单晶硅基LaB_6薄膜的磁控溅射制备工艺及生长机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
LaB6具有良好的导电性、热稳定性和化学稳定性,具有可恒定地维持一个活性的阴极表面,是作为阴极发射体的理想材料。大尺寸LaB6棒状阴极制备工艺比较困难,大面积的LaB6多晶薄膜则更为经济实用。国内外对LaB6薄膜的研究主要以金属玻璃、聚合物等为基体,以探求LaB6薄膜的发射性能及光学性能,对LaB6薄膜作为场发射平板显示器用电子发射极的研究较少。单晶Si是作为基体研究薄膜最理想的材料,在Si基体表面制备出取向一致的LaB6薄膜是制作平面和尖锥场发射器件的基础。而在不同单晶晶向Si基体上制备LaB6薄膜的空白凸现出基础研究的必要性。
     本论文利用磁控溅射法在(111)单晶晶向Si基片上制备出LaB6薄膜,并系统研究了溅射功率、氩气气压、基片偏压、基片温度和溅射时间对LaB6薄膜沉积速率、晶体结构和形貌的影响;在此基础上优化工艺参数,制备出结晶度高的LaB6薄膜;分析了退火温度对LaB6薄膜分子结构和结晶度的影响;对不同单晶晶向Si(111)和Si(100)基底上制备的LaB6薄膜元素组成、晶体结构和组织形貌进行了分析;并系统研究了不同工艺参数下制备LaB6薄膜与基体的结合强度、纳米硬度及弹性模量、导电性能;最后初步探讨了LaB6薄膜的高温抗氧化性。
     研究结果表明,溅射功率为44 W,氩气气压为1.0 Pa,基片偏压为-100 V,基片温度为400℃时制备的LaB6薄膜表面平整,结构致密,结晶度最高且LaB6(100)晶面发生明显的优生生长。溅射时间超过20 min时,薄膜出现LaB6晶体结构,衍射峰的峰形宽化且弥散,结晶度低;随着溅射时间的增加,XRD衍射峰强度显著增强,结晶度提高;LaB6薄膜呈柱状生长,生长方向垂直于基底的方向,LaB6薄膜与基底之间没有化学反应以及化合物的形成。
     研究了不同退火温度对制备LaB6薄膜的结晶度影响。400℃保温1 h退火处理后薄膜开始由非晶向晶体转变,但只是部分转变为LaB6晶体。500℃退火处理后的薄膜结晶度高,颗粒较小,表面平整,薄膜LaB6(110)面有择优生长趋势。退火温度继续升高到600℃时,LaB6薄膜的衍射峰宽化而弥散,结晶度降低,颗粒异常长大、团聚。
     分析了不同单晶晶向Si(111)和Si(100)基底对LaB6薄膜晶体结构、元素组成和组织形貌的影响。结果表明,不同单晶晶向Si(111)和Si(100)基底上制备的薄膜LaB6(100)晶面均发生明显的优生生长,Si(111)基底上制备的LaB6簿膜结晶度更高;不同晶向单晶Si(111)和Si(100)基底上制备的LaB6薄膜的La和B的原子比分别为为1:4.12和1:2.75,大于理论比值1:6;单晶Si(111)基底上制备的LaB6薄膜在214 cm-1、685 cm-1、1100 cm-1和1242cm-1处共有四个拉曼散射峰,分别与T1u、T2g、Eg和Alg声子相对应;LaB6薄膜的拉曼峰形相对于微米粉末发生宽化,与LaB6晶格的畸变或内部应力有关。
     高分辨电镜结果显示,LaB6薄膜主要为多晶结构,但存在非晶成分。薄膜存在LaB6(100)和LaB6(110)晶面,晶格产生了不同程度的晶格畸变,其晶面间距与其微米材料的晶面间距存在差值。在Si(111)和Si(100)基底上制备的薄膜均以LaB6[100]晶向为优先生长方向。
     LaB6薄膜与基体间有良好的结合力,可达到最大值17.12 N(溅射功率:44 W,氩气气压:1.0 Pa,基片偏压为:100 V,基片温度:400℃,溅射时间:90 min)。LaB6薄膜的荷载-位移曲线均平滑、无突变,表明弹塑性良好,硬度与结晶度变化趋势一致,弹性模量随着晶粒尺寸的增大而减小。不同的工艺参数下制备的LaB6薄膜电阻率都很低,可达到最小值2.38Ω/□,其导电性能比块体材料稍弱。LaB6薄膜的高温抗氧化性远不及微米粉末,失重曲线在793.1℃出现明显的增重,即被氧化。
LaB6 has an excellent conductivity, thermal stability and chemical stability. It also has cathode surface which can maintain a constant activity, whcich is an ideal material as cathode emitter. It is hard to prepare large-scale LaB6 rode cathode. At the same time, it is economical and practical to prepare large area polycrystalline films. The recent research focus on the emissional and optical properties of LaB6 films deposited on metal, glass or polymer substrates. However, few studies were related with LaB6 films as field emission electron emitter of flat panel displays. Single crystal silicon is an ideal material as substrate for film's investigation. Preparation of LaB6 films with a particular growing direction on silicon substrate is the foundation of producing plane and tip field emission devices. At the same time, the absence of depositing LaB6 films on silicon substrate with different crystal directions highlighted the research significance for basic research.
     In this paper, LaB6 films have been prepared on single crystal Si (111) substrate by magnetron sputtering method. The influence of sputtering power, argon pressure, substrate bias voltage, substrate temperature and sputtering time on the depositing rate, crystal structure and morphology of the LaB6 films has been investigated. Hence, we got the optimized processing parameter for preparing LaB6 films with good crystalline. The influence of annealing temperature on the deposition rate, molecular structure and crystalline of LaB6 has been studied. The influence of Si (111) and Si (100) substrate on the crystal structure, molecular structure, chemical composition and morphology of LaB6 films has been discussed. The dependence of bonding strength, nano-hardness, elastic modulus and electrical conductivity of the LaB6 films on the processing parameter was investigated systematically. Finally, we researched the high temperature thermal stability of LaB6 films.
     The results showed that the LaB6 films had smooth surface, compact structure, high crystallization and distinct LaB6 (111) preferred orientation when deposited at the optimized parameters (sputtering power was 44 W, argon gas pressure was 1.0 Pa, substrate bias voltage was-100 V, substrate temperature was 400℃). The LaB6 films began to form crystallization structures when the sputtering time was more than 20 min. But the diffraction peaks were broaden and asymmetric, indicating that the crystalline was poor. As the sputtering time increasing, XRD peaks intensity increased significantly, and the crystallization improved. The LaB6 films presented a regular columnar growth pattern, with the direction perpendicular to the substrates. No chemical reactions or chemicals appeared between LaB6 films and the substrates.
     The influence of annealing temperature on the crystallization of amorphous LaB6 films was investigated. Part of LaB6 films changed from amorphous to crystal after annealing process at 400℃lasting for 1 h. The films showed smaller particles, smoother surface and higher crystalline with LaB6(100) preferred orientation after annealing process at 500℃. When the annealing temperature increased to 600℃, the diffraction peaks of the LaB6 films broadened and dispersed, revealing poor crystalline. At the same time, the grains grew up abnormally and aggregated.
     The crystal structure, morphology and molecular structure of LaB6 films deposited on Si (111) and Si (100) substrates were detected. The dominant orientation of films was LaB6 (100) on both substrates. At the same time, the crystalline of films was better and their LaB6 (100) showed more obviously preferred growth when the films were deposited on Si (111) substrate. The atomic ratio of La and B for the films which were deposited on Si (111) and Si (100) substrate was 1:4.12 and 1:2.75 respectively, which both higher than the theoretical ratio of 1:6. The LaB & films deposited on Si (111) substrate had four Raman scattering peaks at 214 cm-1,685 cm-1, 1100 cm-1 and 1242 cm-1, which was consistent with T1u, T2g, Eg and A1g phonon, respectively. The Raman scattering peaks for the LaB6 films which were deposited on Si (100) substrate were lower than those deposited on Si (111) substrate. In addition, the Raman peaks for LaB6 films were broaden than that for the micron powders, which may be related to lattice distortion or internal stress in LaB6 films.
     High-resolution electron microscopy showed that the LaB6 films had polycrystalline structure with some amorphous component. LaB6 (100) and LaB6 (110) planes existed in the films, but their plane spacing had some differences comparing with that of the conventional materials. This is due to the lattice distortion in the LaB6 films. Both of the LaB6 films had [100] directions as the priority direction on Si (111) and Si (100) substrates.
     All the LaB6 films had excellent bonding strength with the substrates. The film-substrate bonding strength could reach 17.12 N (sputtering power was 44 W, argon gas pressure was 1.0 Pa, substrate bias voltage was -100 V, substrate temperature was 400℃and sputtering time was 90 min). The load-displacement curves of the films were smooth without break, indicating that the LaB6 films had excellent elastic plastic properties. The changes in hardness of LaB6 films were consistent with their crystalline. And the elastic modulus of the films decreased as the grain size increased.
     The LaB6 films had low resistivity under different sputtering process, and reached a minimum value of 2.38Ω/□. The electrical conductivity of the films was slightly lower than that of the bulk materials, which was between conductors and insulators. The weight-loss curve for the LaB6 films appeared apparently gain at 793.1℃, which indicated that the LaB6 films were oxidized. The high temperature oxidation resistance of the LaB6 films was inferior to the micron powders.
引文
[1]郑树起,闵光辉,于化顺,等.LaB6功能陶瓷材料的研究现状[J].材料导报2000,14(3):50-51.
    [2]B. Amsler, Z. Fisk, J.L. Sarrao, et al. Electron-tunneling studies of the hexaboride materials SmB6, EuB5, CeB6, and SrB6 [J]. Physical Review B,1998,15(57):8747-8750.
    [3]杨丽霞,闵光辉,于化顺,等.CaB6陶瓷研究的进展[J].硅酸盐学报,2003,7(31):687-691.
    [4]王小菊,蒋亚东,林祖伦,等.单晶六硼化镧的制备及主要作用[J].材料导报网刊,2006,2:13-15.
    [5]X. H. Zhao, G. H. Min, L. Zhang, et al. Low temperature synthesis of BaB6 nanometer powders [J]. International Journal of Modern Physics B,2009,23(6-7):1553-1558.
    [6]Terry T. Xu, Jian-Guo Zheng, Alan W. Nicholls, et al. Single-crystal calcium hexaboride nanowires:synthesis and characterization [J]. Nano Letters,2004,4(10):2051-2055.
    [7]张粹伟.六硼化镧阴极[J].光电子技术,1989,9(3):40-41.
    [8]Junqi Xu, Yanming Zhao, Chunyun Zou. Selfo-catalyst growth of LaB6 nanowires and nanotubes [J]. Chemical Physics Letters,2006,423(1-3):138-142.
    [9]A. S. Kuzanyan, S. R. Harutyunyan, V. O. Vardanyan, et al. Deposition and investigation of lanthanum-cerium hexaboride thin films [J]. Journal of Solid State Chemistry,2006,179(9): 2862-2870.
    [10]J. G. S. Duque, R. R.Urbano, P. A. Venegas, et al. Exchange interaction effects in the ESR spectra of Eu2+ in LaB6 [J]. Physica B,2007,398(1):424-426.
    [11]P. Teredesai, D. V. S. Muthu, N. Chandrabhas, et al. High pressure phase transition in metallic LaB6:an interesting example of lifshitz transition [J], Solid State Communications, 2004,129(12):791-796.
    [12]成建波,冉启钧译.六硼化镧阴极[M].四川:成都电讯工程学院出版社,1988.
    [13]于海波,林祖仑,祁康成.六硼化镧材料的化学腐蚀工艺研究[J].电子器件,2006,29(1):22-24.
    [14]D. Mandrus, B. C. Sales, R. Jin. Localized vibrational mode analysis of the relativity and specific heat of LaB6 [J]. Physical Review B,2001,64(1):012302.
    [15]R. W. Johnson, A. H. Daane. The lanthanum-boron system [J]. Journal of American Ceramics Society,1979,65:909.
    [16]L. Bai, N. Ma, F. L. Liu. Structure and chemical bond characteristics of LaB6 [J]. Physica B, 2009,404(21):4086-4089.
    [17]S. Otani, Y. Ishizawa. Preparation of LaB6 single crystals by the traveling solvent floating zone method [J]. Journal of Crystal Growth,1992,118(3-4):461-463.
    [18]梁丽梅.LaB6纳米粉末及其复合薄膜的制备工艺及性能研究[D].山东大学硕十学位论文,2009.
    [19]J. M. Lafferty, Boride cathodes [J]. Journal of Applied Physics,1951,22(3):299-309.
    [20]T. Yokotsuka, T. Narusawa, Y. Uchida, H. Nakashima. X-ray photoelectron spectroscopy study of Schottky barrier formation and thermal stability of the LaB6/GaAs (001) c (4×4) interface [J]. Applied Physisc. Letters,1987,50(10):591-594.
    [21]G. L. Xu, J. D. Chen, Y. Z. Xia, et al. First-principles calculations of elastic and thermal properties of lanthanum hexaboride [J]. Chinese Physics Letters,2009,26(5):056201(1-4).
    [22]H. Li, R. C. Bradt. Knoop microhardness anisotropy of single-crystal LaB6 [J]. Materials Science and Engineering:A,1991,142(1):51-61.
    [23]R. Nishitani, M. Aono, T. Tanaka, et al. Surface structures and work functions of the LaB6 (100), (110) and (111) clean surfaces [J]. Surface Science,1980,93(2-3):535-549.
    [24]L. W. Swanson, M. A. Gesley, P. R. Davis. Crystallographic dependence of the work function and volatility of LaB6 [J]. Surface Science,1981,107(1):263-289
    [25]M. Gesley, L.W. Swanson, A determination of the low work function planes of LaB6 [J]. Surface Science,1984,146(2-3):583-599
    [26]王汉斌,许州,卢和平,等.单晶LaB6热阴极直流发射特性实验研究[J].强激光与离子束.2005,17(6):930-934.
    [27]苏玉长,肖立华,伏云昌,等.LaB6电子结构及光学性质的第一性原理计算[J].中国科学:物理学力学天文学.2011,41(1):58-65.
    [28]D. M. Goebel, Y. Hirooka, T. A. Sketchley. Large-area lanthanum hexaboride electron emitter [J]. Review of Scientific Instruments,1985,56(9):1717-1722.
    [29]林祖伦,曹贵川,张义德,等.大面积环状LaB6阴极[J].强激光与粒子束,2006,18(2):305-308.
    [30]C. T. Chantler, N. A. Rae, C. Q. Tran. Accurate determination and correction of the lattice parameter of LaB6 (standard reference material 660) relative to that of Si (640b) [J]. Journal of applied crystallography,2007,40(2):232-240.
    [31]T. Gurel, R. Eryigit. Ab initio lattice dynamics and thermodynamics of rare-earth hexaborides LaB6 and CeB6[J]. Physical Review B,2010,82(10):104302.
    [32]G. Ning, R. L. Flemming. Rietveld refinement of LaB6:date from μXRD [J]. Journal of Applied Crystallography,2005,38(5):757-759.
    [33]P. Peshev. A thermodynamic analysis of lanthanum hexaboride crystal preparation from aluminum flux with the use of compound precursors [J]. Journal of Solid State Chemistry, 1997,133(1):237-242.
    [34]C. Mitterer, W. Waldhauser, U. Beck, G. Reiners. Structure and properties of decorative rare-earth hexaboride coatings [J]. Structure and Coatings Technology,1996,86-87(Part 2): 715-721.
    [35]C. Mitterer, J. Komendastallmaier, P. Losbichler, et al. Sputter deposition of decorative boride coatings [J]. Vacuum,1995,46(11):1281-1294.
    [36]M. Namura, I. Waki, Y. Sato, et al. Preparation and characterization of lanthanum carbide encapsulated carbon nanocapsule/lanthanum hexaboride nanocomposites [J]. Materials Letters,2009,63(15):1307-1310.
    [37]V.-H. Derflinger, W. Waldhauser, C. Mitter, et al. LaB6-based, Zr-alloyed, decorative hard coatings [J]. Thin Solid Films,1996.286(1-2):188-195.
    [38]P. I. Loboda, H. P. Kysla, S. M. Dub, O. P. Karasevska. Mechanical properties of the monocrystals of lanthanum hexaboride [J]. Materials Science,2009,45(1):108-113.
    [39]I. Bogomol, T. Nishimura, O. Vasylkiv, et al. High-temperature strength of directionally reinforced LaB6-TiB2 composite [J]. Journal of Alloys and Compounds,2010,505(1): 130-134.
    [40]P. I. Loboda. Influence of microstructure perfection on electrical conductivity of lanthanum hexaboride [J]. Physics and Chemistry of Solid State,2004,5(3):577-583.
    [41]S. L. Zhou, J. X. Zhang, D. M. Liu, ET AL. Synthesis and properties of nanostructured dense LaB6 cathodes by arc plasma and reactive spark plasma sintering [J]. Acta Materialia,2010, 58(15):4978-4985.
    [42]H. Takeda, H. Kuno, K. Adachi. Solar control dispersions and coatings with rare-earth hexaboride nanoparticles [J]. Journal of American Ceramic Society,2008,91(9):2897-2902.
    [43]L. J. Hu, G. H. Min, X. Yang. Preparation and properties of poly methyl methacrylate/Lanthanum hexabordie nanocomposites [J]. Advanced Materials Research, 2011,150-151:703-706.
    [44]S. Schelm, G. B. Smith. Dilut LaB6 nanoparticles in polymer as optimized solar control glazing [J]. Applied Physics Letters,2003,82(24):4346-4348.
    [45]Lin Zhang, Wenjun He, Oleg Tolochko, Leonid Polzik, Guanghui Min. Morphology characterization and optical properties analysis for nanostructured lanthanum hexaboride powders [J]. Advanced Materials Research,78-82 (2009):107-110.
    [46]S. Schelm, G. B. Smith. Tuning the surface-plasmon resonance in nanoparticles for glazing applications [J]. Applied Physics Letters,2005.97(12):4314-4351.
    [47]H. Takeda, H. Kuno, K. Adachi. Solar control dispersions and coatings with rare-earth hexaboride nanoparticles [J]. Journal of American Ceramics Society,2008.91(9): 2897-2902.
    [48]K. Adachi, M. Miratsu. Absorption and scattering of near-infrared light by dispersed lanthanum hexaboride nanoparticles for solar control filters [J]. Journal of Materials Research, 2010,25(3):510-521.
    [49]I. Bat'ko, M. Bat'kova, K. Flachbart, et al. Electrical resistivity and superconductivity of LaB6 and LuB12[J]. Journal of Alloys and Compounds,1995,217(2):L1-L3.
    [50]周身林,张久兴,刘丹敏.放电等离子固相烧结制备高密度LaB6阴极性能[J].强激光与粒子束,2010,22(1):171-175.
    [51]P. I. Loboda. Effect of the perfection of microstructure on the conductivity of lanthanum hexaboride [J]. Fiz. Khim. Tverd. Tela.,2004,3,492-499.
    [52]P. A. Popov, V. V. Novikov, A. A. Sidorov, E.V. Maksimenko. Thermal conductivity of LaB6 and SmB6 in the range 6-300K [J]. Inorganic Materials,2007,43(11):1187-1191.
    [53]A. V. Paustovskii, B. M. Rud, V. E. Shelud'ko, et al. Structure and properties of resistive thick films after laser treatment [J]. Materials Science,2007,43(6):843-850.
    [54]Y. Peysson, C. Ayache, B. Salce, et al. Thermal conductivity of CeB6 and LaB6 [J]. Journal of Magnetism and Magnetic Materials,1986,59(1-2):33-40.
    [55]K. Flachbart, M. Reiffers, S. Molokac, et al. Thermal conductivity of LaB6:the role of phonons [J]. Physica B:Condensed Matter,1999,263-264:749-751.
    [56]林祖伦.射频电子枪中LaB6阴极的研究[J].强激光与粒子束,1997,9(4):591-595.
    [57]E. Kauer. Optical and electrical properties of LaB6 [J]. Physics Letters,1963,7(3):171-173.
    [58]J. M. Vandenberg, B. T. Matthias, E. Corenzwit, H. Barz. Superconductivity of some binary and ternary transition-metal borides [J]. Materials Research Bulletin,1975,10(9):889-894.
    [59]朱炳金,陈泽祥,张强.六硼化镧薄膜的制备及发射特性的研究[J].真空电子技术,2007,(5):44-47.
    [60]T. Yorisaki, A. Tillekaratne, Q. F. Ge, et al. Probing the properties of the (111) and (100) surface of LaB6 through infrared spectroscopy of adsorbed CO [J]. Surface Science,2009, 603(19):3011-3020.
    [61]X. H. Zhang, P. Hu, J. C. Han, et al. The addition of lanthanum hexaboride to zirconium diboride for improved oxidation resistance [J]. Scripta Materialia,2007,57(11):1036-1039.
    [62]L. W. Swanson, T. Dickinson. Single-crystal work-function and evaporation measurements of LaB6 [J]. Applied Physics Letters,1976,28(10):578-580.
    [63]A. A. Avdienko, M. D. Malev. Poisoning of LaB(, cathodes [J]. Vacuum,1977,27(10-11): 583-588
    [64]B. Goldstein, D. J. Szostak. Characterization of clean and oxidized (100) LaB6[J]. Surface Science,1978,74(2):461-478.
    [65]D. M. Goebel, J. T. Crow, A. T. Forrester. Lanthanum hexaboride hollow cathode for dense plasma production [J]. Review of Scientific Instrument,1978,49(4):469-472.
    [66]黄再生,林祖伦,陈吉欣.有机电致发光二极管的透明阴极的研制[J].液晶与显示,2003,18(4):276-279.
    [67]M. Futamoto, M. Nakazawa, U. Kawabe. Thermionic emission properties of hexaboride [J]. Surface Science,1980,100(3):470-480.
    [68]K. Tsuchida, T. Nagata, H. Nakata, A. Kato. LaB6 and TiB2 electrodes for the alkali metal thermoelectric converter [J]. Journal of Meterials Science,1998,33(3):755-762.
    [69]V. N. Gurin, M. M. Korsukova, M. V. Loginov, and V. N. Shrednik. The properties of the nonequilibrium LaB6 surface resulting from field evaporation [J]. Technical Physics,2001, 46(9):1161-1167.
    [70]J. L. Dattatray, R. S. Vindhyesh, S. Sucharita, et al. Synthesis of LaB6 micro/nano structures using picosecond (Nd:YAG) laser and its field emission investigations [J]. Applied Physics A,2009,97(4):905-909.
    [71]R. Shimizu, H. Onoda, H. Hashimoto. Oxygen-enhanced thermionic emission pattern of hemispherical single-crystal LaB6[J]. Journal of applied Physics,1984,55(5):1379-1387.
    [72]Y. Furukawa, M. Yamabe, T. Inagaki. Emission characteristics of single-crystal LaB6 cathodes with large tip radius [J]. Journal of Vacuum Science & Technology A,1983, A1 (3): 1516.
    [73]R. E. Watson and M. L. Perlman. Dipole effects and the work functions of the single crystal LaB6 [J]. Surface Science,1982,122(2):371-382
    [74]S. Mogren and R. Reifenberger. Field emission and photofield emission energy distributions from LaB6 [J]. Surface Science,1991.254(1-3):169-181
    [75]R. Nishitani, M. Aono, T. Tanaka. Surface states on the LaB6(100), (110) and (111) clean surfaces studied by angle-resolved UPS [J]. Surface Science,1980,95(2-3):341-358.
    [76]C. Oshima, T. Tanaka, E. Bannai and S. Kawai. Thermionic work function of LaB6 single crystals and their surfaces [J]. Journal of Applied Physics,1977,48(9):3925.
    [77]N. Yamamoto, E. Rokuta, Y. Hasegawa, T. Nagao, M. Trenary, C. Oshima, S. Otani. Oxygen adsorption on LaB6 (100) and (111) [J]. Surface Science,1996,357-358:708-711.
    [78]P. R. Davis, L. W. Swanson, S. A. Chambers. The adsorption of cesium on lanthanum hexaboride surfaces [M]. Energy to the 21st century, Proceedings of the Fifteenth Intersociety Energy Conversion Engineering Conference, Seattle, Washington; United States; August 18-22,1980.2327-2330.
    [79]S. A. Chambers, P. R. Davis, L. W. Swanson and M. A. Gesley. Cesium and oxygen coadsorption on LaB6 single crystal surfaces:I. Work function change [J]. Surface Science, 1982,118(1-2):75-92.
    [80]P. H. Schmidt, L. D. Longinotti, D. C. Joy, S. D. Ferris, H. J. Leamy, and Z. Fisk. Design and optimization of directly heated LaB6 cathode assemblies for electron-beam instruments [J]. Journal of Vacuum Science & Technology.1978,15(4):1554-1560.
    [81]董笑瑜.浅谈陶瓷金属化质量的可靠性控制[J].真空电子技术,2006,(4):17-19.
    [82]A. Taran, D. Voronovich, S. Plankovskyy, et al. Review of LaB6, Re-W dispenser, and BaHfO3-W cathode development [J]. IEEE Transactions on Electron Devices,2009, 56(5):812-817.
    [83]C. M. Cooper, W. Gekelman, P. Pribyl, Z. Lucky. A new large area lanthanum hexaboride plasma source [J]. Review of Scientific Instruments,2010,81(8):083503
    [84]M. Boussoukaya, H. Bergeret, R. Chehab and B. Leblond. Pulsed photocurrents from lanthanum hexaboride cathodes in the ns regime [J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,1988,264(2-3):131-134.
    [85]K. N. Lung, P. A. Pincosy, K. W. Ehlers. The directly heating LaB6 cathodes [J]. Review of Scientific Instruments,1986,57(7):165.
    [86]H. Akira, O. Shuhei, M. Hiroki, et al. Progress of microfocus X-ray systems for fluoroscopic and computed tomography [J]. Spectrochimica Acta. Part B:Atomic Spectroscopy,2004, 59(8):1101.
    [87]M. Nakamoto, K.Fukuda. Field electron emission from LaB6 and TiN emitter arrays fabricated by transfer mold technique [J]. Applied Surface Science,2002,202 (3-4):289-294.
    [88]J. A. Callow, M. P. Osborne, M. E. Callow, F. Baker, A. M. Donald. Use of environmental scanning electron microscopy to image the spore adhesive of the marine alga Enteromorpha in its natural hydrated state [J]. Colloids and Surfaces B:Biointerfaces,2003,27:315-321.
    [89]M. Mushiaki, K. Akaishi, T. Mori. LaB6 coating to reduce the outgassing rate of a vacuum wall [J]. Materials Science Engineering,1993,163(2):177-179.
    [90]M. Nakamoto, K. Fukuda. Field electron emission from LaB6 and TiN emitter arrays fabricated by transfer mold technique [J]. Applied Surface Science,2002,202(3-4):289-294.
    [91]T. Tanaka, E. Bannai, S. Kawai, T. Yamane. Growth of high purity LaB6 single crystals by multi-float zone passage [J]. Journal of Crystal Growth,1975,30(2):193-197.
    [92]S. Otani, T. Tanaka, Y. Ishizawa. Automatic preparation of LaB6 single crystals by the floating zone technique [J]. Journal of Crystal Growth,1990,100(1):658-660.
    [93]S. Otani, S. Honma, Y. Yajima, Y. Ishizawa. Preparation of LaB6 single crystals from a boron-rich molten zone by the floating zone method [J]. Journal of Crystal Growth,1993, 126(2-3):466-470.
    [94]S. Motojima, Y. Takahashi, K. Sugiyama. Chemical vapor growth of LaB6 whiskers and crystals having a sharp tip [J]. Journal of Crystal Growth,1978,44(1):106-109.
    [95]M. M. Korsukova, V. N. Gurin, T. Lundstrom and L.E. Tergenius. The structure of high-temperature solution-grown LaB6:A single-crystal diffractometry study [J]. Journal of the Less Common Metals,1986,117(1-2):73-81.
    [96]L. J. Liu, Y.-M. Yiu, T.-K. Sham. Electronic structures of LaB6 and CeB6 single crystals: X-ray absorption near-edge structure studies at the B K-edge and the La and Ce giant resonance [J]. Journal of Electron Spectroscopy and Related Phenomena,2011,184(3-6): 188-191.
    [97]郑树起,闵光辉,邹增大,等.硼热还原法制备LaB6粉末[J].硅酸盐学报,2001,29(2):128-131.
    [98]郑树起.LaB6材料的制备工艺及氧化性行为研究[D].山东大学博士学位论文.2002.
    [99]S. Q. Zheng, C. F. Chen, R. J. Jiang, D. N. Wang. Electrochemical characteristics of lanthanum hexaboride in the environments containing S2-[J]. Materials Science Forum,2011, 663-665:473-476.
    [100]P. Y. Wang, S. Q. Zheng, C. F. Chen, R. J. Jiang and D. N. Wang. Study on the corrosion productions formed on the surface of lanthanum hexaboride in the sour gas environments [J]. Materials Science Forum,2011,663-665:1020-1023.
    [101]N. Jiang, W. M. Wang, Z. Y. Fu, H. Wang, Y. C. Wang and J. Y. Zhang. Influence of preparation parameter on the grain size of LaB6 powder synthesized by SHS with reduction process [J]. Advanced Materials Research,2010,105-106:351-354.
    [102]C.M. Cooper, W. Gekelman, P. Pribyl, Z. Lucky. A new large area lanthanum hexaboride plasma source [J]. Review of Scientific Instruments,2010,81,083503.
    [103]P. Lemis-Petropoulos, V. Kapaklis, A.B. Peikrishvili., C. Politis. Characterization of B4C and LaB6 by ultrasonics and X-rays diffraction [J]. Journal of Modern Physics B,2003,17(14): 2781-2788.
    [104]M. E. Herniter, W. D. Getty. Thermionic cathode electron gun for high current densities [J]. IEEE Transacrions on Plasma Science,1987,15(4):351-360.
    [105]Y. Uchida, T. Yokotsuka, H. Nakashima, and S. Takatani. Electrical properties of thermally stable LaB6/GaAs Schottky diodes, Applied Physics Letters,1987,50(11),670-672.
    [106]M. E. Herniter, W. D. Getty. High current density results from a LaB6, thermionic cathode electron gun [J]. IEEE Transactions on Plasma Science,1990,18(6):992-1001.
    [107]A. N. Broers. Some experimental and estimated characteristics of the lanthanum hexaboride rod cathode electron gun [J]. Journal of Physics E:Scientific Instruments,1969,2(3): 273-276.
    [108]D. M. Goebela, R. M. Watkins. Compact lanthanum hexaboride hollow cathode [J]. Review of Scientific Instruments,2010,81:083504.
    [109]M. F. Zhang, L. Yuan, X. Q. Wang, et al. A low-temperature route for synthesis of nanocrystalline LaB6 [J]. Journal of Solid State Chemistry,2008,181(2):294-297.
    [110]H. Zhang, J. Tang, Q. Zhang, G. Zhao, G. Yang, J. Zhang, O. Zhou, L.C. Qin, Field Emission of Electrons from Single LaB6 Nanowires [J]. Advanced Materials,2006,18(1):87-91.
    [111]H. Zhang, Q. Zhang, J. Tang, L. C. Qin. Single-crystalline LaB6 nanowires [J]. Journal of American Chemical Society,2005,127(9):2862-2863.
    [112]H. Zhang, J. Tang, J. S. Yuan, et al. Nanostructured LaB6 field emitter with lowest apical work function [J]. Nano Letters,2010,10(9):3539-3544.
    [113]J. Q. Xu, Y. M. Zhao, C.Y. Zou. Self-catalyst growth of LaB6 nanowires and nanotubes [J]. Chinese Physics Letters,2006,423(1-3):138-142.
    [114]J. R. Brewer, N. Deo, Y. M. Wang, C. L. Cheung. Lanthanum hexaboride nanoobelisks [J]. Chemistry of Materials,2007,19(26):6379-6381.
    [115]R. Roucka, Y.-J. An, A.V.G. Chizmeshya, V.R.DCosta, J. Tolle, J.Menendez. J. Kouvetakis. Structural and optical properties of ZrB2 and HfxZr1-xB2 films grown by vicinal surface epitaxy on Si (111) substrates [J]. Solid-state Electronics,2008,52(11):1687-1690.
    [116]S. S. Kher, J. T. Spencer. Chemical vapor deposition of metal borides-7. The relatively low temperature formation of crystalline lanthanum hexaboride thin films from boron hydride cluster compounds by chemical vapor deposition [J]. Journal of Physics and Chemistry of Solids,1998,59(8):1343-1351.
    [117]W. Wei, K. L. Jiang, Y. Wei, et al. LaB6 tip-modified multiwalled carbon nanotube as high quality field emission electron source [J]. Applied Physics Letters,2006,89(20):203112.
    [118]薛增泉,吴全德,李洁.薄膜物理[M].北京:电子工业出版社,1991,116-117.
    [119]沈伟.Al2O3陶瓷表面金属化[J].材料保护,2005,(3):9-12.
    [120]郑伟涛.薄膜材料与薄膜技术(第二版)[M].北京:化学工业出版社,2007.
    [121]J. G. Ryan, S. Roberts. The formation and characterization of rare earth boride films [J]. Thin Solid Films,1986,135(1-2):9-19.
    [122]毛祖遂,魏赛珍,刘古.在GaAs上用电子束蒸发淀积LaB6薄膜及其界面的电学特征[J].真空科学与技术,1991,12(5):384-389.
    [123]A. Yutani, A. Kobayashi, A. Kinbara. Work functions of thin LaB6 films [J]. Applied Surface Science,1993,70/71(2):737-741.
    [124]E. A. Kafadaryan, S. I. Petrosyan, G. R. Badalyan, et al. Optical characteristics of (La, Ce)B6 films deposited on silicon substrates by e-beam evaporation process [J]. The Solid Films, 2002,416(1,2):218-223.
    [125]蒋泉,成建波,陈文斌,等.应用LaB6透明阴极的有机发光二极管器件[J].光电子·激光,2005,16(7):793-796.
    [126]刘曾怡,林祖伦,王小菊,等.适用于PDP的透明六硼化镧薄膜性能研究[J].电子器件,2011,34(1):7-11.
    [127]李建军,林祖伦,时晴暄,等.硼化镧薄膜的发射特性研究[J].真空电子技术,2006(6):31-34.
    [128]朱炳金,陈泽祥,张强.LaB6薄膜的制备工艺研究[J]. Vacuum,2008,45(1):37-40.
    [129]朱炳金,陈泽祥,张强,等.六硼化镧薄膜场致发射的特性[J].发光学报,2008,29(3):561-565.
    [130]K. C. Qi, Z. L. Lin, W. B. Chen, et al. Formation of extremely high current density LaB6 field emission arrays via e-beam deposition [J]. Applied Physics Letters,2008,93(24): 093503(1-3).
    [131]杨烈宁,关文锋,顾卓明.材料表面薄膜技术[M].北京:人民交通出版社出版,1991.5.
    [132]J. G. Ociepa, S. Mroz. The adsorption of lanthanum hexaboride on tantalum [J]. Vacuum, 1979,29(6-7):241-244.
    [133]S. Schmidbauer, H. Klose, A. Ehrlich, M. Friedrich, M. Roder, F. Richter. Vacuum arc deposition of thin films from an LaB6 cathode [J]. Surface and Coatings Technology,1996, 82:247-253.
    [134]T. T. Magkoev, G. G. Vladimirov, G. A. Rump. Coadsorption of lanthanum with boron and gadolinium with boron on Mo(110) [J]. Surface Science,2008,602(9):1705-1711.
    [135]R. Khandelwal, A. P. Singh, A. Kapoor, et al. Effect of deposition temperature on the structural and morphological properties of SnO2 films fabricated by pulsed laser deposition [J]. Optics & Laser Technology,2009,41(1):89-93.
    [136]W. Herr, E. Broszeit. Effect of an annealing process on the tribological properties of sputtered hard coatings [J]. Surface and Coatings Technology.1997,97(1-3):669-674.
    [137]J. V. Rau, A. Latini, A. Generosi, et al. Deposition and characterization of superhard biphasic ruthenium boride films [J]. Acta Materialia,2009,57(3):673-681.
    [138]C. Zimmer, K. Medyanyk, G. Schoenhense, S. Krischok, P. Lorenz, J. Suhubert, T. Doll. Low vacuum photo electron emitting thin films [J]. Physica Status Solidi A,2009,206 (3): 484-488.
    [139]D. J. Late. M. A. More, P. Misra, B. N. Singh, L. M. Kukreja and D. S. Joag. Field emission studies of pulsed laser deposited LaB6 films On W and Re [J]. Ultramicroscopy,2007,107(9): 825-832.
    [140]D. J. Late, K. S. Date, M. A. More, et al. Enhanced filed emission from LaB6 thin films with nanoprotrusions grown by pulsed laser deposition on Zr foil [J]. Applied Surface Science, 2008,254(11):3601-3605.
    [141]J. L. Dattatray, K. S Date, M. A More, et al. Some aspects of pulsed laser deposited nanocrystalline LaB6 film:atomic force microscopy, constant force current imaging and field emission investigations [J]. Nanotechnology,2008,19(26):265605.
    [142]顾培夫.薄膜技术[M].杭州:浙江大学出版社,1990.
    [143]王力衡,黄运添.薄膜技术[M].北京:清华大学出版社,]991.10.
    [144]余凤斌,陈莹,曾海军,等.Al基上偏压磁控溅射Cu薄膜的工艺研究[J].稀有金属快报,2008,27(9):35-38.
    [145]高丽,花银群,陈瑞芳,等.铜薄膜的直流磁控溅射制备与表征[J].微细加工技术,2008,(3):21-24,49.
    [146]王瑞,周灵平,汪明扑,等.磁控溅射Cu-W薄膜的组织与结构[J].材料科学与工程学报,2008,26(4):582-584.
    [147]常天海.磁控溅射陶瓷靶制备氧化铟锡薄膜的XPS和AFM研究[J].真空与低温,2003,9(2):98-101.
    [148]龙涛,朱德贵,王良辉,等.高导电性ZAO陶瓷靶材及薄膜的制备[J].电子元件与材料,2004,23(2):31-34.
    [149]陈祝,张树人,杜善义,等.ZnO陶瓷靶制备及其薄膜RF溅射工艺研究[J].无机材料学报,2006,21(4):1011-1017.
    [150]夏冬林,杨晟,王树林,等.直流磁控溅射陶瓷靶制备ITO薄膜及性能研究[J].人工晶体学报,2006,35(2):272-275.
    [151]杨伟方,梁展鸿,侯亚奇,等.氧化锌铝(ZAO)陶瓷靶材制备及其薄膜性能[J].真空科学与技术学报,2008,28(1):59-63.
    [152]孙玉,孙治湖,朱三元,等.MnxGe1-x稀磁半导体薄膜的结构研究[J].物理学报,2007,56(9):5471-5475.
    [153]张剑锋,郭云,秦晓刚,等.陶瓷电路板表面聚四氟乙烯薄膜制备工艺研究[J].真空与低温,2007,(4):195-197.
    [154]M. Audronis, P. J. Kelly, R. D. Arnell, A. Leyland, A. Matthews. The structure and properties of chromium diboride coatings deposited by pulsed magnetron sputtering of powder targets [J]. Surface and Coatings Technology,2005,200(5-6):1366-1371.
    [155]M. Orgen, A. F. Cakir, O. L. Eryilmaz, C. Mitterer. Corrosion of Zirconium boride and zirconium boron nitride coated steels [J]. Surface and Coatings Technology,1995,71(1): 60-66.
    [156]M. Zhou, Y. Makino, K. Nogi, M. Nose. New Cr-B hard coatings by r.f.-plasma assisted magnetron sputtering method [J]. Thin Solid Films,1999,343-344:234-237.
    [157]A. S. Dehlinger, J. F. Pierson, A. Roman, Ph. Bauer. Properties of iron boride films prepared by magnetron sputtering [J]. Surface and Coatings Technology,2003,174-175:331-337.
    [158]J. F. Pierson, C. Rousselot. Amorphous Fe-B-N films deposited by reactive of a FeB target [J]. Surface and Coatings technology,2004,180-181:44-48.
    [159]S. J. Mroczkowski. Electron emission characteristics of sputtered lanthanum hexaboride [J]. The Journal of Vacuum Science & Technology,1991, A9(3):586-590.
    [160]M. Mushiaki, K. Akaishi, T. Mori, et al. LaB6 coating to reduce the out gassing rate of a vacuum wall [J]. Materials Science and Engineering,1993, A163(2):177-179.
    [161]M. Mushiaki, K. Akaishi, Y. Funato, Y. Kubota and O. Motojima. Pumping down characteristics of LaB6 and TiN coated vacuum vessels prepared by magnetron sputtering [J]. Vacuum,1996,47(6-8):657-659.
    [162]W. Waldhauser, C. Mitterer, J. Laimer, H. Stori. Structure and electron emission characteristics of sputtered lanthanum hexaboride films [J]. Surface and Coatings Technology,1995,74-75(2):890-896.
    [163]C. Mitterer, H.-M. Ott, J. Komenda-Stallmaier, P. Schmolz, W.S.M. Werner, H. Stori. Sputtered decorative hard coatings within the system LaB6-ZrB2 [J]. Journal of Alloys and Compounds,1996,239:183-192.
    [164]M. Mushiaki, K. Akaishi, V. Funato, et al. Pumping down characteristics of LaB, and TiN coated vacuum vessels prepared by magnetron sputtering [J]. Vacuum,1996,47(6-8): 657-659.
    [165]A. S. Kuzanyan, S. R. Harutyunyan, V. O. Vardanyan, et al. Deposition and investigation of lanthanum-cerium hexaboride thin films [J]. Journal of Solid State Chemistry,2006,179: 2862-2870.
    [166]王丽玲,刁训刚,舒远杰.六硼化镧薄膜的制备及其物理特性表征[J].2006年材料科学与工程新进展-“2006年北京国际材料周”论文集,2007:250-254.
    [167]J. Xu, G. H. Min, X. H. Zhao, et al. Influence of substrate temperature on the characteristics of LaB6 films [J]. Advanced Materials Research,2009,79-82:915-918.
    [168]J. Xu, G. H. Min. X. H. Zhao, et al. The influence of sputtering bias-voltage on LaB6 film's characteristics. International Journal of Modern Physics B.2009,23(6-7):1835-1840.
    [169]D. Wang, L. Zhang. G. H. Min. et al. Effect of heat treatment on the properties of dc magnetron sputtered LaB6/ITO films [J]. Applied Surface Science,2011.25(7):6418-6423.
    [1]徐静.磁控溅射Si02基LaB6薄膜的制备工艺及性能[D].山东大学博士学位论文.2009.
    [2]郑树起,闵光辉,邹增大等La2O3-B4C系反应合成LaB6粉末[J].金属学报,2002,37(4):419-422.
    [3]郑树起.LaB6材料的制备及氧化性行为研究[D].山东大学博士学位论文.2002.
    [4]麦振洪等.薄膜结构X射线表征[M].北京:科学出版社.2007.
    [5]方建锋,唐伟忠,张晋远等.X射线掠入射法测定金刚石薄膜厚度的研究[J].物理测试.2007,25(4):8-11.
    [6]蔡殉,石玉龙,周建.现代薄膜材料与技术[M].上海:华东理工大学出版社,2007.
    [7]刘新福,孙以材,刘东升.四探针技术测量薄层电阻的原理及应用[J].半导体技术.2004,29(7):48-55.
    []] K. Kim, M. Park, W. Lee, et al. Effects of sputtering power on mechanical properties of Cr films deposited by magnetron sputtering [J]. Materials Science and Technology,2008,24(7): 838-842.
    [2]程丙勋,吴卫东,何智兵,等.溅射功率对直流磁控溅射Ti膜结构的影响[J].强激光与离子束,2006,18(6):961-964.
    [3]李学丹,万英超,姜祥祺,等.真空沉积技术[M].杭州:浙江大学出版社,1994,109.
    [4]余花娃,杜亚利,王晶,等.磁控溅射制备参数对ZnO薄膜结构和光学性能的影响[J].纺织高校基础科学学报,2007,20(2):181-185.
    [5]C. Mitterer, J. Komenda-Stallmaier, P.Losbichler, et al. Decorative boride coatings based on LaB6 [J]. Surface and Coatings Technology,1995,74-75(2):1020-1027.
    [6]V. Craciun, D. Craciun. Pulsed laser deposition of crystalline LaB6 thin film [J]. Applied Surface Science,2005,247(1-4):384-389.
    [7]徐静,磁控溅射Si02基LaB6薄膜的制备工艺及性能[D].济南:山东大学,2009.
    [8]S. J. Yu, Y. J. Zhang, P. G. Cai, et al. Growth mechanism of ordered stress induced patterns in Al films deposited on silicone oil surfaces [J]. Physics Letter A,2003,318(4-5):457-462.
    [9]Y. Zhang, X. L. He, X. G.. Gao, J. P. Li. Growth of nano-particulated SnO2 film by rheotaxial growth & thermal oxidation and its gas sensing properties [J]. Journal of Vacuum Science and Technology,2007,27(2):118-122.
    [10]营井秀郎.等离子体电子工程学[M].北京:科学出版社,2002.
    [11]北京大学物理系普通物理教研室.普通物理学(分子物理学和热力学部分)[M].北京:人民教育出版社,1961:58.
    [12]M. Kumru. A comparison of the optical IR electron spin resonance and conductivity properties of a-Ge1-xCx:H with a-Ge:H and a-Ge thin films prepared by R. F. Sputtering [J]. Thin Solid Films,1991,198(1-2):75-84.
    [13]王磷,余欧明,杭凌伙,等.磁控溅射镀膜中工作气压对沉积速率的影响[J].真空,2004,41(1):9-12.
    [14]陈国良,郭太良.直流磁控溅射制备铝薄膜的工艺研究[J].真空,2007,44(6):39-42.
    [15]范雄.X射线金属学[M].北京:机械工业出版社,1980.
    [16]邹璐,叶志镇.磁控溅射中生长参数对氧化锌薄膜性能的影响[J].半导体情报,2001,38(6):55-58.
    [17]李秀杰.磁控溅射沉积氧化锌薄膜的原子力显微镜研究[J].机械管理开发,2003,2:15.
    [18]A. Rizzo, M. A. Taglienate. Structure and optical properties of silver thin films deposited by RF magnetron sputtering [J]. Thin Solid Films,2001,396(1-2):29-35.
    [19]杨于兴,胡赓祥.薄膜X射线应力分析技术的研究[J].上海交通大学学报,1994,28(6): 52-58.
    [20]S. Mariv, W. D. Westwood, E. J. Colombini. Pressure and angle of incidence effects in reactive planar magnetron sputtered ZnO layers [J]. Journal of Vacuum Science and Technology,1982,20(2):162-170.
    [21]R. Lohmann, K. Thoma, et al. Analysis of r.f.-sputtered TiB2 hard coatings by means of X-ray diffractometry and Auger electron spectroscopy [J]. Materials Science and Technology A,1991,139:259-263.
    [22]王力衡,黄运添.薄膜技术[M].北京:清华大学出版社,1991.10.
    [23]薛增泉,吴全德.薄膜物理[M].第1版.北京:电子工业出版社.1991:303-305.
    [24]W. T. Zheng, N. Hehgren, H. Sjostron, et al. Characterization of carbon nitride thin films deposition by reactive d. c. magnetron sputtering on various substrate materials [J]. Surface and Coatings Technology,1998,100(10):287-290.
    [25]J. H. Huang, C. Y. Hsu, S. S. Chen, et al. Effect of substrate bias on the structure and properties of ion-plated ZrN on Si and stainless steel [J]. Materials Chemistry and Physics, 2003,77(1):14-23.
    [26]D. H. Kim, S. H. Lee S, J. K. Kim, et al. Structure and electrical transport properties of bismuth thin films prepared by RF magnetron sputtering [J]. Applied Surface Science,2006, 252(10):3525-3531.
    [27]L. Leontie, M. Caraman, M. Alexe, et al. Structural and optical characteristics of bismuth oxide thin films [J]. Surface Science,2002,507(1-3):480-485.
    [28]郑明志,吕佩伟,林丽梅,等.基片温度对氧化铋薄膜光学性质的影响[J].福建师范大学学报(自然科学版),2011,27(2):57-61.
    [29]薛守迪,杨成韬,解群眺,等.衬底温度对AlN薄膜结构及电阻率的影响[J].压电与声光,2011,33(3):475-478.
    [30]刘新胜,周灵平,门海泉,等.衬底温度对直流磁控溅射沉积AlN薄膜组织结构的影响[J].矿冶工程,2007,27(3):82-85.
    [31]吴自勤,王兵.薄膜生长[M].北京:科学出版社,2001.
    [32]汪冬梅,吕瑁,陈长奇,等.RF磁控溅射法制备ZnO薄膜的XRD分析[S].理化检验-物理分册,2006,42(1):19-22.
    [33]W. Waldhauser, C. Mitterer, J. Laimer, et al. Structure and electron emission characteristics of sputtered lanthanum hexaboride films [J]. Surface and Coatings Technology,1995, 74-75(2):890-896.
    [34]陈平,唐果宁,王裕清,等.MoSi2/淬火45钢的干摩擦磨损性能[J].机械工程材料,2003,27(3):47-50.
    [35]张厚交,陈平,颜建辉,等.La203和WSi2增强MoSi2基复合材料的摩擦磨损性能研究[J].摩擦学学报,2005,25(3):230-233.
    [36]刘心宇,江民红,周秀娟,等.Al掺杂ZnO薄膜的射频磁控溅射工艺与光电性能研究[J].材料工程,2008,10:215-218.
    [37]R. Monnier, B. Delley. Properties of LaB6 elucidated by density functional theory[J]. Physical Review B,2004,70(193403):1-4.
    [38]L. M. Liang, L. Zhang, G. H. Min. Absorptions spectra of calcium hexaboride nanopowder[J].山东大学学报(工学版),2009,39(1):118-121.
    [1]C. Mitterer, J. K. Stallmaier, P. Losbichler et al. Decorative boride coatings based on LaB6[J]. Surface and Coatings Technology,1995,74-75(2):1020-1027.
    [2]成建波,冉启钧译.六硼化镧阴极[M].四川:成都电讯工程学院出版社,1988.
    [3]刘曾怡,林祖伦,王小菊等.适用于PDP的透明六硼化镧薄膜性能研究[J].电子器件.2011,34(1):7-11.
    [4]F. Bechstedt. Principles of Surface Physics[M]. Springer-Verlag Berlin Heidelberg,2003: 45-63.
    [5]J. A. Venables. Introduction to Surface and Thin Film Processes[M]. Cambrdge University Press,2000:30-33.
    [6]J. X. Zhang, H. Cheng, Y. Z. Chen, A. Uddin, S. Yuan, S. J. Geng, S. Zhang. Growth of AlN films on Si (100) and Si (111) substrates by reactive magnetron sputtering[J]. Surface and Coatings Technology,2005,198:68-73.
    [7]王力衡,黄运添.薄膜技术[M].北京:清华大学出版社,1991,10.
    [8]L埃克托瓦,薄膜物理学[M].北京:科学出版社,1986.68.
    [9]A. Berrada, J. P. Mercurio, J. Etourneau, F. Alexandre, J.'B. Theeten and Tran Minh Duc. Thermionic emission properties of LaB6 and CeB6 in connection with their surface states, examination by XPS, Auger spectroscopy and the Kelvin method[J]. Surface Science,1978, 72(1):177-188.
    [10]R. Nishitani, S. Kawai, H. Iwasaki, S. Nakamura, M. Aono, T. Tanaka. Oxygen adsorption on the LaB6(100) surface studied by UPS and LEED[J]. Surface Science,1980,92(1): 191-200.
    [11]L. L. Ames, L. Mcgrath. Vaporization studies on the rare earth hexaborides[J]. High Temperature Science,1975,7:44-54.
    [12]L.W. Swanson, M. A. Gesley, P. R. Davis. Crystal lographic dependence of the work function and volatility of LaB6[J]. Surface Science.1981,107(1-2):263-289.
    [13]J. G. Ociepa. Effect of annealing of La-B films investigated by auger electron spectroscopy[J]. Thin Solid Films,1984,120(2):123-131.
    [14]A. Yutani, A. Kobayashi, A. Kinbara. Work functions of thin LaB6 films[J]. Applied Surface Science,1993.70-71:737-744.
    [15]V. Craciun, D. Craciun. Pulsed laser deposition of crystalline LaB6 thin films[J].Applied Surface Science,2005.247(1-4):384-389.
    [16]时晴暄,林祖伦,李建军,陈泽祥.电子束蒸发法制备六硼化镧薄膜及其特性研究[J].电子器件,2007,30(3):745-747.
    [17]于海波,林祖伦,祁康成.六硼化镧材料的化学腐蚀工艺研究[J].电子器件,2006,29(]):22-24.
    [18]T. Aida, T. Fukazawa. Subgrains in LaB6 crystals grown with a xenon arc image furnace[J]. Journal of Crystal Growth,1976,80(1):9-16.
    [19]陆家和,陈长彦.表面分析技术[M].北京:电子工业出版社,1987.
    [20]张国栋.材料研究与测试方法[M].北京:冶金工业出版社,2001,247.
    [21]黄惠忠.纳米材料分析[M].北京:化学工业出版社,2003.
    [22]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [23]彭鸿雁,赵立新.类金刚石膜的制备、性能与应用[M].北京:科学出版社,2004.
    [24]张琳.微纳米CaB6材料的合成及组织与性能的研究[D].山东大学博士学位论文,2007.
    [25]王晓春,张希艳.材料现代分析与测试技术[M].北京:国防工业出版社,2009,254.
    [26]P. Teredesai, D. V. S. Muthu, N. Chandrabhas, et al. High pressure phase transition in metallic LaB6:Raman and X-ray diffraction studies[J]. Solid State Communications,2004, 129(12):791-796.
    [27]M. Ishii, M. Aono, S. Muranaka, et al. Raman spectra of metallic and semiconducting metal hexaborides (MB6)[J]. Solid State Communications,1976,20(4):437-439.
    [28]Z. Yahia, S. Turrel, G. Turrell, J.-P. Mercurio. Infrared and Raman spectra of hexaborides: force-field calculations, and isotopic effects[J]. Journal of Molecular Structure,1990,224: 303-312.
    [29]Z. Yahia, S. Turrel, G. Turrell, J.-P. Mercurio. Spectroscopic investigation of lattice vacancies in hexaborides[J]. Journal of Raman Spectroscopy,1993,24(4):207-212.
    [30]Maofeng Zhang, Liang Yuan, Xiaoqing Wang, Hai Fan, Xuyang Wang, Xueying Wu, Haizhen Wang, Yitai Qian. A low-temperature route for the synthesis of nanocrystalline LaB6[J]. Journal of Solid State Chemistry,2008,181(2):294-297.
    [31]N. Ogita, S. Nagai, N. Okamoto,et al. Raman scattering investigation of RB6(R=Ca, La, Ce, Pr, Sm, Gd, Dy, and Yb)[J]. Physical Review B 2003,68(22):224305-224313.
    [32]N. Tadaaki, K. Kazuo, I. Yoshitaka, et al. Surface phonons of LaB6 (100):deformation of boron octahedra at the surface [J]. Surface Science,1993,290(3):436-444.
    [33]张涛,潘石,刘明等.原子力显微镜结合拉曼光谱仪对不同氧分压制备ZnO薄膜性能研究[J].激光杂志,2008,29(3):62-64.
    [34]H. Zhang, J. Tang, Q. Zhang, et al. Single-crystalline LaB6 nanowires [J]. Journal of the American Chemical Society,2005,127(9):2862-2863.
    [35]梁丽梅.LaB6纳米粉末及其复合薄膜的制备工艺及性能研究[M].山东大学硕士学位论文.2009.
    [1]王丽玲,刁习刚,舒远杰.六硼化镧薄膜的制备及其物理特性表征[J].薄膜与表面材料,2007:250-254.
    [2]徐静.磁控溅射Si02基LaB6薄膜的制备工艺及性能[M].济南:山东大学,2009.
    [3]汪丹.Si02基体上直流磁控溅射LaB6/ITO复合薄膜的性能研究[M].济南:山东大学,2011.
    [4]邵红红,陈威.射频磁控溅射法制备二硫化铝薄膜[J].润滑与密封,2007,32(12):43-46
    [5]龚建华,张永胜,柳俊文.大平面玻璃基片磁控溅射真空镀膜简介[J].真空,2006.3(43):1-4.
    [6]马元远,王德苗,金浩,等.工艺参数对磁控溅射金属化薄膜性能的影响[J].真空,2008.45(4):70-74.
    [7]张西鹏,李伟,范洪远.工艺条件对溅射薄膜附着力的影响[M].金属热处理,2003,28(1):29-31.
    [8]M. Reilly, X. Jiang, J. Beechinor, et al. Investigation of the oxidation behaviour of thin film and bulk copper [J]. Applied Surface Science,1995,91(1/4):152-156.
    [9]吴自勤,王兵.薄膜生长[M].北京:科学出版社,2001.
    [10]于力,刘技文,赵杰,等.基体温度对离子镀TiN膜性能的影响[J].金属学报,1996,32(12):1270-1274
    [11]王岭,潘礼庆,孙加林,等.平面射频磁控溅射法制备YSZ薄膜及性能[J].功能材料,1999,30(6):641-643.
    [12]程晓农,刘红飞,张志萍,等.退火温度对ZrW2O8薄膜结构和结合力的影响[J].江苏大学学报(自然科学版),2008,29(2):127-130.
    [13]付恩刚,庄大明,张弓,等.工作气压对磁控溅射ZAO薄膜性能的影响[J].功能材料,2003,5(34):5432545.
    [14]任丙彦,刘晓平,李彦林,等.工作气压对磁控溅射ITO薄膜性能的影响[J].人工晶体学报,2007,36(4):798-801.
    [15]余凤斌,夏祥华,朱德明,等.电子束蒸发与磁控溅射制备Al/PI复合薄膜的性能研究[J].稀有金属快报,2008,27(6):21-23.
    [16]杨田林,高绪团,韩盛浩.偏压磁控测射法在柔性衬底上制备ZnO/Al透明导电膜[J].曲阜师范大学学报,2002,28(4):59-63.
    [17]胡敏,刘莹.沉积温度对磁控溅射Ti/TiN多层膜光学和电学性能的影响[J].机械工程材料,2010,34(8):30-32.
    [18]王劲松,叶高翔,许宇庆,等.无规分形衬底上银薄膜的F-V特性[J].物理学报,1994,43(10):688-692
    [19]戴道生,韩汝琪.非晶态物理[M].北京:电子工业出版社1989,282-289.
    [20]郑树起.LaB6材料的制备工艺及氧化性行为研究[D].山东大学博士学位论文,2002.
    [21]梁丽梅.LaB6纳米粉末及其复合薄膜的制备工艺及性能研究[D].山东大学硕士学位论文,2009.
    [22]黄惠忠.纳米材料分析[M].北京:化学工业出版社,2003.
    [23]施利毅.纳米科技基础[M].上海:华东理工大学出版社,2005.
    [24]李玉宝.纳米材料研究与应用[M].成都:电子科技大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700