21. The level of ALP activity was appreciably higher in hMSCs exposed to OS-DS+ when compared to OS-DS- on day 14. The optical density (OD) value in hMSCs exposed to OS-DS+ was higher than that of cells exposed to OS-DS- at 14 days. Treatment in OS+DS- resulted in a significant increase in OD, and hMSCs in OS+DS+ further increased the OD value. The hMSCs grown in OS-DS- or OS-DS+ medium failed to form any detectable calcium nodules after 28 days of culture. Cells cultured in OS+DS- medium exhibited some small mineralized nodules, while a greater extent of mineralization with more detectable bone nodules was observed in hMSCs exposed to OS+DS+ medium. The mRNA levels of osteogenic markers investigated were higher in hMSCs exposed to osteogenic medium (OS+) than cells exposed to growth medium (OS-) throughout the assay period. hMSCs grown in OS-DS+ expressed higher levels of Runx2 and ON mRNA than did cells exposed to OS-DS- on days 7 and 14, respectively. The osteogenic markers were expressed at higher level in the (OS+DS+)-group at 14 days when compared to the (OS+DS-)-group. Conclusion The ionic dissolution products of dicalcium silicate coating alone partly induce hMSCs differentiation towards the osteoblastic lineage. The cooperation between ionic dissolution products of dicalcium silicate coating and osteogenic supplements can fully induce osteoblast-specific gene expression and significantly promote osteogenic activity of hMSCs.
    
     PartⅣStudy of the mechanisms of dicalcium silicate coating ionic dissolution products on human mesenchymal stem cells osteogenic differentiation
     Objective To explore the possible mechanisms of ionic dissolution products released from dicalcium silicate coating in promoting osteogenic differentiation of hMSCs. Methods hMSCs were cultured in OS+DS- medium, OS+DS+ medium or OS+DS+ medium supplemented with PD98059. The levels of extracellular signal-regulated kinase (ERK) phosphorylation were examined by Western blot. PD98059, a specific inhibitor of ERK, was added into OS+DS+ medium to investigate the changes in alkaline phosphatase activity and calcium deposition. Results ALP activity of hMSCs cultured in OS+DS+ was significantly higher than that of cells cultured in OS+DS- on days 7, 14 and 21, but the increase was inhibited by PD98059. Calcium deposition in OS+DS+ was greater than that in OS+DS- at 14 days, and the increase was also suppressed by PD98059. ERK was activated at 10 min after treatment in OS+DS+ medium. The ERK activation was maintained at higher level to 60 min, and then declined to the baseline. hMSCs in OS+DS- medium expressed a moderate level of ERK phosphorylation, and treatment with ionic dissolution products of dicalcium silicate coating further increased the level of ERK phosphorylation, but the increase was blocked by pre-treating cells with PD98059. Conclusion The ionic dissolution products from the dicalcium silicate coating may promote osteogenic differentiation of hMSCs mainly through ERK signal transduction pathway.
引文
[1]杨述华,刘勇.人工关节置换术未来发展与挑战.国外医学骨科学分册, 2005, 26(1): 3-4.
    [2]程宇航.人工关节用无机涂层材料.功能材料, 1999, 30(5): 467-469.
    [3] Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants– A review. Prog Mater Sci, 2009, 54(3): 397-425.
    [4] Long M, Rack HJ. Titanium alloys in total joint replacement– a materials science perspective. Biomaterials, 1998, 19(18): 1621-1639.
    [5] Morscher E, et al. Endoprosthetics. Berlin: Springer, 1995.
    [6] Howie DW, et al. Implant-Bone Interface. London: Springer, 1990.
    [7] Huiskes R, Weinans H, van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res, 1992, (274): 124-134.
    [8] Sumner DR, Galante JO. Determinants of stress shielding: design versus materials versus interface. Clin Orthop Relat Res, 1992, (274): 202-212.
    [9]刘庆华,焦玉恒.骨科用金属材料的表面改性.生物骨科材料与临床研究, 2004, 1(3): 38-41.
    [10]俞耀庭,张兴栋.生物医用材料.天津:天津大学出版社, 2000.
    [11]Hench LL. Biomaterials: a forecast for the future. Biomaterials, 1998, 19(16): 1419-1423.
    [12]Kim HM. Bioactive ceramics: challenges and perspectives. J Ceram Soc Jpn, 2001, 109(4): S49-S57.
    [13]黄伟九,李兆峰.医用钛合金表面改性研究进展.材料导报, 2006, 20: 369-372.
    [14]Nelea V, Morosanu C, Iliescu M, Mihailescu IN. Hydroxyapatite thin films grown by pulsed laser deposition and radio-frequency magnetron sputtering: comparative study. Appl Surf Sci, 2004, 228: 346-356.
    [15]Fathi MH, Doostmohammadi A. Bioactive glass nanopowder and bioglass coating forbiocompatibility improvement of metallic implant. J Mater Process Tech, 2009, 209(3): 1385-1391.
    [16]戴正宏,王玉林,何宝明.外科植入物用钛合金的表面改性.稀有金属, 2003, 27(4): 491-494.
    [17]Ripamonti U, Crooks J, Khoali L, Roden L. The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs. Biomaterials, 2009, 30(7): 1428-1439.
    [18]Mouzin O, Soballe K, Bechtold JE. Loading improves anchorage of hydroxyapatite implants more than titanium implants. J Biomed Mater Res, 2001, 58(1): 61-68.
    [19]D’Antonio JA, Capello WN, Manley MT, Geesink R. Hydroxyapatite femoral stems for total hip arthroplasty: 10- to 13-year follow-up. Clin Orthop Relat Res, 2001, 393: 101-111.
    [20]刘宣勇,丁传贤.等离子体喷涂生物陶瓷涂层.硅酸盐学报, 2007, 35(S1): 30-38.
    [21]Yang YC, Chang E, Lee SY. Mechanical properties and Young’s modulus of plasma-sprayed hydroxyapatite coating on Ti substrate in simulated body fluid. J Biomed Mater Res, 2003, 67(3): 886-899.
    [22]Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanism at interface of ceramic prosthetic materials. J Biomed Mater Res, 1971, 2: 117-141.
    [23]Liu X, Morra M, Carpi A, Li B. Bioactive calcium silicate ceramics and coatings. Biomed Pharmacother, 2008, 62(8): 526-529.
    [24]Liu X, Tao S, Ding C. Bioactivity of plasma sprayed dicalcium silicate coatings. Biomaterials, 2002, 23(3): 963-968.
    [25]Liu X, Xie Y, Ding C, Chu PK. Early apatite deposition and osteoblast growth on plasma-sprayed dicalcium silicate coating. J Biomed Mater Res, 2005, 74(3): 356-365.
    [26]Xie Y, Liu X, Chu PK, et al. Bioactive titanium-particle-containing dicalcium silicate coating. Surf Coat Tech, 2005, 200(5-6): 1950-1953.
    [27]Xie Y, Liu X, Ding C, Chu PK. Bioconductivity and mechanical properties of plasma -sprayed dicalcium silicate/zirconia composite coating. Mat Sci Eng C, 2005, 25(4): 509-515.
    [28]Xie Y, Liu X, Zheng X, Ding C. Bioconductivity of plasma sprayed dicalcium silicate/titanium composite coatings on Ti-6Al-4V alloy. Surf Coat Tech, 2005, 199(1): 105-111.
    [29]Tognarini I, Sorace S, Zonefrati R, et al. In vitro differentiation of human mesenchymal stem cells on Ti6Al4V surfaces. Biomaterials, 2008, 29(7): 809-824.
    [30]Oreffo RO, Driessens FC, Planell JA, Triffitt JT. Growth and differentiation of human bone marrow osteoprogenitors on novel calcium phosphate cements. Biomaterials, 1998, 19(20): 1845-1854.
    [31]Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284(5411): 143-147.
    [32]张真,卢晓风,李幼平,等.生物材料有效性和安全性评价的现状与趋势.生物医学工程学杂志, 2002, 19(1): 117-121.
    [33]Metzler V, Bienert H, Lehmann T, et al. A novel method for quantifying shape deformation applied to biocompatibility testing. ASAIO J, 1999, 45(4): 264-271.
    [34]Nelson SK, Wataha JC, Neme AM, et al. Cytotoxicity of dental casting alloys pretreated with biologic solutions. J Prosthet Dent, 1999, 81(5): 591-596.
    [35]Yoshida CA, Furuichi T, Fujita T, et al. Core-binding factor beta interacts with Runx2 and is required for skeletal development. Nat Genet, 2002, 32(4): 633-638.
    [36]Xiao G, Jiang D, Ge C, et al. Cooperative interactions between activating transcription factor 4 and Runx2/Cbfa1 stimulate osteoblast-specific osteocalcin gene expression. J Biol Chem, 2005, 280(35): 30689-30696.
    [37]Ducy P, Zhang R, Geoffroy V, et al. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell, 1997, 89(5): 747-754.
    [38]Nakamura A, Dohi Y, Akahane M, et al. Osteocalcin secretion as an early marker of in vitro osteogenic differentiation of rat mesenchymal stem cells. Tissue Eng Part C Methods, 2009, 15(2): 169-180.
    [39]李恩,薛延,王洪复,等.骨质疏松鉴别诊断与治疗.北京:人民卫生出版社, 2005.
    [40]Anselme K. Osteoblast adhesion on biomaterials. Biomaterials, 2000, 21(7): 667-681.
    [41]Owen TA, Aronow M, Shalhoub V, et al. Progressive development of the rat osteoblast Phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol, 1990, 143(3): 420-430.
    [42]Giudici C, Raynal N, Wiedemann H, et al. Mapping of SPARC/BM -40/osteonectin - binding sites on fibrillar collagens. J Biol Chem, 2008, 283(28): 19551-19560.
    [43]Bork P, Downing AK, Kieffer B, et al. Structure and distribution of modules in extracellular proteins. Q Rev Biophys, 1996, 29(2): 119-167.
    [44]Termine JD, Kleinman HK, Whitson SW, et al. Osteonectin, a bone-specific protein linking mineral to collagen. Cell, 1981, 26(1): 99-105.
    [45]Sharp CA, Magnusson P. Isoforms of bone alkaline phosphatase, stem cells, and osteoblast phenotypes. Stem Cells Dev, 2008, 17(5): 857-858.
    [46]Collignon H, Davicco MJ, Barlet JP. Isolation of cells from ovine fetal long bone and characterization of their osteoblastic activities during in vitro mineralization. Arch Physiol Biochem, 1997, 105(2): 158-166.
    [1] Chivu M, Dima SO, Stancu CI, et al. In vitro hepatic differentiation of human bone marrow mesenchymal stem cells under differential exposure to liver-specific factors. Transl Res, 2009, 154(3): 122-132.
    [2] Prabhakaran MP, Venugopal JR, Ramakrishna S. Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials, 2009, 30(28): 4996-5003.
    [3] Krampera M, Marconi S, Pasini A, et al. Induction of neural-like differentiation in human mesenchymal stem cells derived from bone marrow, fat, spleen and thymus. Bone, 2007, 40(2): 382-390.
    [4] Song YH, Gehmert S, Sadat S, et al. VEGF is critical for spontaneous differentiation of stem cells into cardiomyocytes. Biochem Bioph Res Co, 2007, 354(4): 999-1003.
    [5] Yoo KH, Jang IK, Lee MW, et al. Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunol, 2009, 259(2): 150-156.
    [6] Fridenshtein AIa. Osteogenic stem cells of the bone marrow. Ontogenez, 1991, 22(2): 189-197.
    [7] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284(5411): 143-147.
    [8] Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 2006, 24(5): 1294-1301.
    [9] Van Damme A, Vanden Driessche T, Collen D, et al. Bone marrow stromal cells as targets for gene therapy. Curr Gene Ther, 2002, 2(2): 195-209.
    [10]Owen M. Marrow stromal stem cells. J Cell Sci Supp1, 1988, 10: 63-76.
    [11]Tremain N, Korkko J, Ibberson D, et al. MicroSAGE analysis of 2,353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stemcells reveals mRNAs of multiple cell lineages. Stem Cells, 2001, 19(5): 408-418.
    [12]Minguell JJ, Erices A, Conget P, et al. Mesenchymal stem cells. Exp Biol Med, 2001, 226(6): 507-520.
    [13]Peister A, Mellad JA, Larson BL, et al. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood, 2004, 103(5): 1662-1668.
    [14]Romanov YA, Darevskaya AN, Merzlikina NV, et al. Mesenchymal stem cells from human bone marrow and adipose tissue: isolation, characterization, and differentiation potentialities. Bull Exp Biol Med, 2005, 140(1): 138-143.
    [15]Kitano Y, Radu A, Shaaban A, et al. Selection, enrichment and culture expansion of murine mesenchymal progenitor cells by retroviral transduction of cycling adherent bone marrow cells. Exp Hematol, 2000, 28(12): 1460-1469.
    [16]Ogura N, Kawada M, Chang WJ, et al. Differentiation of the human mesenchymal stem cells derived from bone marrow and enhancement of cell attachment by fibronectin. J Oral Sci, 2004, 46(4): 207-213.
    [17]宫晓洁,孙莉,黎靖宇,等.小鼠骨髓间充质干细胞的分离培养及形态学观察.解剖学研究, 2008, 30(1): 54-56.
    [18]Tropel P, Noel D, Platet N, et al. Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Exp Cell Res, 2004, 295(2): 395-406.
    [19]Gronthos S, Graves SE, Ohta S, et al.The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. Blood, 1994, 84(12): 4164-4173.
    [20]Encina NR, Billotte WG, Hofmann MC. Immunomagnetic isolation of osteoprogenitors from human bone marrow stroma. Lab Invest, 1999, 79(4): 449-457.
    [21]Tondreau T, Lagneaux L, Dejeneffe M, et al. Isolation of BM mesenchymal stem cells by plastic adhesion or negative selection: phenotype, proliferation kinetics and differentiation potential. Cytotherapy, 2004, 6(4): 372-379.
    [22]Zohar R, Sodek J, McCulloch CA, et al. Characterization of stromal progenitor cells enriched by flow cytometry. Blood, 1997, 90(9): 3471-3481.
    [23]Lisignoli G, Remiddi G, Cattini L, et al. An elevated number of differentiated osteoblast colonies can be obtained from rat bone marrow stromal cells using a gradient isolation procedure. Connect Tissue Res, 2001, 42(1): 49-58.
    [24]Guo XM, Wang CY, Wang YH, et al. Experimental study of the isolation, culture and in chondrogenic differentiation of human bone mesenchymal stem cell. Zhonghua Kou Qiang Yi Xue Za Zhi, 2003, 38(1): 63-66.
    [25]Letchford J, Cardwell AM, Stewart K, et al. Isolation of C15: A novel antibody generated by phage display against mesenchymal stem cell-enriched fractions of adult human marrow. J Immunol Methods, 2006, 308(1-2): 124-137.
    [26]Reyes M, Lund T, Lenvik T, et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood, 2001, 98(9): 2615-2625.
    [27]Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol, 1999, 181(1): 67-73.
    [28]Martinez C, Hofmann TJ, Marino R, et al. Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood, 2007, 109(10): 4245-4248.
    [29]Gang EJ, Bosnakovski D, Figueiredo CA, et al. SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood, 2007, 109(4): 1743-1751.
    [30]Ringe J, Kaps C, Schmitt B, et al. Porcine mesenchymal stem cells. Induction of distinct mesenchymal cell lineages.Cell Tissue Res, 2002, 307(3): 321-327.
    [31]Lodie TA, Blickarz CE, DevarakondaTJ, et al. Systematic analysis of reportedly distinct populations of multipotent bone marrow-derived stem cells reveals a lack of distinction. Tissue Eng, 2002, 8(5): 739-751.
    [32]Phinney DG, Kopen G, Isaacson RL, et al. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem, 1999, 72(4): 570-585.
    [33]鄂征.组织培养和分子细胞学技术.第1版:北京出版社, 1995.
    [34]Tamir A, Petrocelli T, Stetler K, et al. Stem cell factor inhibits erythroid differentiationby modulating the activity of G1-cyclin-dependent kinase complexes: a role for P27 in erythroid differentiation coupled G1 arrest. Cell Growth Differ, 2000, 11(5): 269-277.
    [35]Digirolamo CM, Stokes D, Colter D, et al. Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol, 1999, 107(2): 275-281.
    [36]Fehrer C, Lepperdinger G. Mesenchymal stem cell aging. Exp Gerontol, 2005, 40(12): 926-930.
    [1] Amaral M, Costa MA, Lopes MA, et al. Si3N4-bioglass composites stimulate the proliferation of MG63 osteoblast-like cells and support the osteogenic differentiation of human bone marrow cells. Biomaterials, 2002, 23(24): 4897-4906.
    [2] Yao J, Radin S, Reilly G, et al. Solution-mediated effect of bioactive glass in poly (lactic-co-glycolic acid)-bioactive glass composites on osteogenesis of marrow stromal cells. J Biomed Mater Res A, 2005, 75(4): 794-801.
    [3] Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem, 1997, 64(2): 295-312.
    [4]司徒镇强,吴军正.细胞培养.西安:世界图书出版社, 2004.
    [5] Zhang CX. A new method of measuring the cytotoxicity by spectrophotometer for amalgam of different cupric quantity. Zhonghua Kou Qiang Yi Xue Za Zhi, 1990, 25(4): 216-218.
    [6] Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants– A review. Prog Mater Sci, 2009, 54(3): 397-425.
    [7] Long M. Rack HJ. Titanium alloys in total joint replacement– a materials science perspective. Biomaterials, 1998, 19(18): 1621-1639.
    [8] Morscher E, et al. Endoprosthetics. Berlin: Springer, 1995.
    [9] Howie DW, et al. Implant-Bone Interface. London: Springer, 1990.
    [10]Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mat Sci Eng R, 2004, 47: 49-121.
    [11]李青.人工关节用金属材料的表面处理.医疗卫生装备, 2000, 5: 22-24.
    [12]Ripamonti U, Crooks J, Khoali L, Roden L. The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs. Biomaterials, 2009, 30(7): 1428-1439.
    [13]Mouzin O, Soballe K, Bechtold JE. Loading improves anchorage of hydroxyapatiteimplants more than titanium implants. J Biomed Mater Res, 2001, 58(1): 61-68.
    [14]D’Antonio JA, Capello WN, Manley MT, Geesink R. Hydroxyapatite femoral stems for total hip arthroplasty: 10- to 13-year follow-up. Clin Orthop Relat Res, 2001, 393: 101-111.
    [15]Lai KA, Shen WJ, Chen CH, et al. Failure of hydroxyapatite-coated acetabular cups: Ten-year follow-up of 85 Landos Atoll arthroplasties. J Bone Joint Surg Br, 2002, 84(5): 641-646.
    [16]Liu X, Morra M, Carpi A, Li B. Bioactive calcium silicate ceramics and coatings. Biomed Pharmacother, 2008, 62(8): 526-529.
    [17]Liu X, Tao S, Ding C. Bioactivity of plasma sprayed dicalcium silicate coatings. Biomaterials, 2002, 23(3): 963-968.
    [18]Liu X, Xie Y, Ding C, Chu PK. Early apatite deposition and osteoblast growth on plasma-sprayed dicalcium silicate coating. J Biomed Mater Res, 2005, 74(3): 356-365.
    [19]Xynos ID, Edgar AJ, Buttery LD, et al. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun, 2000, 276(2): 461-465.
    [20]Sun JY, Yang YS, Zhong J, Greenspan DC. The effect of the ionic products of Bioglass dissolution on human osteoblasts growth cycle in vitro. J Tissue Eng Regen Med, 2007, 1(4): 281-286.
    [21]Xynos ID, Edgar AJ, Buttery LD, et al. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J Biomed Mater Res, 2001, 55(2): 151-157.
    [22]Reffitt DM, Ogston N, Jugdaohsingh R, et al. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone, 2003, 32(2): 127-135.
    [23]Hench LL, Xynos ID, Polak JM. Bioactive glasses for in situ tissue regeneration. J Biomater Sci Polym Ed, 2004, 15(4): 543-562.
    [24]Gough JE, Jones JR, Hench LL. Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomaterials, 2004, 25(11): 2039-2046.
    [25]Keeting PE, Oursler MJ, Wiegand KE, et al. Zeolite A increases proliferation, differentiation, and transforming growth factor beta production in normal adult human osteoblast-like cells in vitro. J Bone Miner Res, 1992, 7(11): 1281-1289.
    [26]Hott M, de Pollak C, Modrowski D, Marie PJ. Short-term effects of organic silicon on trabecular bone in mature ovariectomized rats. Calcif Tissue Int, 1993, 53(3): 174-179.
    [27]Carlisle EM. Silicon: a requirement in bone formation independent of vitamin D1. Calcif Tissue Int, 1981, 33(1): 27-34.
    [28]Cheng SL, Yang JW, Rifas L, et al. Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone. Endocrinology, 1994, 134(1): 277-286.
    [29]庞金辉,黄煌渊,张权,等.不同浓度地塞米松对人骨髓间充质干细胞生物学特性的影响.创伤外科杂志, 2009, 11(3): 248-252.
    [30]Choi KM, Seo YK, Yoon HH, et al. Effect of ascorbic acid on bone marrow-derived mesenchymal stem cell proliferation and differentiation. J Biosci Bioeng, 2008, 105(6): 586-594.
    [31]刘大鹏,艾合麦提,古丽,等.体外培养骨髓基质细胞增殖和分化的相互关系.中国临床康复, 2005, 9(38): 10-12.
    [32]Peister A, Mellad JA, Larson BL, et al. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood, 2004, 103(5): 1662-1668.
    [33]张真,卢晓风,李幼平,等.生物材料有效性和安全性评价的现状与趋势.生物医学工程学杂志, 2002, 19(1): 117-121.
    [34]Johnson HJ, Northup SJ, Seagraves PA, et al. Biocompatibility test procedures for materials evaluation in vitro. II. Objective methods of toxicity assessment. J Biomed Mater Res, 1985, 19(5): 489-508.
    [35]Nurse P. A long twentieth century of the cell cycle and beyond. Cell, 2000, 100(1): 71-78.
    [36]Nurse P. Ordering S phase and M phase in the cell cycle. Cell, 1994, 79(4): 547-550.
    [37]Kalejta RF, Shenk T. Manipulation of the cell cycle by human cytomegalovirus. Front Biosci, 2002, 7: d295-306.
    [38]翟中和,王忠喜,丁明孝.细胞生物学.北京:高等教育出版社, 2000.
    [39]Hartwell LH, Weinert TA. Checkpoints: controls that ensure the order of cell cycle events. Science, 1989, 246(4930): 629-634.
    [40]Grana X, Reddy EP. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene, 1995, 11(2): 211-219.
    [41]Peter M, Herskowitz I. Joining the complex: cyclin-dependent kinase inhibitory proteins and the cell cycle. Cell, 1994, 79(2): 181-184.
    [42]Sherr CJ, Roberts JM. Living with or without cyclins and cyclin-dependent kinases. Genes Dev, 2004, 18(22): 2699-2711.
    [43]Martin SJ, McGahon AJ , Nishioka WK, et al. P34cdc2 and apoptosis. Science, 1995, 269(5220): 106-107.
    [44]Pozarowski P, Darzynkiewicz Z. Analysis of cell cycle by flow cytometry. Methods Mol Biol, 2004, 281: 301-311.
    [45]Nunez R. DNA measurement and cell cycle analysis by flow cytometry. Curr Issues Mol Biol, 2001, 3(3): 67-70.
    [46]Zlender V. Apoptosis--programmed cell death. Arh Hig Rada Toksikol, 2003, 54(4): 267-274.
    [47]Vermes I, Haanen C, Reutelingsperger C. Flow cytometry of apoptotic cell death. J Immunol Methods, 2000, 243(1-2): 167-190.
    [48]Ormerod MG, Paul F, Cheetham M, et al. Discrimination of apoptotic thymocytes by forward light scatter. Cytometry, 1995, 21(3): 300-304.
    [49]Vermes I, Haanen C, Steffens-Nakken H, et al. A novel assay for apoptosis. Flowcytometric detection of phosphatidylserine expression on ealy apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods, 1995, 184(1): 39-51.
    [50]Wilkins RC, Kutzner BC, Truong M, et al. Analysis of radiation-induced apoptosis in human lymphocytes: flow cytometry using Annexin V and propidium iodide versus the neutral comet assay. Cytometry, 2002, 48(1): 14-19.
    [51]Jilka RL, Weinstein RS, Bellido T, et al. Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines. J Bone Miner Res, 1998, 13(5): 793-802.
    [52]Levine AJ, Momand J, Finlay CA. The p53 tumour suppressor gene. Nature, 1991, 351(6326): 453-456.
    [53]Lynch MP, Capparelli C, Stein JL, et al. Apoptosis during bone-like tissue development in vitro. J Cell Biochem, 1998, 68(1): 31-49.
    [1] Coelho MJ, Fernandes MH. Human bone cell cultures in biocompatibility testing. PartⅡ: effect of ascorbic acid, beta-glycerophosphate and dexamethasone on osteoblastic differentiation. Biomaterials, 2000, 21(11): 1095-1102.
    [2] Gori F, Thomas T, Hicok KC, et al. Differentiation of human marrow stromal precursor cells: bone morphogenetic protein-2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte maturation. J Bone Miner Res, 1999, 14(9): 1522-1535.
    [3] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284(5411): 143-147.
    [4] De Biase P, Capanna R. Clinical applications of BMPs. Injury, 2005, 36(Suppl 3): S43-S46.
    [5] Hartmann C, Tabin CJ. Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development, 2000, 127(14): 3141-3159.
    [6] Ferguson C, Alpern E, Miclau T, et al. Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev, 1999, 87(1-2): 57-66.
    [7] Olsen BR, Reginato AM, Wang W. Bone development. Annu Rev Cell Dev Biol, 2000, 16: 191-220.
    [8] Maniatopoulos C, Sodek J, Melcher AH. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res, 1988, 254(2): 317-330.
    [9] Dennis JE, Charbord P. Origin and differentiation of human and murine stroma. Stem Cells, 2002, 20(3): 205-214.
    [10]Madras N, Gibbs AL, Zhou Y, et al. Modeling stem cell development by retrospective analysis of gene expression profiles in single progenitor-derived colonies. Stem Cells, 2002, 20(3): 230-240.
    [11]Yoshida CA, Furuichi T, Fujita T, et al. Core-binding factor beta interacts with Runx2and is required for skeletal development. Nat Genet, 2002, 32(4): 633-638.
    [12]Lu H, Kraut D, Gerstenfeld LC, Graves DT. Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast differentiation. Endocrinology, 2003, 144(1): 346-352.
    [13]Xiao G, Jiang D, Ge C, et al. Cooperative interactions between activating transcription factor 4 and Runx2/Cbfa1 stimulate osteoblast-specific osteocalcin gene expression. J Biol Chem, 2005, 280(35): 30689-30696.
    [14]Wagner EF, Karsenty G. Genetic control of skeletal development. Curr Opin Genet Dev, 2001, 11(5): 527-532.
    [15]Ducy P, Zhang R, Geoffroy V, et al. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell, 1997, 89(5): 747-754.
    [16]Okazaki K, Sandell LJ. Extracellular matrix gene regulation. Clin Orthop Relat Res, 2004, (427 Suppl): S123-128.
    [17]Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 1997, 89(5): 755-764.
    [18]Enomoto H, Furuichi T, Zanma A, et al. Runx2 deficiency in chondrocytes causes adipogenic changes in vitro. J Cell Sci, 2004, 117 (Pt 3): 417-425.
    [19]Karsenty G. The genetic transformation of bone biology. Genes Dev, 1999, 13(23): 3037-3051.
    [20]Piccolo S, Sasai Y, Lu B, De Robertis EM. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell, 1996, 86(4): 589-598.
    [21]NaKashima K, Zhou X, Kunkel G, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell, 2002, 108(1): 17-29.
    [22]Nakashima K, de Crombrugghe B. Transcriptional mechanisms in osteoblast differentiation and bone formation. Trends Genet, 2003, 19(8): 458-466.
    [23]Huang L, Teng XY, Cheng YY, et al. Expression of preosteoblast markers and Cbfa-1 and Osterix gene transcripts in stromal tumour cells of giant cell tumour of bone. Bone, 2004, 34(3): 393-401.
    [24]Lee MH, Javed A, Kim HJ, et al. Transient upregulation of CBFA1 in response to bone morphogenetic protein-2 and transforming growth factor beta1 in C2C12 myogenic cells coincides with suppression of the myogenic phenotype but is not sufficient for osteoblast differentiation. J Cell Biochem, 1999, 73(1): 114-125.
    [25]刘红,廖二元,伍贤平.骨钙素与代谢性骨病.国外医学内分泌学分册, 2004, 24(4): 239-240.
    [26]Nakamura A, Dohi Y, Akahane M, et al. Osteocalcin secretion as an early marker of in vitro osteogenic differentiation of rat mesenchymal stem cells. Tissue Eng Part C Methods, 2009, 15(2): 169-180.
    [27]李恩,薛延,王洪复,等.骨质疏松鉴别诊断与治疗.北京:人民卫生出版社, 2005.
    [28]Bodine PV, Komm BS. Evidence that conditionally immortalized human osteoblasts express an osteocalcin receptor. Bone, 1999, 25(5): 535-543.
    [29]Stein GS, Lian JB. Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev, 1993, 14(4): 424-442.
    [30]Kumar S, Mahendra G, Ponnazhagan S. Determination of osteoprogenitor-specific promoter activity in mouse mesenchymal stem cells by recombinant adeno-associated virus transduction. Biochim Biophys Acta, 2005, 1731(2): 95-103.
    [31]Clark EA, Brugge JS. Integrins and signal transduction pathways: the road taken. Science, 1995, 268(5208): 233-239.
    [32]McCarthy AD, Uemura T, Etcheverry SB, Cortizo AM. Advanced glycation endproducts interefere with integrin-mediated osteoblastic attachment to a type-I collagen matrix. Int J Biochem Cell Biol, 2004, 36(5): 840-848.
    [33]Anselme K. Osteoblast adhesion on biomaterials. Biomaterials, 2000, 21(7): 667-681.
    [34]Hosoi T. Bone and bone related biochemical examinations. Bone and collagen related metabolites. Structure and metabolisms of collagen. Clin Calcium, 2006, 16(6): 971-976.
    [35]Cook SD, Salkeld SL, Brinker MR, et al. Use of an osteoinductive biomaterial (rhOP-1) in healing large segmental long bone defects. J Orthop Trauma, 1998, 12(6): 407-412.
    [36]Owen TA, Aronow M, Shalhoub V, et al. Progressive development of the rat osteoblast Phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol, 1990, 143(3): 420-430.
    [37]Bork P, Downing AK, Kieffer B, et al. Structure and distribution of modules in extracellular proteins. Q Rev Biophys, 1996, 29(2): 119-167.
    [38]Yan Q, Sage EH. SPARC, a matricellular glycoprotein with important biological functions. J Histochem Cytochem, 1999, 47(12): 1495-1506.
    [39]Giudici C, Raynal N, Wiedemann H, et al. Mapping of SPARC/BM -40/osteonectin - binding sites on fibrillar collagens. J Biol Chem, 2008, 283(28): 19551-19560.
    [40]Termine JD, Kleinman HK, Whitson SW, et al. Osteonectin, a bone-specific protein linking mineral to collagen. Cell, 1981, 26(1): 99-105.
    [41]Jundt G, Berghauser KH, Termine JD, et al. Osteonectin-a differentiation marker of bone cells. Cell Tissue Res, 1987, 248(2): 409-415.
    [42]Muraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci, 2000, 113(Pt 7): 1161-1166.
    [43]Collignon H, Davicco MJ, Barlet JP. Isolation of cells from ovine fetal long bone and characterization of their osteoblastic activities during in vitro mineralization. Arch Physiol Biochem, 1997, 105(2): 158-166.
    [44]Rodriguez JP, Rios S, Gonzalez M. Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. J Cell Biochem, 2002, 85(1): 92-100.
    [45]Sharp CA, Magnusson P. Isoforms of bone alkaline phosphatase, stem cells, andosteoblast phenotypes. Stem Cells Dev, 2008, 17(5): 857-858.
    [46]Kim HK, Kim JH, Abbas AA, et al. Alendronate enhances osteogenic differentiation of bone marrow stromal cells: a preliminary study. Clin Orthop Relat Res, 2009, 467(12): 3121-3128.
    [47]Gough JE, Jones JR, Hench LL. Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomaterials, 2004, 25(11): 2039-2046.
    [1] Izadpanah R, Joswig T, Tsien F, et al.,Characterization of multipotent mesenchymal stem cells from the bone marrow of rhesus macaques. Stem Cells Dev, 2005, 14(4): 440-451.
    [2] Otto WR, Rao J. Tomorrow’s skeleton staff: mesenchymal stem cells and the repair of bone and cartilage. Cell Prolif, 2004, 37(1): 97-110.
    [3] Minguell JJ, Erices A. Mesenchymal stem cells and the treatment of cardiac disease. Exp Biol Med, 2006, 231(1): 39-49.
    [4] Wurmser AE, Gage FH. Stem cells: cell fusion causes confusion. Nature, 2002, 416(6880): 485-487.
    [5] DeWitt N, Knight J. Biologists question adult stem-cell versatility. Nature, 2002, 416(6879): 354.
    [6] Tremain N, Korkko J, Ibberson D, et al. MicroSAGE analysis of 2,353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages. Stem Cells, 2001, 19(5): 408-418.
    [7] Silva WA Jr, Covas DT, Panepucci RA, et al. The profile of gene expression of human marrow mesenchymal stem cells. Stem Cells, 2003, 21(6): 661-669.
    [8] Kassem M, Abdallah BM, Saeed H. Osteoblastic cells: differentiation and trans-differentiation. Arch Biochem Biophys, 2008, 473(2): 183-187.
    [9] Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell, 2004, 116(6): 769-778.
    [10]Terada N, Hamazaki T, Oka M, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature, 2002, 416(6880): 542-545.
    [11]Ying QL, Nichols J, Evans EP, Smith AG. Changing potency by spontaneous fusion. Nature, 2002, 416(6880): 545-548.
    [12]Colter DC, Sekiya I, Prockop DJ. Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromalcells. Proc Natl Acad Sci USA, 2001, 98(14): 7841-7845.
    [13]Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284(5411): 143-147.
    [14]Muraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from human bone rnarrow differentiate in vitro according to a hierarchical model. J Cell Sci, 2000, 113(Pt 7): 1161-1166.
    [15]Kuznetsov SA, Krebsbach PH, Satomura K, et al. Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res, 1997, 12(9): 1335-1347.
    [16]Wilmut I, Schnieke AE, Mcwhir J, et al. Viable offspring derived from fetal and adult mammalian cells. Nature, 1997, 385(6619): 810-813.
    [17]Song L, Tuan RS. Transdifferentiation potential of human mesenchymal stem cells derived from bone rnarrow. FASEB J, 2004, 18(9): 980-982.
    [18]Hong JH, Hwang ES, McManus MT, et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science, 2005, 309(5737): 1074-1078.
    [19]McBeath R, Pirone DM, Nelson CM, et al. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell, 2004, 6(4): 483-495.
    [20]Xiao G, Jiang D, Thomas P, et al. MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J Biol Chem, 2000, 275(6): 4453-4459.
    [21]Thirunavukkarasu K, Halladay DL, Miles RR, et al. Analysis of regulator of G-protein signaling-2 (RGS-2) expression and function in osteoblastic cells. J Cell Biochem, 2002, 85(4): 837-850.
    [22]Ryoo HM, Lee MH, Kim YJ. Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. Gene, 2006, 366(1): 51-57.
    [23]Rifas L, Arackal S, Weitzmann MN. Inflammatory T cells rapidly induce differentiation of human bone marrow stromal cells into mature osteoblasts. J Cell Biochem, 2003, 88(4): 650-659.
    [24]Whitmarsh AJ. Regulation of gene transcription by mitogen-activated protein kinasesignaling pathways. Biochim Biophys Acta, 2007, 1773(8): 1285-1298.
    [25]Junttila MR, Li SP, Westermarck J. Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J, 2008, 22(4): 954-965.
    [26]Tang K, Wu H, Mahata SK, O'Connor DT. A crucial role for the mitogen-activated protein kinase pathway in nicotinic cholinergic signaling to secretory protein transcription in pheochromocytoma cells. Mol Pharmacol, 1998, 54(1): 59-69.
    [27]Yang SH, Sharrocks AD, Whitmarsh AJ. Transcriptional regulation by the MAP kinase signaling cascades. Gene, 2003, 320: 3-21.
    [28]Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 2002, 298(5600): 1911-1912.
    [29]Ji RR, Gereau RW 4th, Malcangio M, Strichartz GR. MAP kinase and pain. Brain Res Rev, 2009, 60(1): 135-148.
    [30]Jaiswal RK, Jaiswal N, Bruder SP, et al. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem, 2000, 275(13): 9645-9652.
    [31]Yang H, Xia Y, Lu SQ, et al. Basic fibroblast growth factor-induced neuronal differentiation of mouse bone marrow stromal cells requires FGFR-1, MAPK/ERK, and transcription factor AP-1. J Biol Chem, 2008, 283(9): 5287-5295.
    [32]Xu J, Liu X, Jiang Y, et al. MAPK/ERK signaling mediates VEGF-induced bone marrow stem cell differentiation into endothelial cell. J Cell Mol Med, 2008, 12(6A): 2395-2406.
    [33]Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev, 2001, 81(2): 807-869.
    [34]Song JJ, Lee YJ. Differential activation of the JNK signal pathway by UV irradiation and glucose deprivation. Cell Signal, 2007, 19(3): 563-572.
    [35]Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev, 1999, 79(1):143-180.
    [36]Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol, 1997, 9(2): 180-186.
    [37]Murphy LO, Smith S, Chen RH, et al. Molecular interpretation of ERK signal duration by immediate early gene products. Nat Cell Biol, 2002, 4(8): 556-564.
    [38]Oyama M, Chiba J, Kato Y, et al. Distribution and expression of mRNAs for the proto-oncogenes c-fos and c-jun in bone cells in vivo. Histol Histopathol, 1998, 13(3): 671-678.
    [39]Chen TH, Chen WM, Hsu KH, et al. Sodium butyrate activates ERK to regulate differentiation of mesenchymal stem cells. Biochem Biophys Res Commun, 2007, 355(4): 913-918.
    [40]Liao QC, Li YL, Qin YF, et al. Inhibition of adipocyte differentiation by phytoestrogen genistein through a potential downregulation of extracellular signal-regulated kinases 1/2 activity. J Cell Biochem, 2008, 104(5): 1853-1864.
    [41]Salasznyk RM, Klees RF, Hughlock MK, Plopper GE. ERK signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells on collagen I and vitronectin. Cell Commun Adhes, 2004, 11(5-6): 137-153.
    [42]Ward DF Jr, Salasznyk RM, Klees RF, et al. Mechanical strain enhances extracellular matrix-induced gene focusing and promotes osteogenic differentiation of human mesenchymal stem cells through an extracellular-related kinase-dependent pathway. Stem Cells Dev, 2007, 16(3): 467-480.
    [43]Dong J, Kojima H, Uemura T, el al. In vivo evaluation of a novel porous hydroxyapatite to sustain osteogenesis of transplanted bone marrow-derived osteoblastic cells. J Biomed Mater Res, 2001, 57(2): 208-216.
    [44]Aubin JE. Advances in the osteoblast lineage. Biochem Cell Biol, 1998, 76(6): 899-910.
    [45]Sharp CA, Magnusson P. Isoforms of bone alkaline phosphatase, stem cells, and osteoblast phenotypes. Stem Cells Dev, 2008, 17(5): 857-858.
    [1]阮建明,邹俭鹏,黄伯云,等.生物材料学.北京:科学出版社, 2004.
    [2]崔福斋,冯庆玲.生物材料学.北京:清华大学出版, 2004.
    [3] Huo MH, Brown BS. What's new in hip arthroplasty. J Bone Joint Surg (Am), 2003, 85(9): 1852-1864.
    [4] Smith SE, Estok DM 2nd, Harris WH. 20-year experience with cemented primary and conversion total hip arthroplasty using so-called second-generation cementing techniques in patients aged 50 years or younger. J Arthroplasty, 2000, 15(3): 263-273.
    [5]刘志宏,杨庆铭.人工关节外科新进展.中华创伤骨科杂志, 2004, 6(2): 210-213.
    [6] Archibeck MJ, Berger RA, Barden RM, et al. Posterior cruciate ligament-retaining total knee arthroplasty in patients with rheumatoid arthritis. J Bone Joint Surg (Am), 2001, 83(8):1231-1236.
    [7] Ritter MA. Session I: Long-term followup after total knee arthroplasty. Clin Orthop Relat Res, 2002, (404): 32-33.
    [8] Meinert K, Wolf GK. Corrosion studies of stainless steel 316L, modified by ion beam techniques, under simulated physiological conditions. Surf Coat Tech, 1998, 98: 1148-1156.
    [9] Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants– A review. Prog Mater Sci, 2009, 54(3): 397-425.
    [10] Bothe RT, Beaton LE, Davenport HA. Reaction of bone to multiple metallic implants. Surg Gynecol Obstet, 1940, 71: 598-602.
    [11] Long M, Rack HJ. Titanium alloys in total joint replacement– a materials science perspective. Biomaterials, 1998, 19(18): 1621-1639.
    [12] Maloney WJ, Jasty M, Harris WH, Galante JO, Callaghan JJ. Endosteal erosion in association with stable uncemented femoral components. J Bone Joint Surg (Am), 1990, 72(7): 1025-1034.
    [13] Chiba J, Schwendeman LJ, Booth RE Jr, Crossett LS, Rubash HE. A biochemical,histologic, and immunohistologic analysis of membranes obtained from failed cemented and cementless total knee arthroplasty. Clin Orthop Relat Res, 1994, (299): 114-124.
    [14]于思荣.生物医学钛合金的研究现状及发展趋势.材料科学与工程, 2000, 18(2): 131-134.
    [15] Niinomi M. Mechanical properties of biomedical titanium alloys. Mat Sci Eng A, 1998, 243: 231-236.
    [16] Wang K. The use of titanium for medical applications in the USA. Mat Sci Eng A, 1996, 213: 134-137.
    [17]王宙,李智,蔡军.生物陶瓷材料的发展与现状.大连大学学报, 2001, 22(6): 57-61.
    [18]李湘洲,李凡.生物陶瓷材料的现状与发展趋势.佛山陶瓷, 2003, 12: 3-5.
    [19]张清纯. Al2O3质人工髋关节的强度及其抗裂纹缓慢扩展特性.中国生物医学工程学报, 1984, 3(3): 183-187.
    [20] Nelea V, Morosanu C, Iliescu M, Mihailescu IN. Hydroxyapatite thin films grown by pulsed laser deposition and radio-frequency magnetron sputtering: comparative study. Appl Surf Sci, 2004, 228: 346-356.
    [21]施秋萍,赵玉涛,戴起勋,林东洋.钛合金表面涂覆生物活性涂层的制备技术及进展.真空, 2006, 43(6): 48-53.
    [22]韩庆荣,陈晓明.电沉积生物活性陶瓷涂层技术.材料工程, 2001, 3: 45-48.
    [23]吕厚山.现代人工关节外科学.第1版.北京:人民卫生出版社, 2006.
    [24]朱伯通,戴尅戎.骨科手术学.第2版.北京:人民卫生出版社, 2000.
    [25]罗先正,邱贵兴.人工髋关节学.第1版.北京:中国协和医科大学出版社, 2003.
    [26]俞耀庭,张兴栋.生物医用材料.天津:天津大学出版社, 2000.
    [27] Hench LL. Biomaterials: a forecast for the future. Biomaterials, 1998, 19(16): 1419-1423.
    [28] Piehler HR. The future of medicine: biomaterials. Mater Res Soc Bull, 2000, (Aug): 67-70.
    [29] Kim HM. Bioactive ceramics: challenges and perspectives. J Ceram Soc Jpn, 2001, 109(4): S49-S57.
    [30]闫玉华,殷湘蓉.人工关节的研究现状和发展趋势.生物骨科材料与临床研究, 2004, 1(4): 39-43.
    [31] Heaton-Adegbile P, Russery B, Taylor L, et al. Failure of an uncemented acetabular prosthesis - a case study. Eng Fail Anal, 2006, 13(1): 163-169.
    [32] Huiskes R , Weinans H , van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res, 1992, (274): 124-134.
    [33] Niinomi M, Akahori T, Takeuchi T, et al. Mechanical properties and cyto-toxicity of new beta type titanium alloy with low melting points for dental applications. Mat Sci Eng C, 2005, 25(3): 417-425.
    [34] Okazaki Y, Gotoh E. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials, 2005, 26(1): 11-21.
    [35] Banerjee R, Nag S, Fraser HL. A novel combinatorial approach to the development of beta titanium alloys for orthopaedic implants. Mat Sci Eng C, 2005, 25(3): 282-289.
    [36] Gordin DM , Gloriant T, Nemtoi G, et al. Synthesis, structure and electrochemical behavior of a beta Ti-12Mo-5Ta alloy as new biomaterial. Mater Lett, 2005, 59(23): 2936-2941.
    [37] Nakagawa M, Matono Y, Matsuya S, et al. The effect of Pt and Pd alloying additions on the corrosion behavior of titanium in fluoride-containing environments. Biomaterials, 2005, 26(15): 2239-2246.
    [38] Kuroda D, Kawasaki H, Yamamoto A, et al. Mechanical properties and microstructures of new Ti–Fe–Ta and Ti–Fe–Ta–Zr system alloys. Mat Sci Eng C, 2005, 25(3): 312-320.
    [39] Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials, 2003, 24(13): 2161-2175.
    [40] Raikar GN, Gregory JC, Ong JL, et al. Surface characterization of titanium implants. JVac Sci Technol, 1995, 13: 2633-2637.
    [41] Sul YT, Johansson CB, Petronis S, et al. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials, 2002, 23(2): 491-501.
    [42] Mohammadi S, Wictorin L, Ericsonetal LE. Cast titanium as implant material. J Mater Sci Mater Med, 1995, (6): 435-444.
    [43] Wang K. The use of titanium for medical applications in the USA. Mat Sci Eng A, 1996, 213(1-2): 134-137.
    [44] Nag S, Banerjee R, Fraser HL. Microstructural evolution and strengthening mechanisms in Ti–Nb–Zr–Ta, Ti–Mo–Zr–Fe and Ti–15Mo biocompatible alloys. Mat Sci Eng C, 2005, 25(3): 357-362.
    [45] BauerTW. Particles and periimplant bone resorption. Clin Orthop Relat Res, 2002, (405): 138-143.
    [46] Goetz DD, Smith EJ, Harris WH. The prevalence of femoral osteolysis associated with components inserted with or without cement in total hip replacements. A retrospective matched-pair series. J Bone Joint Surg (Am), 1994, 76(8): 1121-1129.
    [47] Otto M, Kriegsmann J, Gehrke T, Bertz S. Wear particles: key to aseptic prosthetic loosening? Pathologe, 2006, 27(6): 447-460.
    [48] Tengvall P, Lundstrom I. Physico-chemical considerations of titanium as a biomaterial. Clin Mater, 1992, 9(2): 115-134.
    [49] Breme J, Zhou Y, Groh L. Development of a titanium alloy suitable for an optimized coating with hydroxyapatite. Biomaterials, 1995, 16(3): 239-244.
    [50] Zhang EL, Zou CM, Zeng SY. Preparation and characterization of silicon-substituted hydroxyapatite coating by a biomimetic process on titanium substrate. Surf Coat Tech, 2009, 203(8): 1075-1080.
    [51] Fathi MH, Doostmohammadi A. Bioactive glass nanopowder and bioglass coating for biocompatibility improvement of metallic implant. J Mater Process Tech, 2009,209(3): 1385-1391.
    [52] Yan WQ, Nakamura T, Kobayashi M, et al. Bonding of chemically treated titanium implants to bone. J Biomed Mater Res, 1997, 37(2): 267-275.
    [53] Kaneko S, Tsuru K, Hayakawa S, et al. In vivo evaluation of bone-bonding of titanium metal chemically treated with a hydrogen peroxide solution containing tantalum chloride. Biomaterials, 2001, 22(9): 875-881.
    [54] Mouzin O, Soballe K, Bechtold JE. Loading improves anchorage of hydroxyapatite implants more than titanium implants. J Biomed Mater Res, 2001, 58(1): 61-68.
    [55] D’Antonio JA, Capello WN, Manley MT, Geesink R. Hydroxyapatite femoral stems for total hip arthroplasty: 10- to 13-year follow-up. Clin Orthop Relat Res, 2001, 393: 101-111.
    [56] Cook SD, Thomas KA, Dalton JE, et al. Hydroxylapatite coating of porous implants improves bone ingrowth and interface attachment strength. J Biomed Mater Res, 1992, 26(8): 989-1001.
    [57]代新祥,陈晓明,李世普.人工关节的发展及未来.武汉工业大学学报, 1998, 20(4): 12-14.
    [58]卢宏章,朱天岳,柴卫兵,等.氧化铝涂层人工关节的初步研究.中华骨科杂志, 1997, 17(12): 766-769.
    [59]王智兴,叶衍庆,方企.氧化铝假体会延迟骨的矿化.中华骨科杂志, 1995, 15(3): 180-181.
    [60] Manicone PF, Rossi Iommetti P, Raffaelli L. An overview of zirconia ceramics: basic properties and clinical applications. J Dent, 2007, 35(11): 819-826.
    [61]孙蕾,张富强.氧化锆应用于全瓷修复的研究进展.国外医学口腔医学分册, 2005, 32(2): 145-147.
    [62] Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials, 1999, 20(1): 1-25.
    [63] Yang Y, Ong JL, Tian J. Deposition of highly adhesive ZrO2 coating on Ti and CoCrMo implant materials using plasma spraying. Biomaterials, 2003, 24(4):619-627.
    [64] Casaletto MP, Ingo GM, Kaciulis S, et al. Surface studies of in vitro biocompatibility of titanium oxide coatings. Appl Surf Sci, 2001, 172(1-2): 167-177.
    [65] Liu X, Zhao X, Fu RK, et al. Plasma-treated nanostructured TiO2 surface supporting biomimetic growth of apatite. Biomaterials, 2005, 26(31): 6143-6150.
    [66] Zhao X, Liu X, Ding C, Chu PK. In vitro bioactivity of plasma-sprayed TiO2 coating after sodium hydroxide treatment. Surf Coat Tech, 2006, 200(18-19): 5487-5492.
    [67] Zhao X, Liu X, Ding C. Acid-induced bioactive titania surface. J Biomed Mater Res A, 2005, 75(4): 888-894.
    [68] Ripamonti U, Crooks J, Khoali L, Roden L. The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs. Biomaterials, 2009, 30(7): 1428-1439.
    [69] Ducheyne P, Hench LL, Kagan A 2nd, et al. Effect of hydroxyapatite impregnation on skeletal bonding of porous coated implants. J Biomed Mater Res, 1980, 14(3): 225-237.
    [70] Tracy BM, Doremus RH. Direct electron microscopy studies of the bone-hydroxylapatite interface. J Biomed Mater Res, 1984, 18(7): 719-726.
    [71]徐淑华,王迎军,罗承萍.生物羟基磷灰石涂层材料的研究进展.材料导报, 2002, 16(1): 48-50.
    [72] Garcia C, Cere S, Duran A. Bioactive coatings deposited on titanium alloys. J Non-Cryst Solids, 2006, 352(32-35): 3488-3495.
    [73] Souto RM, Laz MM, Reis RL. Degradation characteristics of hydroxyapatite coatings on orthopaedic TiAlV in simulated physiological media investigated by electrochemical impedance spectroscopy. Biomaterials, 2003, 24(23): 4213-4221.
    [74] Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanism at interface of ceramic prosthetic materials. J Biomed Mater Res, 1971, 2: 117-141.
    [75] Wilson J, Low SJ. Bioactive ceramics for periodontal treatment: comparative studies in the Patus monkey. J Appl Biomater, 1992, (3): 123-129.
    [76] Ohtsuki C, Kokubo T, Yamamuro T. Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fluid. J Non-Cryst Solids,1992, 143: 84-92.
    [77] Hench LL. Bioceramics. J Am Ceram Soc, 1998, 7: 1705-1728.
    [78] Peitl O, Zanotto ED, Hench LL. Highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics. J Non-Cryst Solids, 2001, 292(1-3): 115-126.
    [79] Oki A, Parveen B, Hossain S, et al. Preparation and in vitro bioactivity of zinc containing sol-gel-derived bioglass materials. J Biomed Mater Res A, 2004, 69(2): 216-221.
    [80]程逵,翁文剑,葛曼珍.生物陶瓷涂层.材料科学与工程, 1998, 16(3): 8-12.
    [81] Liu X, Morra M, Carpi A, Li B. Bioactive calcium silicate ceramics and coatings. Biomed Pharmacother, 2008, 62(8): 526-529.
    [82] Gou Z, Chang J, Zhai W. Preparation and characterization of novel bioactive dicalcium silicate ceramics. J Eur Ceram Soc, 2005, 25(9): 1507-1514.
    [83] Hench LL, Anderson O. Bioactive glass. In: Hench LL, Wilson J, editors. An introduction to bioceramics. USA: World Scientific,1993. 41-62.
    [84] KoKubo T. Surface chemistry of bioactive glass-ceramics. J Non-Cryst Solids, 1990, 120: 138-151.
    [85] Liu X, Tao S, Ding C. Bioactivity of plasma sprayed dicalcium silicate coatings. Biomaterials, 2002, 23(3): 963-968.
    [86] Liu X, Xie Y, Ding C, Chu PK. Early apatite deposition and osteoblast growth on plasma-sprayed dicalcium silicate coating. J Biomed Mater Res, 2005, 74(3): 356-365.
    [87] Kohri M, Miki K, Waite DE, et al. In vitro stability of biphasic calcium phosphate ceramics. Biomaterials, 1993, 14(4): 299-304.
    [88]夏志道.从无生命到有生命—可降解钙磷人工骨的生物转化.生命科学, 1994, 6(4): 4-6.
    [89] Khor KA, Gu YW, Pan D, Cheang P. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings. Biomaterials, 2004, 25(18): 4009-4017.
    [90]樊丁,李秀坤,郑敏,等. CeO2对激光熔覆生物陶瓷涂层组织形貌的影响.兰州理工大学学报, 2007, 33(6): 14-17.
    [91] Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mat Sci Eng R, 2004, 47: 49-121.
    [92] de Groot K, Wolke JG, Jansen JA. Calcium phosphate coatings for medical implants. Proc Inst Mech Eng H, 1998, 212(2): 137-147.
    [93] Lappalainen R, Santavirta SS. Potential of coatings in total hip replacement. Clin Orthop Relat Res, 2005, (430): 72-79.
    [94]冯彦博,杨迪生.与骨科植入物相关的钛表面处理技术.国际骨科学杂志, 2008, 29(4): 216-218.
    [95] Cannillo V, Angulo JC, Lusvarghi L, et al. In vitro characterisation of plasma-sprayed apatite/wollastonite glass–ceramic biocoatings on titanium alloys. J Eur Ceram Soc, 2009, 29(9): 1665-1677.
    [96] Tao S, Yin Z, Zhou X, Ding C. Sliding wear characteristics of plasma-sprayed Al2O3 and Cr2O3 coatings against copper alloy under severe conditions. Tribol Int, 2010, 43(1-2): 69-75.
    [97] McPherson R, Gane N, Bastow TJ. Structural characterization of hydroxyapatite coating. J Mater Sci Mater Med, 1995, 6: 327-334.
    [98] Carayon MT, Lacout JL. Study of the Ca/P atomic ratio of the amorphous phase in plasma-sprayed hydroxyapatite coatings. J Solid State Chem, 2003, 172(2): 339-350.
    [99] Gross KA, Berndt CC. In vitro testing of plasma-sprayed hydroxyapatite coatings. J Mater Sci Mater Med, 1994, 5: 219-224.
    [100]Cizek J, Khor KA, Prochazka Z. Influence of spraying conditions on thermal and velocity properties of plasma sprayed hydroxyapatite. Mat Sci Eng C, 2007, 27(2): 340-344.
    [101]Thomas KA, Kay JF, Cook SD, Jarcho M. The effect of surface macrotexture and hydroxylapatite coating on the mechanical strengths and histologic profiles of titanium implant materials. J Biomed Mater Res, 1987, 21(12): 1395-1414.
    [102]Wang DH, Bierwagen GP. Sol–gel coatings on metals for corrosion protection. Prog Org Coat, 2009, 64(4): 327-338.
    [103]Han JY, Yu ZT, Zhou L. Hydroxyapatite/titania composite bioactivity coating processed by sol–gel method. Appl Surf Sci, 2008, 255(2): 455-458.
    [104]Weng W, Baptista JL. Sol-gel derived porous hydroxyapatite coatings. J Mater Sci Mater Med, 1998, 9(3): 159-163.
    [105]Wen CE, Xu W, Hu WY, Hodgson PD. Hydroxyapatite/titania sol–gel coatings on titanium–zirconium alloy for biomedical applications. Acta Biomater, 2007, 3(3): 403-410.
    [106]Hukovic MM, Tkalcec E, Kwokal A, Piljac J. An in vitro study of Ti and Ti-alloys coated with sol–gel derived hydroxyapatite coatings. Surf Coat Tech, 2003, 165(1): 40-50.
    [107]曲海波,宋晨路,程逵,等.纳米含氟磷灰石涂层及其在模拟溶液中的行为.过程工程学报, 2002, 2(4): 370-374.
    [108]Im KH, Lee SB, Kim KM, Lee YK. Improvement of bonding strength to titanium surface by sol–gel derived hybrid coating of hydroxyapatite and titania by sol–gel process. Surf Coat Tech, 2007, 202(4-7): 1135-1138.
    [109]Shirkhanzadeh M. Bioactive calcium phosphate coatings prepared by electrodeposition. J Mater Sci Lett, 1991, 10: 141-147.
    [110]Corni I, Ryan MP, Boccaccini AR. Electrophoretic deposition: From traditional ceramics to nanotechnology. J Eur Ceram Soc, 2008, 28(7): 1353-1367.
    [111]Pang X, Casagrande T, Zhitomirsky I. Electrophoretic deposition of hydroxyapatite - CaSiO3-chitosan composite coatings. J Colloid Interf Sci, 2009, 330(2): 323–329.
    [112]Wang J, Chao Y, Wan Q, et al. Fluoridated hydroxyapatite coatings on titanium obtained by electrochemical deposition. Acta Biomater, 2009, 5(5): 1798-1807.
    [113]Wang Y, Tao J, Wang L, et al. HA coating on titanium with nanotubular anodized TiO2 intermediate layer via electrochemical deposition. T Nonferr Metal Soc, 2008, 18(3): 631-635.
    [114]Besra L, Liu M. A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci, 2007, 52(1): 1-61.
    [115]Eliaz N, Eliyahu M. Electrochemical processes of nucleation and growth of hydroxyapatite on titanium supported by real-time electrochemical atomic force microscopy. J Biomed Mater Res A, 2007, 80(3): 621-634.
    [116]Xiong JY, Li YC, Hodgson PD, Wen C. Nanohydroxyapatite coating on a titanium–niobium alloy by a hydrothermal process. Acta Biomater, 2010, 6(4): 1584-1590.
    [117]郑岳华,侯小妹,杨兆雄.多孔羟基磷灰石生物陶瓷的进展.硅酸盐通报, 1995, (3): 20-24.
    [118]Fujishiro Y. Coating of hydroxyapatite on metal plates using thermal dissociation of calcium-EDTA chelate in phosphate solutions under hydrothermal conditions. J Mat in Medicine, 1995, (6): 172-176.
    [119]Li YB. Morphology and composition of nanograde calcium phosphate needle-like crystals formed by simple hydrothermal treatment. J Mater Sci Mater Med, 1994, (5): 326-331.
    [120]Kelly PJ, Arnell RD. Magnetron sputtering: a review of recent developments and applications. Vacuum, 2000, 56(3): 159-172.
    [121]Mardare CC, Mardare AI, Fernandes JRF, et al. Deposition of bioactive glass-ceramic thin-films by RF magnetron sputtering. J Eur Ceram Soc, 2003, 23 (7): 1027-1030.
    [122]周志华,傅明喜,黄兴民,等.磁控溅射工艺参数对不锈钢薄膜结合性能的影响.材料保护, 2004, 37(11): 27-28.
    [123]Long JD, Xu S, Cai JW, et al. Structure, bonding state and in-vitro study of Ca-P-Ti film deposited on Ti6Al4V by RF magnetron sputtering. Mat Sci Eng C, 2002,20(1-2): 175-180.
    [124]van Dijk K, Schaeken HG, Wolke JG, Jansen JA. Influence of annealing temperature on RF magnetron sputtered calcium phosphate coatings. Biomaterials, 1996, 17(4): 405-410.
    [125]陈民芳,由臣,王玉红,等.溅射羟基磷灰石薄膜与钛合金基体结合强度的研究.新技术新工艺, 2004, 1(1): 35-36.
    [126]Ding SJ, Ju CP, Lin JH. Characterization of hydroxyapatite and titanium coatings sputtered on Ti-6Al-4V substrate. J Biomed Mater Res, 1999, 44(3): 266-279.
    [127]Br?uer G, Szyszka B, Verg?hl M, Bandorf R. Magnetron Sputtering– Milestones of 30 Years. Vacuum, 2010, 84(12): 1354-1359.
    [128]Kokubo T, Kushitani H, Abe Y. Apatite coating on various substrates in simulated body fluids. Bioceramics, 1989, 2: 235-242.
    [129]Jonasova L, Muller FA, Helebrant A, et al. Biomimetic apatite formation on chemically treated titanium. Biomaterials, 2004, 25(7-8): 1187-1194.
    [130]Kim HM, Miyaji F, Kokubo T, Nakamura T. Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment. J Mater Sci Mater Med, 1997, 8(6): 341-347.
    [131]Uchida M, Kim HM, Miyaji F, et al. Apatite formation on zirconium metal treated with aqueous NaOH. Biomaterials, 2002, 23(1): 313-317.
    [132]Miyazaki T, Kim HM, Miyaji F, et al. Bioactive tantalum metal prepared by NaOH treatment. J Biomed Mater Res, 2000, 50(1): 35-42.
    [133]Habibovic P, Li J, van der Valk CM, et al. Biological performance of uncoated and octacalcium phosphate-coated Ti6Al4V. Biomaterials, 2005, 26(1): 23-36.
    [134]Lu X, Zhao Z, Leng Y. Biomimetic calcium phosphate coatings on nitric-acid-treated titanium surfaces. Mat Sci Eng C, 2007, 27(4): 700-708.
    [135]Wang DG, Chen CZ, Ma J, Zhang G. In situ synthesis of hydroxyapatite coating by laser cladding. Colloid Surface B, 2008, 66(2): 155-162.
    [136]Zheng M, Fan D, Li X, et al. Microstructure and osteoblast response of gradientbioceramic coating on titanium alloy fabricated by laser cladding. Appl Surf Sci, 2008, 255(2): 426-428.
    [137]张亚平,高家诚,谭继福,等.激光熔覆生物陶瓷复合涂层.材料研究学报, 1994, 8(1): 93-96.
    [138]王勇,高家诚,张亚平.激光熔覆梯度生物陶瓷涂层的研究.中国激光, 2004, 31(4): 487-490.
    [139]Smurov I. Laser cladding and laser assisted direct manufacturing. Surf Coat Tech, 2008, 202(18): 4496-4502.
    [140]谢明.材料表面的激光熔覆技术及展望.邵阳学院学报(自然科学版), 2004, 1(3): 47-48.
    [141]Zhou S, Zeng X, Hu Q, Huang Y. Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization. Appl Surf Sci, 2008, 255(5): 1646-1653.
    [142]Thian ES, Khor KA, Loh NH, Tor SB. Processing of HA-coated Ti-6Al-4V by a ceramic slurry approach: an in vitro study. Biomaterials, 2001, 22(11): 1225-1232.
    [143]憨勇,徐可为.羟基磷灰石生物陶瓷涂层制备方法评述.硅酸盐通报, 1997, (5): 47-50.
    [144]Li X, Weng J, Tong W, et al. Characterization of hydroxyapatite film with mixed interface by Ar+ ion beam enhanced deposition. Biomaterials, 1997, 18(22): 1487-1493.
    [145]Wang CX, Chen ZQ, Wang M, et al. Functionally graded calcium phosphate coatings produced by ion beam sputtering/mixing deposition. Biomaterials, 2001, 22(12): 1619-1626.
    [146]Gledhill HC, Turner IG, Doyle C. Direct morphological comparison of vacuum plasma sprayed and detonation gun sprayed hydroxyapatite coatings for orthopaedic applications. Biomaterials, 1999, 20(4): 315-322.
    [147]王迎军,宁成云,赵子衷,等. HA生物活性陶瓷涂层的爆炸喷涂与等离子喷涂.华南理工大学学报(自然科学版), 1998, 26(7): 124-128.
    [148]周友龙,黄楠,张继春.爆炸法制备钛基体羟基磷灰石涂层试验研究.西南交通大学学报, 2002, 37(1): 49-52.
    [149]Han Y, Sun J, Huang X. Formation mechanism of HA-based coatings by micro-arc oxidation. Electrochem Commun, 2008, 10(4): 510-513.
    [150]Nan K, Wu T, Chen J, et al. Strontium doped hydroxyapatite film formed by micro-arc oxidation. Mat Sci Eng C, 2009, 29(5): 1554-1558.
    [151]Geesink RG, de Groot K, Klein CP. Chemical implant fixation using hydroxyl-apatite coatings. The development of a human total hip prosthesis for chemical fixation to bone using hydroxyl-apatite coatings on titanium substrates. Clin Orthop Relat Res, 1987, (225): 147-170.
    [152]Wang BC, Lee TM, Chang E, Yang CY. The shear strength and the failure mode of plasma-sprayed hydroxyapatite coating to bone: the effect of coating thickness. J Biomed Mater Res, 1993, 27(10): 1315-1327.
    [153]Lugscheider E, Weber T, Knepper M, Vizethum F. Production of biocompatible coatings by atmospheric plasma spraying. Mat Sci Eng A, 1991, 139: 45-48.
    [154]Kohri M, Miki K, Waite DE, et al. In vitro stability of biphasic calcium phosphate ceramics. Biomaterials, 1993, 14(4): 299-304.
    [155]Ellies LG, Nelson DG, Featherstone JD. Crystallographic changes in calcium phosphates during plasma-spraying. Biomaterials, 1992, 13(5): 313-316.
    [156]Ducheyne P, Radin S, Heughebaert M, Heughebaert JC. Calcium phosphate ceramic coatings on porous titanium: effect of structure and composition on electrophoretic deposition, vacuum sintering and in vitro dissolution. Biomaterials, 1990, 11(4): 244-254.
    [157]de Groot K, Wolke JG, Jansen JA. Calcium phosphate coatings for medical implants. Proc Inst Mech Eng H, 1998, 212(2): 137-147.
    [158]de Groot K, Geesink R, Klein CP, Serekian P. Plasma sprayed coatings of hydroxylapatite. J Biomed Mater Res, 1987, 21(12): 1375-1381.
    [159]Ducheyne P, Cuckler JM. Bioactive ceramic prosthetic coatings. Clin Orthop RelatRes, 1992, (276): 102-114.
    [160]Bagambisa FB, Joos U, Schilli W. Mechanisms and structure of the bond between bone and hydroxyapatite ceramics. J Biomed Mater Res, 1993, 27(8): 1047-1055.
    [161]Brossa F, Cigada A, Chiesa R, et al. Adhesion properties of plasma sprayed hydroxylapatite coatings for orthopaedic prostheses. Biomed Mater Eng, 1993, 3(3): 127-136.
    [162]王迎军,宁成云,陈楷,等.等离子喷涂生物活性梯度涂层的残余应力与结合强度.无机材料学报, 1998, 13(4): 529-533.
    [163]潘俊德,田林海,贺琦,等.功能梯度材料及薄膜的研究现状及前景.金属热处理, 1998, (6): 13-14.
    [164]王迎军,赵子衷,宁成云,等.生物活性梯度涂层的显微结构与附着强度.材料研究学报, 1999, 13(1): 103-106.
    [165]Yamada K, Imamura K, Itoh H, et al. Bone bonding behavior of the hydroxyapatite containing glass-titanium composite prepared by the Cullet method. Biomaterials, 2001, 22(16): 2207-2214.
    [166]Ning CY, Wang YJ, Lu WW, et al. Nano-structural bioactive gradient coating fabricated by computer controlled plasma-spraying technology. J Mater Sci Mater Med, 2006, 17(10): 875-884.
    [167]Meng XW, Kwon TY, Yang YZ, et al. Effects of applied voltages on hydroxyapatite coating of titanium by electrophoretic deposition. J Biomed Mater Res B, 2006, 78(2): 373-381.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700