典型磁性金属及过渡金属氧化物薄膜结构、电磁性能的应变调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用应变来调控材料宏观物理性质的过程,称其为“应变工程”(strain engineering)。研究表明,应变可以有效调控半导体材料的能带结构、超导体的临界温度、庞磁电阻材料的相分离、铁电体极化状态、铁氧体的共振频率以及多铁体的磁电耦合等物理现象。这些现象本质在于应变通过晶格改变了电荷、轨道、自旋自由度间的竞争及其强关联作用。基于应变调控技术,人们发展了可应变调控的半导体发光二极管、铁氧体微波器件、高灵敏度磁场传感器以及高密度低功耗磁电存储器等新型器件,这些具有极大潜在应用前景的新器件亦将应变调控研究推向了国际前沿。本论文选择该方向,研究应变对过渡金属及其氧化物薄膜材料电磁性质和晶畴结构的调控作用,理解这些材料宏观物理性能和应变的耦合关系,构造并演示一些新型多功能薄膜原型器件(如应变调控的磁电存储器等)。具体地,本论文研究了对尖晶石结构的(001)-Zn0.4Fe2.6O4(ZFO)、钙钛矿结构(011)-La0.67Sr0.33Mn03(LSMO)、多层膜人工纳米结构的磁隧道结(Magnetic Tunnel Junction (MTJ))在压电衬底铌镁钛酸铅(0.7Pb(Mg2/3Nbi/3)O3-0.3PbTiO3(PMN-0.3PT))原位应变作用下电磁性质的变化,获得了薄膜电磁性能等对应变的依赖关系。研究中,采用了高分辨同步辐射X射线衍射技术表征样品的微观结构、晶格应变随衬底外加电场的变化情况。
     第一章介绍了应变调控技术的研究背景以及目前存在的主要问题。首先,我们回顾应变工程取得的重要进展;其次,我们介绍了应变工程在多铁性材料研究中的应用,回顾了应变调控磁电性能的研究进展,指出应用复合磁电材料实现应变调控磁电性能的优势所在。最后给出本论文的研究对象、内容以及拟解决的关键科学问题。
     第二章简单介绍了应变调控磁性的物理基础,介绍了一些磁性物理的基本概念,给出宏观热力学理论框架下磁电耦合的唯象解释,为论文中的理论分析做准备。
     第三章,简要介绍论文工作用到的关键实验技术,包括高质量薄膜制备工艺、同步辐射高分辨X-ray衍射技术、原位电场控制下的磁化强度测量技术以及磁电阻测量平台的软、硬件设计。
     第四章,我们选择具有半导体属性的磁性铁氧体Zn2.6Fe0.4O4作为研究对象,开展ZFO薄膜结构和电磁性能的静态(SrTiO3(STO)衬底)和动态应变调控研究。在低温低气压下,利用射频磁控溅射工艺在0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3(PMN-0.3PT)上成功生长了极低粗糙度和高外延质量的Zn2.6Fe0.4O4(ZFO)薄膜。我们在ZFO/STO外延薄膜中发现了奇异的应变行为,可能起源于ZFO的V-W生长方式。在ZFO/PMN-0.3PT中,我们发现室温电阻率(调控率-0.1%)和磁化强度(调控率~1.1%)随着应变的增大分别降低和增强。这一结果可能是因为PMN-PT衬底产生的压应变增强了ZFO薄膜中Fe2+和Fe3+的双交换作用所致。该研究成果为应用电场调控磁化强度和电阻率实现多态存储和电写磁读器件提供了实验支持。
     第五章,为了增强室温下应变调控剩余磁化强度的力度,我们在[011]取向的PMN-PT上外延生长了La0.67Sr0.33MnO3(LSMO)半金属薄膜。面内各向异性应变的引入可以很好的调控LSMO的剩余磁化强度。我们发现沿着面内[100]和[011]两个方向的剩余磁化强度与电场有着相反的变化关系:沿着[100]方向,剩余磁化强度随着电场增大而减小;沿着[011]方向,剩余磁化强度随着电场增大而增大。这一结果起源于面内各向异性应变作用下易磁化轴从[100]向[011]方向的转动。我们在这一体系中发现了巨大的磁电耦合效应(沿着[100]方向的调控率约-17.9%,沿着[011]方向调控率高达+157%),与国际水平在同一量级上。另外,我们利用衬底诱导的原位应变来调控LSMO的电输运性能,获得了应变调控的非挥发性多电阻态,进而利用脉冲电场实现了多电阻态的写入与擦除。这两方面的结果对于开发新型的电控多态存储器件有着重要的指导意义。
     第六章,我们研究了PMN-PT上生长的磁隧道结(MTJ)输运性能。发现应变可以调控MTJ的电阻态,实现了MTJ自由层CoFeB磁化强度的1800翻转,我们认为这一结果起源于应变改变了MTJ自由层的有效磁各向异性。这一结果表明我们向室温下电场写入磁场读出的磁电存储元器件又迈向了重要一步。
"Strain engineering" is a means to manipulating physical properties of films using strain. It is proven that strain is an effective method to tune the band structures of semicondutors, critical temperature of superconductors, phase separation of colossal manganites, polarized states of ferroelectric, resonant frequency of ferrites and magnetoelectric coupling of multiferroics, etc.. The mechanism of these phenomena lies in the strain-tunable competing of charge, orbit, spin and lattice freedoms and strong interactions among them. Consequently, strain engineering is now regarded as an emergent object in condensed matter physics all over the world.
     On the other hand, a large amount of promising devices based on the strain engineering have bee proposed, for example, strain-controlled light emitting diode, ferrite microwave devices, high sensitive magnetic field sensors and magnetoelectric memory with high density and low power cost. Therefore, this thesis studies the influences of strain on the electrical and magnetic properties, and crystal structures in metal and oxide films, and show the coupling between properties and strain, and then develops and demonstrates some prototype of novel and multifunctional devices (for example, strain-controlled magnetoelectric memory).
     We chose spinel (001)-Zno.4Fe2.604(ZFO) and pervoskite (011)-La2/3Sr1/3MnO3(LSMO) as the typical transition metal oxide films, and artificially nano-structure magnetic tunnel junctions as CoFeB/MgO/CoFeB/Ru/CoFe/IrMn/CoFe multilayers. The in situ strain induced by electric field in0.7Pb(Mg2/3Nbi/3)O3-0.3PbTiO3(PMN-0.3PT) substate is used to tune the strain states in the above films or structures and then we figure out the relationships between properties and strain. The strian in the films as a function of electric field applied to the PMN-0.3PT will be characterized by high resolution sychrotron radiation X-ray diffraction. Combined with the characaterization of the electrical and magnetic properties, we studied systematicially the strain-properties in the above films and provide an effective route to tune the magnetization and transport properties with strain. With the help of strain-property relations, we constructed a non-volatile and multi-state memory by strain through cotrolling polarization switching of the PMN-0.3PT substrates. Our reseach will give a better understandings of the coupling among the intrinsic freedoms, and also contributes to the technique of "straintronics".
     In chapter one, we will introduce some backgrounds of strain engineering and problems in this field. The routes of electric-field-controlled magnetization are summarized and we will emphasize the advantages of strain engineering for electric-field-controlled magnetic and electrical properties. At last, the research objects, contents, and key scientific problems will be listed.
     In chapter two, we introduce some fundamental physics on for electric-field-controlled magnetization and some physics concepts on magnetism. We will give an interpretation about magnetoelectric coupling in the frame of phenomenological thermodynamics.
     In chapter three, some important techniques for sample fabrications and processings, will be introduced, including synchrotron radiation high resolution X-ray diffraction, strain measurements, magnetization measurements under in situ strain and design of magnetoresistance measurement system.
     In chapter four, magnetic semiconductor oxide film ZFO was chosen as one typical system for static (on SrTiO3(STO) substrates) and dynamic strain engneering. We observed the anomalous strain states in the ZFO/STO films, originating from the V-W growth mode.(001)-ZFO/PMN-0.3PT epitaxial heterostructures have been investigated to demonstrate the electric-field-controlled resistance and magnetization switching at room temperature. The tunabilitiy of resistance of the ZFO film is about-0.1%under the in-plane strain-0.02%at296K, and the tunabilitiy of magnetization is about1.1%under the in-plane strain-0.11%at296K. A possible microscopic mechanism of the manipulation of resistance and magnetization is the enhancement of hopping amplitude of electrons between mixed-valent Fe2+and Fe3+ions under the electric-field-induced in-plane compressive strain.
     In chapter five, for a larger electric-field-controlled remnant magnetization, we choose the (011)-PMN-0.3PT substrate with anisotropic in-plane strain and grow half metallic LSMO expitaxial films on it. A large anisotropic remnant magnetization tunability was observed in multiferroic (011)-LSMO/PMN-0.3PT epitaxial heterostructures. The remnant magnetization along [100] direction was suppressed by an electric field applied to the substrate while the remnant magnetization along [011] was enhanced. The tunabilities of the remnant magnetization along the [100] and [011] directions are about-17.9%and+157%under electric field of+7.27kV/cm, respectively. We also found non-volatile and multi-state resistance in this heterostructures at room temperature. This large anisotropic remnant magnetization tunability and non-volatile resistance states may find potential applications in the electrically written and magnetically read memories.
     In chapter six, we studied transportation properties of MTJs/PMN-0.3PT heterostructures. The details of MTJs fabrication and processing procedures are presented. The180°switching of magnetization is observed under in situ strain. We believe that the electric-field-controlled magnetization switching originated from electric-field-induced change of magnetic anisotropy of CoFeB free layer. Our results show that a progressive step towards to electrically written and magnetically read memories.
引文
[1]T. Z. Ward, J. D. Budai, Z. Gai, J. Z. Tischler, Lifeng Yin, J. Shen, Nature physics 5,885 (2009).
    [2]R. J. Zeches, M. D. Rossell, J. X. Zhang, A. J. Hatt, Q. He, C.-H. Yang, A. Kumar, C. H. Wang, A. Melville, C. Adamo, G. Sheng, Y.-H. Chu, J. F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L. Q. Chen, D. G Schlom, N. A. Spaldin, L. W. Martin, and R. Ramesh, Science 326,977 (2009).
    [3]J. Cao, E. Ertekin, V. Srinivasan, W. Fanl, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman and J. Wu, Nature nanotechnology 4732 (2009).
    [4]J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chenl, S. W. Kirchoefer, J. Levy and D. G. Schlom, Nature 430,758 (2004).
    [5]K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G Schlom, and C. B. Eom, Science,306,1005 (2004).
    [6]K. M. Rabe, Current Opinion in Solid State & Materials Science 9,122 (2005).
    [7]HansM.Christen, Dae Ho Kim and Christopher M. Rouleau, Appl. Phys. A 93,807 (2008).
    [8]Chun-gang Duan, R. F. Sabiryanov, Jianjun Liu, W. N. Mei, P. A. Dowben and J. R. Hardy, Phys. Rev. Lett. 94,237201(1-4) (2005).
    [9]J. H. Li, D. W. Stokes, O. Caha, S. L. Ammu, J. Bai, K. E. Bassler, and S. C. Moss, Phys. Rev. Lett.95, 096104(1-4) (2005).
    [10]M. F. Chisholm, and S. J. Pennycook, Nature 351,47 (1991).
    [11]M Sugano, T Nakamura, T Manabe, K Shikimachi, N Hirano and S Nagaya, Superconductor Science and Technology 21,115019(1-8) (2008).
    [12]H. Li, J. R. Sun, and H. K. Wong, Appl. Phys. Lett.80,628(1-3) (2002).
    [13]Prahallad Padhan and R. C. Budhani, Phys. Rev. B 67,024414(1-6) (2003).
    [14]Hongzhou Ma, Jeremy Levy, Michael D. Biegalski, Susan Trolier-McKinstry, and Darrell G. Schlom, J. Appl. Phys.105,014102(1-6) (2009).
    [15]J. H. Choi, C. B. Eom, V. G. Harris,and Y. Suzuki, G. Hu, Phys. Rev. B 62, R779 (2005).
    [16]S. K. Arora, R. G. S. Sofin, I. V. Shvets, M. Luysberg, J. Appl. Phys.100,073908 (2006).
    [17]M. Luysberg, R. G. S. Sofin, S. K. Arora, and I. V. Shvets, Phys. Rev. B 80,024111 (2009).
    [18]Sylvia Matzen, Jean-Baptiste Moussy, Richard Mattana, Karim Bouzehouane, Cyrile Deranlot, and Frederic Petroff, Appl. Phys. Lett.101,042409 (2012).
    [19]Beecroft, R. I., Swenson, C. A., J. Phys. Chem. Solids 15,234 (1960).
    [20]Muhtar Ahart, Maddury Somayazulul, R. E. Cohen, P. Ganesh, Przemyslaw Dera, Ho-kwang Mao, Russell J. Hemley, Yang Ren, Peter Liermann & Zhigang Wu, Nature 451,545 (2008).
    [21]Kai Wang, Defang Duan, Mi Zhou, Shourui Li, Tian Cui, Bingbing Liu, Jing Liu, Bo Zou, and Guangtian Zou, J. Phys. Chem. B 115,4639 (2011).
    [22]J. Wenisch, C. Gould, L. Ebel, J. Storz, K. Pappert, M. J. Schmidt, C. Kumpf, G. Schmidt, K. Brunner, and L.W. Molenkamp, Phys. Rev. Lett.99,077201 (2007).
    [23]Min Chu, Yongke Sun, Umamaheswari Aghoram, and Scott E. Thompson, Annu. Rev. Mater. Res.39,203 (2009).
    [24]Y.-T. Chen, H.-S. Lan, W. Hsu, Y.-C. Fu, J.-Y. Lin, and C. W. Liu, Appl. Phys. Lett.99,022106 (2011).
    [25]Yann-Michel Niquet, Christophe Delerue, and Christophe Krzeminski, Nano Lett.,12,3545 (2012).
    [26]Irisawa T, Numata T, Tezuka T, Usuda K, Sugiyama N, Takagi SI., IEEE Trans. Elec. Dev.55,649 (2008).
    [27]田民波,薄膜技术与薄膜材料,清华大学出版社,(2006).
    [28]D.W. Pashley, Advances in Physics 5,173 (1956).
    [29]J.W. Mattews, A.E. Blakeslee, J. Cryst. Growth 177,2469 (1997).
    [30]A. Fischer, H. Kuhne, and H. Richter, Phys. Rev. Lett.73,2712 (1994).
    [31]Chinkyo Kima, I. K. Robinson, Jaemin Myoung Kyuhwan Shim, Myung-Cheol Yoo and Kyekyoon Kim, Appl. Phys. Lett.69,2358 (1996).
    [32]M. Ohring, The Matrials Science of Thin Film, Academic Press, (1992).
    [33]焦正宽,曹光早,磁电子学,浙江大学出版社(2005).
    [34]A. Antonakos, M. Filippi, P. Auban-Senzier, D. Lampakis, C. R. Pasquier, W. Prellier, E. Liarokapis, Phys. Status Solidi B 246,622-625 (2009).
    [35]S. W. Jin, G. Y. Gao, Z. Huang, Z. Z. Yin, X. Zheng, and W. B. Wu, Appl. Phys. Lett.92,261901 (2008).
    [36]J. H. Yin, J. Ding,a_ B. H. Liu, and J. B. Yi, X. S. Miao and J. S. Chen, J. Appl. Phys.101,09K509 (2007).
    [37]Muhtar Ahart, Maddury Somayazulu, R. E. Cohen, P. Ganesh, Przemyslaw Dera, Ho-kwang Mao, Russell J. Hemley, Yang Ren, Peter Liermann, Zhigang Wu, Nature 451,545-548 (2008).
    [38]HuY., Kuemmeth, F., Lieber, C. M. & Marcus, C. M., Nat. Nanotechnol.7,47 (2012).
    [39]N. Singh, W. W. Fang, S. C. Rustagi, K. D. Budharaju, Selin H. G Teo, S. Mohanraj, G. Q. Lo, N. Balasubramanian, and D.-L. Kwong, IEEE Electron Device Lett.28,558 (2007).
    [40]Daryoush Shiri, Amit Verma, C. R. Selvakumar and M. P. Anantram, SCIENTIFIC REPORTS 2,461 (2012).
    [41]Christopher E. Kuklewicz, Ralph N. E. Malein, Pierre M. Petroff, and Brian D. Gerardot, Nano Lett.12, 3761 (2012).
    [42]R. Trotta, P. Atkinson, J. D. Plumhof, E. Zallo, R.O. Rezaev, S. Kumar, S. Baunack, J. R. Schroter, A. Rastelli, and O. G Schmidt, Advanced Materials 24 2668 (2012).
    [43]K. Iida, J. Hanisch, R. Huhne, F. Kurth, M. Kidszun, S. Haindl, J. Werner, L. Schultz, and B. Holzapfel, Appl. Phys. Lett.95,192501 (2009).
    [44]Trommler S, Pahlke P, Hiihne R, Schultz L and Holzapfel, J. Phys.:Conf. Ser.234,012045 (2010).
    [45]Hisashi Sato, Physica C:Superconductivity 468,991 (2008).
    [46]E. Bellingeri, I. Pallecchi, R. Buzio, A. Gerbi, D. Marre, M. R. Cimberle, M. Tropeano, M. Putti, A. Palenzona, and C. Ferdeghini, Appl. Phys. Lett.96,102512 (2010).
    [47]S Trommler, R Huhne, K Iida, P Pahlke, S Haindl, L Schultz and B Holzapfel, New Journal of Physics 12, 103030 (2010).
    [48]Huhne R, Okai D, Dorr K, Trommler S, Herklotz A, Holzapfel B and Schultz L, Supercond. Sci. Technol. 21,075020 (2008).
    [49]Haeni JH, Irvin P, Chang W, Uecker R, Reiche P, et al., Nature 430,758 (2004).
    [50]Ang Chen, Zhi Yu, J Scott, A Loidlc, R Guo, A.S Bhall L.E Cross, J. Phys. Chem. Solids 61,191 (2000).
    [51]Biegalski MD, Jia Y, Schlom DG, Trolier-McKinstry S, Streiffer SK, et al., Appl. Phys. Lett.88,192907 (2006).
    [52]H. W. Jang, S. H. Baek, D. Ortiz, C. M. Folkman, R. R. Das, Y. H. Chu, P. Shafer, J. X. Zhang, S. Choudhury, V. Vaithyanathan, Y. B. Chen, D. A. Felker, M. D. Biegalski, M. S. Rzchowski, X. Q. Pan, D. G. Schlom, L. Q. Chen, R. Ramesh, and C. B. Eom Phys. Rev. Lett.101,107602 (2008).
    [53]Darrell G Schlom, Long-Qing Chen, Chang-Beom Eom, Karin M. Rabe, Stephen K. Streiffer, and Jean-Marc Triscone, Annu. Rev. Mater. Res.37,626 (2007).
    [54]Pertsev NA, Koukhar VG, Phys. Rev. Lett.84,3722 (2000).
    [55]Choi KJ, Biegalski M, Li YL, Sharan A, Schubert J, et al., Science 306,1005 (2004).
    [56]W. Eerenstein, N. D. Mathur and J. F. Scott, Nature 442,759 (2006).
    [57]R. Ramesh and Nicola A. Spaldin., Nature Materials 6,21 (2007).
    [58]T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom and R. Ramesh, Nature Materials 5,823 (2006).
    [59]Martin Gajek, Manuel Bibes, Stephane Fusil, Karim Bouzehouane, Josep Fontcuberta, Agnes Barthelemy & Albert Fert, Nature Materials 6,296 (2007).
    [60]Ying-Hao Chu, Lane W. Martin, Mikel B. Holcomb, Martin Gajek, Shu-Jen Han, Qing He, Nina Balke, Chan-Ho Yang, Donkoun Lee, Wei Hu, Qian Zhan, Pei-Ling Yang, Arantxa Fraile-Rodriguez, Andreas Scholl, Shan X. Wang & R. Ramesh, Nature Materials 7,478 (2008).
    [61]Daniel Khomskii, Physics 2,20 (2009).
    [62]J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, R. Ramesh, Science 229,1719 (2003).
    [63]Nicola A. Spaldin, Manfred Fiebig, Science 309,391 (2005).
    [64]Sang-Wook Cheong & Maxim Mostovoy, Nature Materials 6,13 (2007).
    [65]M. D. Biegalski, D. H. Kim, S. Choudhury, L. Q. Chen, H. M. Christen, and K. Dorr, Appl. Phys. Lett.98, 142902(2011).
    [66]Nicola A. Hill, J. Phys. Chem. B,104,6694 (2000).
    [67]Fennie, C. J. & Rabe, K. M, Phys. Rev. Lett.97,267602 (2006).
    [68]June Hyuk Lee, Lei Fang, Eftihia Vlahos, Xianglin Ke, Young Woo Jung, Kourkoutis, Jong-Woo Kim, Philip J. Ryan, Tassilo Heeg, Martin Roeckerath, Veronica Goian, Margitta Bernhagen, Reinhard Uecker, P. Chris Hammel, Karin M. Rabe, Stanislav Kamba, Ju'rgen Schubert, John W. Freeland, David A. Muller, Craig J. Fennie, Peter Schiffer, Venkatraman Gopalan, Ezekiel Johnston-Halperin & Darrell G. Schlom, Nature 466,954 (2010).
    [69]Lee, J. H. & Rabe, K. M, Phys. Rev. Lett.104,207204 (2010).
    [70]Ma J, Hu J, Li Z, Nan CW, Adv Mater.23,1062 (2011).
    [71]H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Science 303,661 (2004).
    [72]Bin Liu, Tao Sun, Jiaqing He, and Vinayak P. Dravid, ACS Nano 4,6836 (2010).
    [73]Lee, Tu; Aksay, Ilhan A, Crystal Growth & Design 1,401 (2001).
    [74]N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, Phys. Rev. Lett.80,1988-1991 (1998).
    [75]C. Thiele, K. Dorr, S. Fahler, and L. Schultz, D. C. Meyer, A. A. Levin, and P. Paufler, Appl. Phys. Lett. 87,262502 (2005).
    [76]R. K. Zheng, Y. Wang, H. L. W. Chan, C. L. Choy, and H. S. Luo, Phys. Rev. B 75,212102 (2007)
    [77]R. K. Zheng, H.-U. Habermeier, H. L. W. Chan, C. L. Choy, and H. S. Luo, Phys. Rev. B 81,104427 (2010).
    [78]R. K. Zheng, H.-U. Habermeier, H. L. W. Chan, C. L. Choy, and H. S. Luo, Phys. Rev. B 80,104433 (2009).
    [79]R. K. Zheng, Y. Jiang, Y. Wang, H. L. W. Chan, C. L. Choy, and H. S. Luo, Appl. Phys. Lett.93,102904 (2008).
    [80]C. Thiele, K. Dorr, O. Bilani, J. Rodel, L. Schultz, Phys. Rev. B 75,054408(1-8) (2007).
    [81]Yajie Chen, Trifon Fitchorov, Zhuhua Cai, K S Ziemer, Carmine Vittoria and V G Harris, J. Phys. D:Appl. Phys.43,155001(2010).
    [82]W. Eerenstein, M. Wiora, J. L. Prieto, J. F. Scott, and N. D. Mathur, Nature Mater.6,348 (2007).
    [83]D. Rata, A. Herklotz, K. Nenkov, L. Schultz, and K. Dorr, Phys. Rev. Lett.100,076401 (2008).
    [84]Q. P. Chen, J. J. Yang, Y. G. Zhao, S. Zhang, J. W. Wang, M. H. Zhu, Y. Yu, X. Z. Zhang, Zhu Wang, Bin Yang, D. Xie, and T. L. Ren, Appl. Phys. Lett.98,172507 (2011).
    [85]都有为,《铁氧体》,江苏科学技术出版社1996.
    [86]Nico Dix, Rajaram Muralidharan, Jose-Manuel Rebled, Sonia Estrade, Francesca Peiro, Manuel Varela, Josep Fontcuberta, and Florencio Sanchez, ACS Nano 4,4955 (2010).
    [87]S. Chikazumi, Physics of Magnetism (Wiley, New York,1984).
    [88]Y. Suzuki, G. Hu, R. B. von Dover, and R. J. Cava, J. Magn. Magn. Mater.191,1 (1999).
    [89]J. J. Yang, Y. G. Zhao, H. F. Tian, L. B. Luo, H. Y. Zhang, Y. J. He, and H. S. Luo, Appl. Phys. Lett.94, 212504(2009).
    [90]Jung Hwan Park, Young Kyu Jeong, Sangwoo Ryu, Jong Yeog Son, and Hyun Myung Jang, Appl. Phys. Lett.96,192504(2010).
    [91]Jung H. Park, Jung-Hoon Lee, Min G. Kim, Young Kyu Jeong, Min-Ae Oak, Hyun Myung Jang, Hyoung Joon Choi, and James F. Scott, Phys. Rev. B 81,134401 (2010).
    [92]A. A. Semenov, S. F. Karmanenko, V. E. Demidov, B. A. Kalinikos, G. Srinivasan, A. N. Slavin, and J. V. Mantese, Appl. Phys. Lett.88,033503 (2006).
    [93]Ming Liu, Ogheneyunume Obi, Jing Lou, Yajie Chen, Zhuhua Cai, Stephen Stoute, Mary Espanol, Magnum Lew, Xiaodan Situ, Kate S. Ziemer, Vince G. Harris, and Nian X. Sun, Adv. Funct. Mater 19, 1826(2009).
    [94]Jing Lou, Ming Liu, David Reed, Yuhang Ren, and Nian X. Sun, Adv. Mater.21,4711 (2009).
    [95]Y. K. Fetisov, G Srinivasana, Appl. Phys. Lett.88,143503 (2006).
    [96]A. Ustinov, G. Srinivasan, B. A. Kalinikos, Appl. Phys. Lett.90,031913 (2007).
    [97]C. Pettiford, S. Dasgupta, J. Lou, S. D. Yoon, N. X. Sun, IEEE Trans. Magn.43,3343 (2007).
    [98]C. Pettiford, J. Lou, L. Russell, N. X. Sun, Appl. Phys. Lett.92,122506 (2007).
    [100]J. Lou, D. Reed, C. Pettiford, M. Liu, P. Han, S. Dong, N. X. Sun, Appl. Phys. Lett.92,262502 (2008)
    [99]Johan Akerman, Science,308,508 (2005).
    [101]Ron Jansen, Nature Materials 11,400 (2012).
    [102]P. Griinberg, R. Schreiber, Y. Pang, M. B. Brodsky, and H. Sowers, Physical Review Letters 57,2442 (1986).
    [103]S Yuasa, T Nagahama, A Fukushima, Y Suzuki, and K Ando, Nat. Mat.3,868 (2004).
    [104]Manuel Bibes andAgnes Barthelemy, Nature Materials 7,425 (2008).
    [105]Ming Liu, Jing Lou, Shandong Li, and Nian X. Sun, Adv. Funct. Mater.21,2593 (2011).
    [106]Ming Liu, Shandong Li, Ogheneyunume Obi, Jing Lou, Scott Rand, and Nian X. Sun, Appl. Phys. Lett. 98,222509(2011).
    [107]Jia-Mian Hu, Zheng Li, Long-Qing Chen and Ce-Wen Nan, Nat. Commun.2,553 (2011).
    [108]Jia-Mian Hu, Zheng Li, Long-Qing Chen, and Ce-Wen Nan, Adv. Mater.24,2869 (2012).
    [109]S. Zhang, Y. G. Zhao, P. S. Li, J. J. Yang, S. Rizwan, J. X. Zhang, J. Seidel, T. L. Qu, Y. J. Yang, Z. L. Luo, Q. He, T. Zou, Q. P. Chen, J.W. Wang, L. F. Yang, Y. Sun, Y. Z. Wu, X. Xiao, X. F. Jin, J. Huang, C. Gao, X. F. Han, and R. Ramesh, Phys. Rev. left.108,137203 (2012).
    [110]A. T. Hindmarch, A. W. Rushforth, R. P. Campion, C. H. Marrows, and B. L. Gallagher, Phys. Rev. B 83, 212404(2011).
    [111]Tuomas H. E. Lahtinen, Kevin J. A. Franke and Sebastiaan van Dijken, SCIENTIFIC REPORTS 2,258 (2012).
    [112]Tuomas H. E. Lahtinen, Jussi O. Tuomi, and Sebastiaan van Dijken, Adv. Mater 23,3187 (2011).
    [113]Chin-Jui Hsu, Joshua L. Hockel, and Gregory P. Carman, Appl. Phys. Lett. 100,092902 (2012).
    [1]钟文定,铁磁学中册,科学出版社,(1998).
    [2]B. D. Cullity, C. D. Graham, Introduction to Magnetic Materials. John Wiley (2005).
    [3]Lei Bi, Hyun-Suk Kim, Gerald.F Dionne and C. A. Ross, New J. Phys.12,043044 (2010).
    [4]Wenzhe Zhang, Gang Xiao and Matthew J. Carter, Phys. Rev. B 83,144416 (2011).
    [5]G A. Lebedev, B. Viala, T. Lafont, D. I. Zakharov, O. Cugat, and J. Delamare, Appl. Phys. Lett.99,232502 (2011).
    [6]Landau, L. D.; Lifshitz, E. M.; Pitaevski, L. P. Electrodynamics of Continuous Media. Course of Theoretical Physics.8 (Second edtion). Elsevier. (2004).
    [7]H. K. Sen, Phys. Rev.102,5 (1956).
    [8]W. H. Meiklejohn and C. P. Bean, Phys. Rev.105,904 (1957).
    [9]G Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, Phys. Rev.394828 (1989).
    10] H. Ohldag, A. Scholl, F. Nolting, E. Arenholz, S. Maat, A. T. Young, M. Carey, J. Stohr, Phys. Rev. Lett. 91,017203 (2003).
    11] Ming Liu, Jing Lou, Shandong Li, Nian X. Sun, Advanced Functional Materials 21,2593 (2011).
    12] J. A. Osborn, Phys. Rev.67,351 (1945).
    13] A. E. Clark. Ferromagnetic Materials 1,531 (1980), edited by E. P. Wolfarth.
    14] Yanning Zhang and Ruqian Wu, IEEE TRANSACTIONS ON MAGNETICS,47,4044 (2011).
    15] I. B. Kekalo, O.Yu. Nemova, V.E. Taranitchev, Journal of Magnetism and Magnetic Materials 157,181 (1996).
    16] Jia-Mian Hu, Zheng Li, Long-Qing Chen and Ce-Wen Nan, Nat. Commun.2,553 (2011).
    17] Ma J, Hu J, Li Z, Nan CW, Adv Mater.23,1062 (2011).
    18] Dragan Damjanovic, Reports on Progress in Physics 61,1267 (1998).
    19]钟维烈,铁电体物理学,科学出版社,(1996).
    20] G. Dreyfus, J. Lewiner, Journal of the Electrochemical society 120,1083 (1973).
    21]张福学,现代压电学,科学出版社,(2001).
    22] Robert Service F., Science 275,1878 (1997).
    23] Fu Huaxiang, Cohen Ronald E., Nature,403,281 (2000).
    24] Guangyong Xu, Z. Zhong, Y. Bing, Z.-G. Ye and G Shirane, Nature Materials 5,134 (2006).
    25] Y. Cao, G. Sheng, J. X. Zhang, S. Choudhury, Y. L. Li, C. A. Randall, and L. Q. Chen, Appl. Phys. Lett.97, 252904(2010).
    [26]S. E. Park and T. R. Shrout, J. Appl. Phys.821804, (1997).
    [27]Jue Peng, Hao-su Luo, Di Lin, Hai-qing Xu, Tian-hou He, and Wei-qing Jin, Appl. Phys. Lett 85,6221 (2004).
    [28]Rami Chukka, Jun Wei Cheah, Zuhuang Chen, P. Yang, S. Shannigrahi, Junling Wang, and Lang Chen, Appl. Phys. Lett.98,242902 (2011).
    [29]H. Jaffe, Journal of the American Ceramic Society 41,494 (2006).
    [30]S. C. Tan, Stress Concentrations in Laminated Composites, Technomic Publishing Company (1994).
    [1]薄膜技术与薄膜材料,田民波,清华大学出版社,2006年.
    [2]Bunshah, R.F., Handbook of Deposition Technologies for Films and Coatings. William Andrew Publishing, (1994).
    [3]Stoffel, A., et al., LPCVD against PECVD for micromechanical applications. Journal of Micromechanics and Microengineering 6,1 (1996).
    [4]郑伟涛等,薄膜材料与薄膜技术,化学工业出版社,2004.
    [5]F Volkein. Thin Solid Films191,1 (1990).
    [6]J George, B Pradeep, et al. Phys Stat Sol(a) 100,513 (1987).
    [7]黄剑锋,溶胶-凝胶原理与技术,化学工业出版社,2005.
    [8]K Rajanna, S Mohan. Thin Solid Films 172,45 (1989).
    [9]P Singh, B Baishya. Thin Solid Films 148,203 (1987).
    [10]F Lopez, E Bermabeu. Thin Solid Films191,13 (1990).
    [11]V Serbezov, S Benacka, et al. J Appl Phys.67,6953 (1990).
    [12]R E Russo, R P Reade, et al. J Appl Phys.68,1354 (1990).
    [13]Matthias Opel, J. Phys. D:Appl. Phys.45,033001 (2012).
    [14]P D Davides, L M Maissel. J Appl Phys.37,574 (1966).
    [15]F M Penning. Physica.3,873 (1936).
    [16]E Kay. J Appl Phys.34,760 (1963).
    [17]W D Gill, E Kay. Rev Sci Instrum 36,277 (1965).
    [18]Zhenxing Bi, Zhisheng Zhang and Panfeng Fan. J. Phys.:Conf. Ser.61,120 (2007)
    [19]S. L. LIANG, K. W. WANG and Y. C. LIU. CHINESE JOURNAL OF PHYSICS VOL.17,102 (1979).
    [20]Sanghan Lee, Ke Chen, Seung Hyup Baek, Wenqing Dai, Brian H. Moeckly, Qi Li, Xiaoxing Xi, Mark S. Rzchowski, and Chang Beom Eom. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY 19, 2811 (2009).
    [21]Abdul Faheem Khan, Mazhar Mehmood, A. M. Rana, M. T. Bhatti, A. Mahmood. CHIN. PHYS. LETT.26, 077803 (2009).
    [22]D. Mazumdar, W.F. Shen, X.Y. Liu, B.D. Schrag, M. Carter, and Gang Xiao. J. Appl. Phys.103,113911 (2008).
    [23]麦振洪等,薄膜结构X射线表征,科学出版社,2007年.
    [24]马礼敦,杨福家,同步辐射概论,复旦大学出版社,2001年.
    [25]P. Thompson, D. E. Cox and J. B. Hastings. J. Appl. Cryst.20,79 (1987).
    [26]吴自勤等,现代晶体学-1,中国科学技术大学出版社,2011年。(翻译版)
    [1]I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys.76,323 (2004).
    [2]N. A. Hill, J. Phys. Chem. B 104,6694 (2000).
    [3]Jorg Wunderlich, Byong-Guk Park, Andrew C. Irvine, Liviu P. Zarbo, Eva Rozkotova, Petr Nemec, Vit Novak, Jairo Sinova, Tomas Jungwirth, Science 330,1801 (2010).
    [4]B. I. Min, Min Sik Park and J. H. Park, J. Phys.:Condens. Matter 16, S5509 (2004).
    [5]M. Fonin, R. Pentcheva, Yu. S. Dedkov, M. Sperlich, D. V. Vyalikh, M.Scheffler, U. Rudiger, and G Guntherodt, Phys. Rev. B 72,104436 (2005).
    [6]Yu. S. Dedkov, U. Rudiger, and G. Guntherodt, Phys. Rev. B 65,064417(2002).
    [7]Marin Alexe, Michael Ziese, Dietrich Hesse, Pablo Esquinazi, Kunihiko Yamauchi, Tetsuya Fukushima, Silvia Picozzi, and Ulrich Gosele, Adv. Mater.21,4452 (2009).
    [8]J. Takaobushi, M. Ishikawa, S. Ueda, E. Ikenaga, J.-J. Kim, M. Kobata, Y. Takeda, Y. Saitoh, M. Yabashi, Y. Nishino, D. Miwa, K. Tamasaku, T. Ishikawa, I. Satoh, H. Tanaka, K. Kobayashi, and T. Kawai, Phys. Rev. B 76,205108 (2007).
    [9]J. Takaobushi, H. Tanaka, T. Kawai, S. Ueda, J.-J. Kim, M. Kobata, E. Ikenaga, M. Yabashi, K. Kobayashi, Y. Nishino, D. Miwa, K. Tamasaku, and T. Ishikawa, Appl. Phys. Lett.89,242507 (2006).
    [10]Deepak Venkateshvaran, Matthias Althammer, Andrea Nielsen, Stephan Geprags, M. S. Ramachandra Rao, Sebastian T. B. Goennenwein, Matthias Opel, and Rudolf Gross, Phys. Rev. B 79,134405 (2009).
    [11]Yasuo Nagasawa, Masashi Kosaka, Susumu Katano, Nobuo Mori, Sakae Todo and Yoshiya Uwatoko, J. Phys. Soc. Jpn.76,110 (2007).
    [12]G. E. Sterbinsky, B. W. Wessels, J.-W. Kim, E. Karapetrova, P. J. Ryan, and D. J. Keavney, Appl. Phys. Lett.96,092510(2010).
    [13]Ming Liu, Ogheneyunume Obi, Jing Lou, Stephen Stoute, Zhuhua Cai.Kate S. Ziemer, Nian X. Sun, J. Physics D Applied Physics,42,045007 (2009).
    [14]Lilin Liu, Yousheng Zhang, and Tong-Yi Zhang, J. Appl. Phys.101,063501 (2007).
    [15]N. Ponpandian and A. Narayanasamy, J. Appl. Phys.92,2770 (2002).
    [16]A. Marcu, T. Yanagida, K. Nagashima, H. Tanaka, and T. Kawai, J. Appl. Phys.102,023713 (2007).
    [17]H. Jalili, N. F. Heinig, and K. T. Leung, Journal of Chemical Physics 132,204701 (2010).
    [18]W. D. Nix and B.M. Clemens, J. Mater. Res.14,3467 (1999).
    [19]Steven C. Seel Carl V. Thompson, Sean J. Hearne and Jerrold A. Floro, J. Appl. Phys.88,7079 (2000).
    20] C. Friesen and C.V. Thompson, Phys. Rev. Lett.89,126103 (2002).
    [21]A.V. Pogrebnyakov, J. M. Redwing, S. Raghavan, V. Vaithyanathan, D.G Schlom, S.Y. Xu, Qi Li, D. A. Tenne, A. Soukiassian, X. X. Xi, M. D. Johannes, D. Kasinathan, W. E. Pickett, J. S.Wu, and J. C. H. Spence, Phys. Rev. Lett.93,147006 (2004).
    [22]E. Bellingeri, I. Pallecchi, R. Buzio, A. Gerbi, D. Marre, M. R. Cimberle, M. Tropeano, M. Putti, A. Palenzona and C. Ferdeghini, Appl. Phys. Lett.96,102512 (2010).
    [23]Jhon A. Thorton, and David W. Hoffman, J. Vac. Sci. Technol.14,164 (1977).
    [24]D. Winau, R Koch, A. Fu hrmann, and K. H. Rieder, J. Appl. Phys.70,3081 (1991).
    [25]R. Koch, Dongzhi Hu, Phys. Rev. Lett.94,146101 (2005).
    [26]A. K. Das; J. Leib, R. Monig, and C. V. Thompson, Phys. Rev. Lett.102,256101 (2009).
    [27]H. S. Vijaya, G. K. Muralidhar, G N. Subbanna, G. Mohan Rao, and S. Mohan, Metallurgical and Materials Transactions 27B,1057 (1996).
    [28]J. A. Floro, S. J. Hearne, J. A. Hunter, P. Kotula, S. C. Seel, and C. V. Thompson, J. Appl. Phys.89,4886 (2001).
    [29]Yuanjun Yang, Z. L. Luo, Haoliang Huang, Yachun Gao, J. Bao, X. G. L i,Sen Zhang, Y. G. Zhao, Xiangcun Chen, Guoqiang Pan, and C. Gao, Appl. Phys. Lett.98,153509 (2011).
    [30]J. J. Yang, Y. G. Zhao, H. F. Tian, L. B. Luo, H. Y. Zhang, Y. J. He, and H. S. Luo, Appl. Phys. Lett.94, 212504 (2009).
    [31]R. K. Zheng Y. Wang, H. L. W. Chan, C. L. Choy, and H. S. Luo, Phys. Rew. B 75,212102 (2007).
    [32]C. Thiele, K. Dorr, O. Bilani,l J. R6del, and L. Schultz, Phys. Rew. B 75,054408 (2007).
    [33]J. H. Park, Y. K. Jeong, S. Ryu, J. Y. Son, and H. M. Jang, Appl. Phys. Lett.96,192504 (2010).
    [34]Ming Liu, Ogheneyunume Obi, Zhuhua Cai, Jing Lou, Guomin Yang, Katherine S. Ziemer, and Nian X. Sun, J. Appl. Phys.107,073916 (2010).
    [35]R. K. Zheng, Y. Wang, J. Wang, K. S. Wong, H. L. W. Chan, C. L. Choy, and H. S. Luo, Phys. Rev. B 74, 094427 (2006).
    [36]R. K. Zheng, Y. Wang, H. L. W. Chan, C. L. Choy, and H. S. Luo, Appl. Phys. Lett.90,152904 (2007).
    [37]K. P. Ghatak, S. Bhattacharya, J. Appl. Phys.102,073704 (2007).
    [38]M.I. Bichurin, V.M.Petrov, G. Srinivasan, Journal of Magnetism and Magnetic Materials 321,846 (2009).
    [39]Junichi Takaobushi, Hidekazu Tanaka, and Tomoji Kawai, Shigenori Ueda, Jung-Jin Kim, Masaaki Kobata, Eiji Ikenaga, Makina Yabashi, and Keisuke Kobayashi, Yoshinori Nishino, Daigo Miwa, Kenji Tamasaku, and Tetsuya Ishikawa, Appl. Phys. Lett.89,242507 (2006).
    [1]Jia-Mian Hu, Zheng Li, Long-Qing Chen and Ce-Wen Nan, Nat. Commun.2,553 (2011).
    [2 Johan Akerman, Science 308,508 (2005).
    [3]M. Dawber, K. M. Rabe, and J. F. Scott, Rev. Mod. Phys.77,1083 (2005).
    [4]Arne Brataas, Andrew D. Kent and Hideo Ohno, Nature Materials11,372 (2012).
    [5]Jesung Kim, Jong Min Kim, Sam H. Noh, Sang Lyul Min and Yookun Cho, IEEE Transactions on Consumer Electronics,48,366 (2002).
    [6]http://www.tomshardware.com/reviews/rockethybrid-1220-ssd-caching.2936.html.
    [7]焦正宽,曹光旱 磁电子学浙江大学出版社(2005).
    [8]K. M. Rabe, Current Opinion in Solid State & Materials Science 9,122 (2008) (review paper).
    [9]C. G. Duan, et al., Phys. Rev. Lett.94,237201 (2005).
    [10]J. H. Li, et al., Phys. Rev. Lett.95,096104 (2005).
    [11]M. F. Chisholm, and S. J. Pennycook, Nature 351,47 (1991).
    [12]M. Sugano, et al., Superconductor Science and Technology 21,115019 (2008).
    [13]H. Li, et al., Appl. Phys. Lett 80,628 (2002).
    [14]P. Padhan, et al., Phys. Rev. B 67,024414 (2003).
    [15]J. H. Haeni, et al., Nature 430,758 (2004).
    [16]K. J. Choi, et al., Science 306,1005 (2004).
    [17]C. Thiele, K. Dorr, S. Fahler, L. Schultz, D. C. Meyer, A. A. Levin, and P. Paufler, Appl. Phys. Lett.87, 262502 (2005).
    [18]Yuanjun Yang, Z. L. Luo, Haoliang Huang, Yachun Gao, J. Bao, X. G L i,Sen Zhang, Y. G. Zhao, Xiangcun Chen, Guoqiang Pan, and C. Gao, Appl. Phys. Lett.98,153509 (2011).
    [19]A. Vailionis, H. Boschker, W. Siemons, E. P. Houwman, D. H. A. Blank, G. Rijnders, and G. Koster, Phys. Rev. B 83,064101 (2011).
    [20]H. Cao, F. M. Bai, J. F. Li, D. Viehland, G Y. Xu, H. Hiraka, and G. Shirane, J. Appl. Phys.97,094101 (2005).
    [21]T. Wu, P. Zhao, M. Bao, A. Bur, J. L. Hockel, K. Wong, K. P. Mohanchandra, C. S. Lynch, and G. P. Carman, J. Appl. Phys.109,124101 (2011).
    [22]Y. Wang, S. W. Or, H. Lai, W. Chan, X. Zhao, and H. Luo, J. Appl. Phys.103,124511 (2008).
    [23]J. Peng, H.-S. Luo, D. Lin, H.-Q. Xu, T.-H. He, and W.-Q. Jin, Appl. Phys. Lett.85,6221 (2004).
    [24]C. Thiele, K. Dorr, O. Bilani, J. Rodel, and L. Schultz, Phys. Rev. B 75,054408 (2007).
    [25]M. Liu,O. Obi, J. Lou, Y. Chen, Z. Cai, S. Stoute, M. Espanol, M. Lew, X. Situ, K. S. Ziemer, V. G Harris, and N. X. Sun, Adv. Funct. Mater.19,1826 (2009).
    [26]M. Liu, O. Obi, Z. Cai, J. Lou, G Yang, K. S. Ziemer, and N. X. Sun, J. Appl. Phys.107,073916 (2010).
    [27]J. Lou, M. Liu, D. Reed, Y. H. Ren, and N. X. Sun, Adv. Mater.21,4711 (2009).
    [28]V. Rajendran, S. Muthu Kumaran, V. Sivasubramanian, T. Jayakumar, and Baldev Raj, Phys. Stat. Sol. (a) 195,350(2003).
    [29]L. Ranno, A. Llobet, R. Tiron, and E. Favre-Nicolin, Appl. Surf. Sci.188,170 (2002).
    [30]G Srinivasan, E. T. Rasmussen, B. J. Levin, and R. Hayes, Phys. Rev. B 65,134402 (2002).
    [31]R. K. Zheng, Y. Wang, H. L. W. Chan, C. L. Choy, and H. S. Luo, Phys. Rev. B 75,212102 (2007).
    [32]T. X. Nan, Z. Y. Zhou, J. Lou, M. Liu, X. Yang, Y. Gao, S. Rand, and N. X. Sun, Appl. Phys. Lett.100, 132409(2012).
    [33]Zuyong Feng, Xiangyong Zhao and Haosu Luo, J. Phys.:Condens. Matter 16,6771 (2004).
    [34]R. K. Zheng, Y. Jiang, Y. Wang, H. L. W. Chan, C. L. Choy, and H. S. Luo, Phys. Rev. B 79,174420 (2009).
    [35]R. K. Zheng, H.-U. Habermeier, H. L. W. Chan, C. L. Choy, and H. S. Luo, Phys. Rev. B 80,104433 (2009).
    [36]J. Wang, F. X. Hu, L. Chen, J. R. Sun, and B. G. Shen, J. Appl. Phys.,109,07D715 (2011).
    [1]Claude Chappert, Albert Fert and Fr6deric Nguyen Van Dau, Nature Materials 6,813 (2007).
    [2]Grunberg P, et al., Phys. Rev. Lett.57,2442 (1986).
    [3]Baibich M. N., Broto J. M., Fert A., et al., Phys. Rev. Lett.61(21),2472 (1988).
    [4]Dieny, J. Appl. Phys.69,4774 (1991).
    [5]T. Miyazaki, N. Tezuka, Journal of Magnetism and Magnetic Materials 139, L231 (1995).
    [6]STUART S. P. PARKIN, CHRISTIAN KAISER, ALEX PANCHULA, PHILIP M. RICE, BRIAN HUGHES, MAHESH SAMAN AND SEE-HUN YANG, Nature 3,862 (2004).
    [7]S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F, Matsukura, and H. Ohno, Appl. Phys. Lett.93,082508 (2008).
    [8]韩秀峰,物理,37(6)2008.
    [9]F. Bonell, T. Hauet, S. Andrieu, F. Bertran, P. Le Fevre, L. Calmels, A. Tejeda, F. Montaigne, B. Warot-Fonrose, B. Belhadji, A. Nicolaou, and A. Taleb-Ibrahimi, Phys. Rev. Lett.108,176602 (2012).
    [10]Guo-Xing Miao, Markus Munzenberg and Jagadeesh S Moodera, Rep. Prog. Phys.74,036501 (2011).
    [11]M. Julliere. Phys. Lett.54A,225 (1975).
    [12]Koji Tsunekawa, David D. Djayaprawira, Motonobu Nagai, Hiroki Maehara, Shinji Yamagata, Naoki Watanabe, Shinji Yuasa, Yoshishige Suzuki, and Koji Ando, Appl. Phys. Lett.87,072503 (2005).
    [13]W.F. Shen, B.D. Schrag, M.J. Carter, and Gang Xiao, Appl. Phys. Lett.93,033903 (2008).
    [14]Kuntal Roy, Supriyo Bandyopadhyay, and Jayasimha Atulasimha, Appl. Phys. Lett.99,063108 (2011).
    [15]Ming Liu, Shandong Li, Ogheneyunume Obi, Jing Lou, Scott Rand, and Nian X. Sun, Appl. Phys. Lett.98, 222509(2011).
    [16]N. A. Pertsev and H. Kohlstedt, Appl. Phys. Lett.95,163503 (2009).
    [17]N. A. Pertsev and H. Kohlstedt, Adv. Funct. Mater.22,4696 (2012).
    [18]Jia-Mian Hu, Zheng Li, Long-Qing Chen and Ce-Wen Nan, Nat. Commun.2,553 (2011).
    [19]Jia-Mian Hu, Zheng Li, Long-Qing Chen, and Ce-Wen Nan, Adv. Mater.24,2869 (2012).
    [20]Wenzhe Zhang, Qiang Hao, and Gang Xiao, Phys. Rev. B 84,094446 (2011).
    [21]Ming Liu, Jing Lou, Shandong Li, and Nian X. Sun, Adv. Funct. Mater.21,2593 (2011).
    [22]D. Mazumdar, X.Y. Liu, B.D. Schrag, W.F. Shen, M. Carter, and Gang Xiao, J. Appl. Phys.101,09B502 (2007).
    [23]S. Safron, B.D. Schrag, X.Y. Liu, W.F. Shen, D. Muzumdar, M.J. Carter, and Gang Xiao, J. Appl. Phys. 103,033507(2008).
    [24]Ming Liu, Ogheneyunume Obi, Jing Lou, Yajie Chen, Zhuhua Cai, Stephen Stoute, Mary Espano, Magnum Lew, Xiaodan Situ, Kate S. Ziemer, Vince G. Harris, Nian X. Sun, Adv. Funct. Mater.19,1826 (2009).
    [25]Dexin Wang, Cathy Nordman, Zhenghong Qian, James M. Daughton, and John Myers, J. Appl. Phys.97, 10C906 (2005).
    [26]John G. Simmons, J. Appl. Phys.34,1793 (1963).
    [27]Weifeng Shen, Ph. D thesis, Page 140 (2007).
    [28]Liu, Yun-Ze Long, Lei Liao, Xiangfeng Duan, and Zhiyong Fan, ACS Nano,6,1888 (2012).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700