非平衡磁控溅射沉积系统放电特性和沉积TiN_x薄膜应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非平衡磁控溅射沉积技术(Unbalanced Magnetron Sputtering,UMS)目前得到广泛关注,能够得到比较高的离子/原子到达比(Ion-to-atom Arrival Ratio,IAR),在相对较低的基体温度下沉积结构致密薄膜,通过磁场状态优化沉积参数。结构-区域模型(Structure-Zone-Model,SZM)包含沉积过程的关键因素,为确定非平衡磁控溅射沉积技术放电参数和沉积参数之间的关系,仍然需要深入研究其放电、沉积机制,通过建立精确的理论模型控制放电和沉积过程,以满足日益发展的应用需求。
     溅射靶的磁场分布是非平衡磁控溅射系统的关键因素。通过增强溅射靶外侧的磁极形成非平衡的磁场分布,能够约束等离子体,增强电离;磁场梯度带来的磁镜效应增强电荷引出,系统的性能得到提高。本文使用的圆形平面磁控溅射靶内部磁极具有一定的非平衡度,构成永磁式非平衡磁控溅射靶(Permanent Magnet Unbalanced Magnetron Sputtering);通过附加一个同轴线圈加强系统的非平衡特征,形成同轴磁场约束非平衡磁控溅射靶(Coaxial Solenoid confining Unbalanced Magnetron sputtering)。本文通过这样两种相互对比的系统来研究同轴磁场变化对放电特性和沉积特性的影响。
     采用Langmuir探针、发射探针、平面电极和发射光谱等方法研究了沉积区域的等离子体参数和同轴磁场(Coaixial Solenoid)对这些参数的影响规律。在同轴磁场作用下,其沉积区域电子温度、等离子体密度和离子饱和电流密度得到显著提高,有利于提高薄膜质量;沉积速率随溅射功率先增加,继续提高溅射功率,则沉积速率降低;由于电子受到磁场约束,沉积区域的等离子体电位降低;同轴磁场提高了系统的放电效率和低气压沉积过程的稳定性。采用圆形平面电极在轴向不同位置研究饱和离子电流(Saturation Ion Current)与同轴线圈电流、放电电流密度、空间位置之间的关系。实验结果表明同轴磁场显著影响收集电流密度通量,增强同轴磁场使饱和离子通量在距阴极200mm以上的位置达到9.5mA/cm~2,达到饱和值后保持稳定,不再受磁场和放电电流影响。
     在系统的实验研究基础上,理论研究了同轴磁场对圆形平面磁控溅射系统放电特性和离子束流影响。根据蔡尔德定律研究了同轴磁场对于非平衡磁控溅射沉积系统伏安特性影响的基本规律。根据沉积过程中离子的分布特点,采用磁流体理论方法,建立反映
The studies of unbalanced magnetron sputtering (UMS) has inspired great attention recently for highly ion bombardment, which can help to form higher ion-to-atom arrival ratio to deposit dense films with perfect quality. In UMS, the identification of relations between the discharge properties and deposition parameters becomes very difficult for multivariate process. The Structure-Zone-Model (SIM) includes basic parameters of film depostion. In order to model and control the discharge and deposition process the mechanism of the UMS need to be studied further to satisfy the increasing application.The magnetic field distribution is key to the properties of UMS. The unbalanced magnetron target is improved outside magnet pole, which form an unbalanced magnetic field to confine plasma, for a magnetic field gradient coming from a magnetic mirror effect.The circular plane magnetron target with a certain unbalanced degree is an Unbalanced Magnetron target in Permanent Magnet mode (PM-UMS). The system with improved unbalanced degree by additional coaxial solenoid is Coaxial Solenoid confinement Unbalanced Magnetron target (CS-UMS). The influence of the coaxial coil on the discharge and deposition properties of the unbalanced magnetron target has been studied. The parameters under the influences of different coil current, such as Paschen curves and voltage-current properties, electron temperature, plasma potential, deposition rate at the deposition position, were studied by Langmuir probe, emissive probe, planar electrode for measuring ion current and emissive spectroscopy methods. Under the influences of coaxial coil, electron temperature and the ion saturation current were increased. Coaxial magnetic field have reduced the discharge voltage on the cathode, improved the ionized efficiency and the stability of the deposition at a lower pressure.The electrode with a surface parallel to cathode measures ion flux at a bias voltage of -150V, a pressure of 0.2Pa, with argon discharge and different locations from cathode. The ion saturation current density is a function of the discharge current, coaxial coil current and substrate location. Under influence of the coaxial magnetic field the ion flux was increased from
    a negligible value to 9.5mA/cm2 at the location of more than 200mm from cathode, the results of experiment also show that ion flux incident to the substrate reaches saturation value and keep constant with variation of the discharge current and coil current The influence of coil on the voltage-current properties Was modeled based on Child law. By the magneto-hydrodynamic theory the ion flux as a function of discharge power, pressure and substrate location was modeled with magnetic mirror effect. The transportation of the ion and neutral particle were treated, respectively. As a result, the coaxial magnetic field improved the performance of the system. There is a fine consistency between the model and experiment results. The results can help to control the depositing parameter in quantity.By UMS, the smooth, dense and even TiNx film has been deposited at room temperature (RT). With variation of the coaxial magnetic field the incident ion-to-atom arrival ratio to the substrate (Ji/Jm ) have been studied at variation of sputtering power, bias and pressure, proportion of nitrogen-to-argon mass flow ratio (f(N2/Ar)) of depositing TiNx film. Atom force microscope (AFM) has been used to study surface roughness and the surface morphology of TiNx fihiL The structure of TiNx film was investigated by glancing angle incident X-ray diffraction method (G2XRD). The microhardometer and ball-on-disk friction was used to determine the influence on coefficient of static friction and the Knoop microhardness of deposition parameters of TiNx film. As a result, TiNx film at a bias of-50 V and with an ion-to-atom arrival ratio of 4.1 has the highest microhardness value with dense, small crystal island. f(N2 /Ar) in the range of 0.3-0.64 has better influence on the formation of deliver dense and smooth TiNx film morphology. At low temperature and low sputtering power the films trend to become deliver, dense structure with atom level smooth surface morphology. Applications of the parameter model can help to deposit film with ideal structure, performance and morphology.
引文
[1] 田民波,刘德令.薄膜手册.北京:机械工业出版社,1991.421
    [2] Musil J. Recent advances in magnetron sputtering technology. Surface and Coatings Technology, 1998, 100-111: 280-286
    [3] 郑伟涛等编著.薄膜材料与薄膜技术.北京:化学工业出版社,2004,第一版,79-85
    [4] Window B and Savvides N. Charged particle fluxes from planar magnetron sputtering sources. J. Vac. Sci. Technol.,1986, A 4(2): 196-202
    [5] Window B and Savvides N. Unbalanced de magnetrons as sources of high ion fluxes. J. Vac. Sci. Technol., 1986, A4(3): 453-456
    [6] Window B and Harding G L. Characterization of radio frequency unbalanced magnetrons, 1992, J. Vac. Sci. Technol., A10(5): 3300-3304
    [7] Window B and Harding G L. Ion-assisting magnetron sources: principles and uses. J. Vac. Sci. Technol., 1990, A8(3): 1277-1282
    [8] Windows B. Recent advances in sputtering deposition. Surface and coatings of Technology, 1995, 71: 93-97
    [9] Thornton J A. Magnetron sputtering: basic physics and application to cylindrical magnetrons. J. vac. sci. Technol., 1978, 15(2): 171-177
    [10] Berg S, Blom H-O, Moradi M. Target compound layer formation during reactive sputtering. J. vac. sci. Technol., 1999, A17(4): 1827-1831
    [11] Larsson T, Blom H-O, Nender C. A physical model for eliminating instabilities in reactive sputtering. J. vac. sci. Technol., 1988, A6(3): 1832-1836
    [12] Jonsson L B, Nyberg T, Berg S. Process modeling of reactive sputtering. J. vac. sci. Technol., 1989, A7(3): 1225-1229
    [13] Sproul W D. New routes in the preparation of mechanically hard films. Science, 1996, 273: 889-892
    [14] Yashar P, Rechner J, Wong M S. High-rate reactive sputtering of yttria-stabilized zirconia using pulsed d. c. power. Surface and Coatings Technology, 1997, 94-95: 333-338
    [15] O'Brien J., Kelly P J. Characteristic studies of the pulsed dual cathode magnetron sputtering process for oxide films. Surface and Coating Technology, 2001, 142-144: 621-627
    [16] Kelly P J, Hall R, O'Erien J. Studies of mid-frequency pulsed de biasing. J. Vac. Sci. Technol., 2001, A19(6): 2856-2865
    [17] Kelly P J and Arnell R D. Control of the structure and properties of aluminum oxide coatings deposited by pulsed magnetron sputtering. J. Vac. Sci. Technol., 1999, A17(3): 945-953
    [18] Zhou Y, Kelly P J, Postill A et al. The characteristics of aluminum-doped zinc oxide films prepared by pulsed magnetron sputtering from powder targets. Thin Solid Films, 2004, 447-448: 33-39
    [19] Clenet F, Briaud Ph, Turban G. Experimental study of an RF magnetron discharge for thin-film deposition. Surface and Coating Technology, 1997, 97: 528-532
    [20] Bartzsch H, Frach P, Goedicke K et al. Different pulse techniques for stationary reactive sputtering with double ring magnetron. Surface and Coatings Teohnology, 1999, 120-121: 723-727
    [21] Misina M, Musil J. Plasma diagnostics of low pressure microwave-enhanced d.c. sputtering discharge. Surface and Coating Technol., 1995, 74-75: 450-454
    [22] Xu J, Deng X, Zhang J et al. Characterization of CNx films prepared by twinned ECR plasma source enhanced DC magnetron sputtering. Thin Solid Films, 2000, 390: 107-112
    [23] Wolf-Dieter Munz. The unbalanced magnetron: current status of development. Surface and Coating technology, 1991, 48: 81-94
    [24] Svadkovski I V, Golvosov D A, Zavatskiy S M. Characterisation parameters for unbalanced magnetron sputtering systems. Vacuum, 2003, 68: 283-190
    [25] Arnell R D, Kelly P J. Recent advances in magnetron sputtering. Surface and Coatings Teclmology, 1999, 112: 170-176
    [26] Sproul W D. Multi-cathode unbalanced magnetron sputtering systems. Surface and Coatings Technology, 1991, 49: 284-289
    [27] Beom-Hoam O, Jae-seong Jeong, Se-Geun Park. Improvement of ICP plasma with periodic control of axial magnetic field. Surface and Coatings Technology, 1999, 120-121: 752-756
    [28] Ricard A, Nouvellon C, Konstantinidis S. Density and temperature in an inductively amplified magnetron discharge for titanium deposition. J. Vac. sci. Technol., 2002, A20(4): 1488-1491
    [29] Schneider J M, Sproul W D. Matthews A, Reactive ionized magnetron sputtering of crystalline alumina coatings. Surface and Coating technology, 1998, 98: 1473-1476
    [30] Li D. Ionized magnetron sputter deposition of amorphous carbon nitride thin films. J. Vac. Sci. Technol., 1995, A 13(3): 1063-1066
    [31] Kelly P J, Arnell R D. The influence of magnetron configuration on ion current density and deposition rate in a dual unbalanced magnetron sputtering system. Surface and coatings technology, 1998, 108-109: 317-322
    [32] Posadowski W M. Plasma parameters of very high target power density magnetron sputtering. Thin Solid Films, 2001, 392: 201-207
    [33] Kadlec S, and Musil J. Low pressure magnetron sputtering and self-sputtering discharges. Vacuum, 47: 307-311
    [34] Musil J, Rusnak K, Jezek V. Planar magnetron with additional plasma confinement. Vacuum, 1995, 48: 341-347
    [35] 马腾才,胡希伟,陈银华.等离子体物理.合肥:中国科技大学出版社,1988,P247
    [36] Rossnagel S M. Induced drift currents in circular planar magnetrons. J. Vac. Sci. Technol., 1987, A5(1): 88-91
    [37] Samuel D E, Bezuidenhout L W, Dew S K. Deposition rate model of magnetron sputtered particles. Thin Solid Films, 2004, 474: 330-336
    [38] Aouadi S M, Gorishny T Z, Schultze D M. Control and monitoring of growth of chromium nitfide coatings using insitu spectroscopic ellipsometry. Surface and Coatings Technology, 2002, 153: 1-9
    [39] Musil J, Vlcek J. Magnetron sputtering of films with controlled texture and grain size. Materials Chemistry and Physics, 1998, 54: 116-122
    [40] Zeng X T. Unbalanced magnetron sputtering carbon composite coatings. J. Vac. Sci. Technol., 1999, A8(3): 1991-1995
    [41] Kelly P J, Arnell R D. The influence of deposition parameters on the structure of Al, Zr and W coating deposition by dosed-field unbalanced magnetron sputtering. Surface and Coatings Technology, 1996, 86-87: 425-431
    [42] Kuzel R, Valvoda Jr V. XRD microstructural study of Zn films deposited by unbalanced magnetron sputtering. Thin Solid Films, 1995, 263: 150-158
    [43] Biederman H, Stundzia V, SlavinskaD. Characterization of an unbalanced magnetron for composite film ('metal/C:H) deposition. Vacuum, 1999, 52: 415-120
    [44] Kelly P J, Arnell R D. The influence of substrate temperature on the properties of Al, Zr, and W coatings deposited by closed-field unbalanced magnetron sputtering. Vacuum, 1998, 49: 43-47
    [45] Hurkmans T, Lewis D B, Paritong H, et al. Influence of ion bombardment on structure and properties of unbalanced magnetron grown CrN_x coatings. Surface and Coatings Technology, 1999, 114: 52-59
    [46] Engstrom C, Berlind T, Birch J. Design, plasma studies, and ion assisted thin film growth in an unbalanced dual target magnetron sputtering system with a solenoid coil. Vacuum, 200, 56: 107-113
    [47] Musil J, Matous J and Valvoda V. Effect of ion bombardment on the surface morphology of Zn-films sputtering in an unbalancde magnetron. Vacuum, 2003, 46: 203-210
    [48] Rossnagel S M and Kaufman H R. Langmuir probe characterization of magnetron operation. J. Vac. Sci. Technol., 1986, A4(3): 1822-1825
    [49] Thornton J A. Diagnostic methods for sputtering plasmas. J. Vac. Sci. Technol., 1978, 15(2): 188-192
    [50] Vlcek J, Spatenka P, and Musil J. Fundamentals of elementary process in plasma. 1998, Surface and Coatings Technology, 98: 1557-1564
    [51] Petr Spetenka, Jaroslav Vlcek, Josef Blazek. Langmuir probe measurements of plasma parameters in a planar magnetron with additional plasma confinement. Vacuum, 55: 165-170
    [52] Brussard G J H, Steen M, Carrere M, et al. Langmuir probe measurements in expanding magnetized argon nitrogen and hydrogen plasma. Surface and Coating Technol, 1998, 98: 1416-1419
    [53] Rossnagel S M, Kaufman H R. Charge transport in magnetron. J. Vac. Sci. Technol., 1987, A5(4): 2276-2279
    [54] Kadlec S, Quaeyhaegens C, Knuyt G. Energy distribution of ions in and unbalanced magnetron plasma measured with energy-resolved mass spectrometry. Surface and Coating Technology, 1997, 89: 177-184
    [55] Bradlley J W, Backer H, Kelly P J. Space and time resolved Langmuir probe measurements in a 100kHz pulsed rectangular magnetron system. Surface and Coating Technology, 2001, 142-144: 337-341
    [56] Bradlley J W, Backer H, Kelly P J. Time-resolved Langmuir probe measurements at the substrate position in a pulsed mid-frequency DC magnetron plasma. Surface and Coating Technology, 2001, 135: 221-228
    [57] Marius D. Stamate. On the non-linear I-V characteristics of dc magnetron sputtered TiO2 thin films. Applied Surface Science, 2003, 205: 353-357
    [58] Nanbu K, Segawa S, Kondo S. Self-consistent particle simulation of three-dimensional dc magnetron discharge. Vacuum, 1996, 47(6-8): 1013-1016
    [59] Muratore C, Moore J J, Rees J A. Electrostatic quadrupole plasma mass spectrometer and Langmuir probe measurements of mid-frequency pulsed DC magnetron discharges. Surface and Coatings Technology, 2003, 163-164: 12-18
    [60] Sheridan T E, Goecker M J, Goree J. Model of energetic dectron transport in magnetron discharges. J. Vac. Sci. Technol., 1990, A 8(3): 30-37
    [61] Sheridan T E, Goecker M J, Goree J. Electron and ion transport in magnetron plasmas. J. Vac. Sci. Technol., 1990, A 8(3): 1623-1626
    [62] Sheridan T E, Goecker M J, Goree J. Pressure dependence of ionization efficiency in sputtering magnetrons. Appl. Phys. Lett., 1990, 57(20): 1080-1082
    [63] Goree J and Sheridan T E. Magnetic field dependence of sputtering magnetron efficiency. Appl. Phys. Lett., 1991, 59(9): 1052-1054
    [64] Myers A M, Doyle J R, Abelson J R. Monte Carlo simulations of magnetron sputtering particle transport. J. Vac. Sci. Technol., 1991, A9: 614-618
    [65] Miranda J E, Goechner M J, Goree J, Monte Carlo simulation of ionization in a magnetron plasma. J. Vac. Sci. Technol., 1990, A8(3): 1627-1631
    [66] Yang Y G, Johnson R A, Wadley N G. A Monte Carlo simulation of the physical vapor deposition on nickel. Acta mater., 2004, 45: 1455-1468
    [67] Shuji Hondo, Kenichi Nanbu. Axisymmetdcal particle-incell/Monte Carlo simulation of narrow gap planar magnetron plasmas. Ⅰ. Direct current-driven discharge. J. Vac. Sci. Technol., 2001, A19: 830-837
    [68] Shuji Hondo, Kenichi Nanbu. Axisymmetrical particle-incell/Monte Carlo simulation of narrow gap planar magnetron plasmas. Ⅱ. Redio frequency-driven discharge. J. Vac. Sci. Technol., 2001, A19: 838-847
    [69] Bradley J W and Lister G. Model of the cathode fall region in magnetron discharges. Plasma Sources Sci. Technol., 1997, 6: 524-532
    [70] Tsutomu Miura, Tatsuo Asamaki. A theory on planar magnetron discharge. Thin Solid Films, 1996, 281-282: 190-193
    [71] Shon C H, Lee J K. Modeling of magnetron sputttering plasmas. Applied Surface Science, 2002, 192: 258-269
    [72] Bradley J W, Arnell J D, Armour D G. Measurement and modeling of the bulk plasma in magnetron sputtering sources. Surface and Coating Technology, 1997, 97: 538-543
    [73] Liebig J S, Frach P, Bartzch H, et al. Numerical modeling of charged particle motion in electric and magnetic fields to assist magnetron design. Surface and Coatings Technology, 1997, 97: 626-632
    [74] Bradley J W, Thompson S and Aranda Y. Measurement of the plasma potential in a magnetron discharge and the prediction of the electron drift speeds. Plasma Sources Sci. Technol., 2001, 10: 490-501
    [75] Guimares F, Bretagne J. Study of an argon magnetron discharge used for molybdenum sputtering. Plasma Sources Sci. Technol., 1993, 2: 127-144
    [76] 王恩哥.薄膜生长中的表面动力学(Ⅰ).物理学进展,2003,23:1-61
    [77] Durnay B, Finot E, Theobald M et al. Structure of amorphous hydrogenated carbon films prepared by radio frequency plasma enhanced chemical vapor deposition. An analogy with the structure zone model developed for metals. Journal of applied physics, 2002, 92: 6572-6581
    [78] Movchan B A, Demchishin A V, Phys. Met. Metallogr., 1969, 28, 83
    [79] Thornton J A. The microstructure of sputter-deposited coatings. J. Vac. Sci. Technol., 1974, 11(4): 666-670; 1975, 12(4): 832-835; 1986, A4(6): 3059-3065
    [80] Kelly P J and Arnell R D. Development of a novel structure zone model relating to the closed-field unbalanced magnetron sputtering system. J. Vac. Sci. Technol., 1998, A 16(5): 2858-2869
    [81] 罗思 J R.工业等离子体工程.北京:科学出版社,1998,162
    [82] Bradley J W and Cecconello M. Modifying the electrical characteristics of magnetron sputtering source using hollow cathode structured targets. Vacuum, 1998, 49: 315-329
    [83] Mohan Rao G and Mohan S. Studies on glow-discharge characteristic during dc reactive magnetron sputtering. J. Appl. Phys., 1991, 69: 6652-6655
    [84] Zhehui Wang and Samuel A Cohen. Geometrical aspects Of a hollow-cathode planar magnetron. Physics of plasmas, 1999, 6: 1655-1666
    [85] Belkind A, Jansen F. Anode effects in magnetron sputtering. Surface and Coating Technology, 1998, 99: 52-59
    [86] Westwood W D and Maniv S. The current-voltage characteristic of magnetron sputtering systems. J. Appl. Phys., 1983, 54(12): 6841-6846
    [87] Pekker L and Krasheninnikov S I. On the theory of low-pressure magnetton glow discharge. Physics of Plasma, 2000, 7: 382-390
    [88] Kuwahara K, Fujiyama H. Relation between cathode-fall and ion-sheath thicknesses in multi-electrode-type magnetron discharges. I998, 98: 1347-1350
    [89] Kusumoto Y, Iwata K. Numerical study of the characteristics of erosion in magnetron sputtering. Vacuum, 2004, 74: 359-365
    [90] Hiroshi Fujiyama, Kiyoshi Kuwahara. Magnetron plasma for large-area uniform sputtering. Surface and Coatings Technology, 1995, 74-75: 75-79
    [91] Musil J, Baroch P, Pplakova H. Magnetron with gas injection through hollow cathodes machined in sputtering target. Surface and Coating Technology, 2001, 148: 296-304
    [92] Bugaev S P, Sochugov N S. Production of large-area coatings on glasses and plastics. Surface and Coatings Technology, 2000, 131: 474-480
    [93] Depla D, Gryse R De. Target poisoning during reactive magnetron sputtering: Part Ⅰ: the influence of ion implantation. Surface and Coatings Technology, 2003, ⅹⅹ: 184-189
    [94] Depla D, De Gryse R. Target poisoning during reactive magnetron sputtering: Part Ⅱ: the influence of chemisorption and gettering. Surface and Coatings Technology,2004, 183:190-195
    [95] Depla D, De Gryse R. Target poisoning during reactive magnetron sputtering: Part Ⅲ: the prediction of the critical reactive gas mole fraction. Surface and Coatings Technology, 2004,183:196-203
    [96] Wang A Y and Chang C L. Influences of optical emission setting on wear performance of metal-doped diamond-like carbon films deposited by unbalanced magnetron sputtering. Thin Solid films, 2001,392:11-15
    [97] Safi I. A novel reactive magnetron sputtering technique for producing insulating oxides of metal alloys and other compound thin films. Surface and Coating Technology, 2000,135:48-59
    [98] Bretagne J, Gousset G, Trennepohl Jr W. Plasma-surface interaction modelling of d.c. reactive magnetron discharges. Surface and Coatings Technology, 1997,97:611-617
    [99] Tsukasa Kobayashi. Computer simulation of gas rarefaction effects and film deposition characteristics in a magnetron sputtering apparatus. Applied Surface Science, 2001,169-170:405-409
    [100] Latz R, Daube C, Haranou T,et al. Microwave plasma assisted sputtering. Journal of non-crystalline solids,1997,218:329-334
    [101] Ma T C, Deng X L, Lu W Q, et al. Synthesis of ceramic films on metallic substrates using magnetron-sputtering deposition synchro-enhanced by microwave ECR plasma source ion implantation under high vacuum conditions. Pure & pl. Chem., 1998, 70:1199-1202
    [102] Hopwood J and Qian F. Mechanism for highly ionized magnetron sputtering. J. Appl. Phys., 1995,78:758-762
    [103] Window B and Harding G L. Magnetron sputtering sources for ferromagnetic material. J. Vac. Sci. Technol., 1985, A3(1): 10-13
    [104] Wu Weidong, Cheng Zhimei,Gao Dangzhong, et al. The production of Fe film targets using enhanced magnetron sputtering. Nuclear Instruments and Methods in Physics Research A, 2002, A480:98-103
    [105] Bradley J W, backer and Aranda-Gonzalvo Y et al. The distribution of ion energies at the substrate in an asymmetric bi-polar pulsed DC magnetron discharge. Plasma Sources Sci. Technol.,2002,11:165-174
    [106] Kaufman H R and Harper J M E. Ion doses for low-energy ion-assist applications. J. Vac. Sci. Technol, 2004, A22(1): 221-224
    [107] Sheridan T E, Goecker M J, Goree J. Observation of two-temperature of a sputtering magnetron plasma. J. Vac. Sci. Technol, 1991, A9(3): 688-690
    [108] Gracin D, Denkelmann R, Maurmann S. LIF Spectroscopy of a Cylindrical
     Magnetron Discharge. Contrib. Plasma Phys., 2000, 40(1-2): 120-125
    [109] Szikora B. Bohm criteria in magnetron plasma Vacuum, 2001, 61: 397-401
    [110] Nicheal Wight and Terry beardow. Design advances and application of the rotatable cylindrical magnetron. J. Vac. Sci. Technol., 1986, A4(3): 388-392
    [111] Sheridan T E. Simulation of plasma-based ion implantation of a sawtooth target. Surface and Coatings Technology, 1997, 93: 225-228
    [112] Perry F, Stander B, Henrion G. Plasma diagnostics for the control of reactive magnetron deposition process. Surface and Coatings Technology, 1995, 74-75: 575-579
    [113] Petrov I, Adibi F, Freene J E, et al. Use of an externally applied axial magnetic field to control ion/neutral flux ratios incident at the substrate during magnetron sputter deposition. J. Vac. Sci. Technol., 1992, A10(5): 3283-3287
    [114] 牟宗信,李国卿,柳翠.有开放约束磁场磁控溅射系统等离子体引出.真空科学与技术,2003,4:243-247
    [115] 牟宗信,李国卿,车德良.非平衡磁控溅射系统伏安特性模型研究.物理学报,2004,53:372-375
    [116] Shin C-S, Kim Y-K, Hellgren N, et al. Epitaxial growth of metastable δ-TaN layers on MgO(001) using low-energy, high-flux ion irradiation during ultrahigh vacuum reactive magnetron sputtering. J. Vac. Sci. Technol., 2002, A20(6): 2007-2017
    [117] Petrov I, Barna P B, Hultman L. Microstructural evolution during film growth. J. Vac. Sci. Technol., 2003, A 21(5): S117-S128
    [118] Petrov I, Greene J E, et al. Polycrystalline TiN films deposited by reactive bias magnetron sputtering: Effects of ion bornbardment on resputtering rates, films composition and microstructure. J. Vac. Sci. Technol., 1992, A 10(2): 265-272
    [119] Haufman L, Bergstrom D B, Sundgren J E, et al. High-flux low-energy (-20 eV) Mg ion irradiation during TiN deposition by reactive magnetron sputtering: Effects on microstructure and preferred orientation. J. Appl. Phys., 1995, 78 (9): 5395-5403
    [120] Sproul W D, Robed J R. Correlation of plasma properties and magnetic field characteristics to TiN films properties formed using a dual unbalanced magnetron. J. Vac. Sci. Technol., 1991, A9(3): 1178-1183
    [121] Fujimald S, ashiwase H K, Kokako Y. New DLC coating method using magnetron plasma in an unbalanced magnetic field. Vacuum, 2000, 99: 657-664
    [122] Sproul W D. Multi-cathode unbalanced magnetron sputtering systems. Surface and coatings Technology, 1991, 49: 284-289
    [123] Groudeva-Zotova S. Double unbalanced magnetron sputtering system used for ion-assisted thin films deposition. Vacuum, 1998, 51: 119-126
    [124] Eiji Shidoji, Toshiaki Makabe. Magnetron plasma structure with strong magnetic field. Thin Solid Films, 2003, 442: 27-31
    [125] 吴大维,付德君,毛先维等.C_3N_4/TiN交替复合膜的微观结构研究.物理学报,49:904-912
    [126] Boo J H, Park H K, Nam K H, et al. High rate deposition of poly-Si thin films at low temperature using a new designed magnetron sputtering source. Surface and Coatings Technology, 2000, 131: 211-215
    [127] Buc D, Hotovy I. Reactive unbalanced magnetron sputtering of AlN thin films. Vacuum, 50: 121-123
    [128] Hovsepian P E, Lewis D B, Munz W D, Chromium nitride/niobium nitride superlattice coatings deposited by combined cathode-arc/unbalanced magnetron technique. Surface and Coatings Technology, 1999, 116-119: 727-734
    [129] Patrick R. LeClair. BHD Thesis: Titanium Nitride Thin Films by the Electron Shower Process. 1998, Massachusetts Institute of Technology, P13
    [130] Zhang Z Y and Legally M G. Atomistic processes in the early stages of thin film growth. Scince, 1997, 276: 377-383
    [131] Messier R, Venugopal V C, Sunal P D. Origin and evolution of sculptured thin films. J. Vac. Sci. Technol., 2000, A 18(4): 1545-1538
    [132] Groudeva-Z S, Kaltofen R, Sebald T. DC reactive magnetron sputter deposition of (111) textured TiN films-influence of nitrogen flow and discharge power on the texture formation. Surface and Coatings Technology, 2000, 127: 144-154
    [133] Hultman L, Munz W-D, Musil J. Low-energy ion irradiation during growth of TiN deposited by reactive magnetron sputtering: Effects of ion flux on film microstructure. J. Vac. Sci. Technol., 1991, A 9(3): 434-438
    [134] Walkowicz J, Miernik K, Zykov A, et al. Pulsed-plasma assisted magnetron methods of depositing TiN coatings. Surface and Coatings Technology, 2000, 125: 341-346
    [135] Guruvenket S, Mohan Rao G. Bias induced structural changes in tungsten nitride films deposited by unbalanced magnetron sputtering. Materials Science and Engineering, 2004, B106: 172-176
    [136] Craig S, Harding G L. effects of argon pressure and substrate temperature on the structure and properties of sputtered copper films. J. Vac. Sci. Technol., 1981, 19(2): 206-215
    [137] Jacobsohn L G and Freire F L. Influence of the plasma pressure on the microstructure and on the optical and mechanical properties of amorphous carbon films deposited by direct current magnetron sputtering. J. Vac. Sci. Technol., 1999, A17(5): 2841-2849
    [138] Li-Jian Meng, dos Santos M P, Characterization of titanium nitride films prepares by d. c. reactive magnetron sputtering at different pressures. Surface and Coatings Technology, 1997, 90: 64-70
    [139] Musil J. Low-pressure magnetron sputtering. Vacuum, 1998, 50: 363-372
    [140] Ehiasarian A P, New R, Muaz W-D. Influence of high power densities on the composition of pulsed magnetron plasmas. Vacuum, 2002, 65: 147-154
    [141] Colen M, Bunshah R F. Synthesis and characterization of yttriumoxide(Y2O3) deposits. J. Vac. Sci. Technol., 1978, 13(1): 536-539
    [142] Mounier E, Pauleau Y. Effect of energetic particles on the residual stresses in nonhydrogenated amorphous carbon films deposited on grounded substrates by dc magnetron sputtering. J. Vac. Sci. Technol., 1996, A 14(4): 2535-2543
    [143] Sam Zhang, Deen Sun, Yongqing Fu, et al. Recent advances of superhard nanocomposite coatings: a review. Surface and Coatings Technology, 2003, 167: 113-119
    [144] Sproul W D. Multilayer, multicomponent, and multiphase physical vapor deposition coatings for enhanced performance. J. Vac. Sci. Technol., 1994, A12(4): 1595-1601
    [145] Musil J, Vlcek J. Magnetron sputtering of hard nanocomposite coatings and their properties. Surface and Coatings Technology, 2001, 142-144: 557-566
    [146] Kyung H Nam, Min J Jung, Jeon G. Han. A study on the high rate deposition of CrN_x films with controlled microstructure by magnetron sputtering. Surface and Coatings Technology, 2000, 131: 222-227
    [147] Wang Y Y, Wong M S, Chia W J. Synthesis and characterization of highly textured polycrystalline AlN/TiN supperlattice coatings. J. Vac. Sci. Technol., 1998, A16(6): 3341-3347
    [148] Chu X, Won M S, Barnet S A. Deposition and properties of polycrystalline TiN/NbN supperlattice coatings. J. Vac. Sci. Technol., 1992, A 10(4): 1604-1609
    [149] Musil J, Vlcek J. A perspective of magnetron sputtering in surface engineering. Surface and Coatings Technology, 1999, 162-169
    [150] Broitman E, Hellgren N, Zs. Czigany. Structural and mechanical properties of diamond-like carbon films deposited by direct current magnetron sputtering. J. Vac. Sci. Technol., 2003, A21(4): 851-859
    [151] PolakovaH, Kubasek M, Cerstvy R. Control structure in magnetron sputtered thin films. Surface and Coatings Technology, 2001, 142-144: 210-205
    [152] Ryuta Ai, Kiyotaka Wasa, Yoko Ichikawa. Magnetron sputtering cathode with confined magnetic flux. Vacuum, 2000, 59: 466-471
    [153] Rohde S L and Sproul W D. Correlations of plasma properties and magnetic field characteristic to TiN film properties formed using a dual unbalanced magnetron system, J. Vac. Sci. Technol., 1991, A9(3): 1176-1183
    [154] Dauchot J P, Gouttebaron R, Cornelissen D. Synthesis of stoichiometric zirconium nitride by d. c. reactive magnetron sputtering pulsed at low frequency: characterization by ESCA, SIMS and electron microprobe. Surface and interface analysis-Surf. Interface Anal., 2000, 30: 607-611
    [155] Shin C-S, Rudenja S, Gall D, et al. Growth, surface morphology, and electrical resistivity of fully strained substoichiometric epitaxial TiNx-0.67/x-1.0 layers on MgO(001). Journal of applied physics, 2004, 95:
    [156] Patsalas P, Gravalidis C, and Logothetidis S. Surface kinetics and subplantation phenomena affecting the texture, morphology, stress, and growth evolution of titanium nitride films. Journal of applied physics, 2004, 96: 6234-6246
    [157] Yeong Yan Guu, Jen Fin Lin. The tribologlcal characteristics of titanium nitride coatings Part Ⅱ. Comparisons of two deposition processes. Wear, 1996, 194: 22-29
    [158] Yeong Yah Guu, Jen Fin Lin, Chi-Fong Ai. The tribologlcal characteristics of titanium nitride coatings Part Ⅰ. Coating thickness effects. Wear, 1996, 194: 12-21
    [159] Bal, Costa M J, McDonald J F et al. Effect of substrate surface roughness on the columnar growth of Cu films. J. Vac. Sci. Technol., 1994, A9(4): 2113-2117
    [160] Roy R A, Messier R. Preparation-physical structure relations in SiC sputtering films. J. Vac. Sci. Technol., 1984, A2 (a): 312-315
    [161] Musil J, Vlcek J. Magnetron sputtering of alloy and alloy-based films. Thin Solid Films, 1999, 47-50: 343-344
    [162] Transient charging effects on insulating surface exposed to a plasma during pulse biased dc magnetron sputtering, J. Appl. Phys., 2001, 90: 5898-5903
    [163] 张建民,徐可为.薄膜中异常晶粒生长理论及能量各向异性分析.物理学报,2003,52:1207-1212
    [164] Knorr D B Tracy. A review of microstructure in vapor deposition copper thin films. Material Chemistry and Physics, 1995, 41: 206-216
    [165] Savaloni H, Taherizadeh A, Zendehnam A, Residual stress and structural characteristics in Ti and Cu sputtering films on glass substrates at different substrate at different substrate temperature and film thickness. Physica B, 2004, 349: 44-55
    [166] Chiu K F, Barber Z H and Somekh R E. The control of film stress using ionized magnetron sputtering deposition. Thin Solid Films, 1999, 343-344: 39-42
    [167] Sulivan B T, Parsons R R. A spectrollipsometric investigation of the effect of argon partial pressure on sputtered palladium films. J. Vac. Sci. Technol., 1987, A5(6): 3399-3407
    [168] Sun S S. Internal stress in ion beam sputtered molybdenum films. J. Vac. Sci. Technol., 1986, A4(3): 572-576
    [169] Zhao J P, Chen Z Y, Wang X, et al. The influence of ion energy on the structure of TiN films during filtered arc deposition. Nuclear Instruments and Methods in Physics Kesearch B, 1998, 135: 388-391
    [170] Westra K L, Thomason D J. The microstructure of thin films observed using atomic force microscopy. Thin Solid Films, 1995, 257: 15-21
    [171] Mausbach M. Microstricture of copper films condensed from a copper plasma with ion energies between 2 and 150eV. Surface and Coatings Technology, 1995, 74-75: 264-272
    [172] Assouar M B, Elmazria O, Elhakiki M and Alnot P. Study of structural and microstructural properties of AlN films deposited on silicon and quartz substrates for surface acoustic wave device. J. Vac. Sci. Technol., 2004, B22(4): 1722
    [173] Cueff R, Baud G, Besse J P. Study of thin alumnia coatings sputtered on polyethylene terephthaleate films. Thin Solid Films, 1995, 266: 198-204
    [174] Ekinci K L and Valles JR J M. formation of polycrystalline structtre in metallic dilms in the early stages of zone I growth. Acta mater., 46: 4549-4557
    [175] Adamik, Barna P B, Tomov I. Columnar structures in polycrystaltine thin films developed by competitive growth. Thin Solid Films, 1998, 317: 64-68
    [176] Alejandro B R. Model of texture development in polycrystalline films growing on amorphous substrates with different topographies. Thin Solid Films, 2001, 389: 288-295
    [177] Savaloni H and Mehran G S. A computer model for the growth of thin films in a structure zone model. Nanotechnology, 2004, 15: 311-319
    [178] Barna P B, Adamik M. Fundamental structure forming phenomena of polycrystalline films and the structure zone models. Thin Solid Films, 1998, 317: 27-33
    [179] Blevin H A, Haydon S C. Townsend ionization coefficients in croosed electric and magnetic fields. Austral. J. Phys., 1958, 11: 18-34
    [180] Labun A H, Capjack C E, Seguin H J J. Electron dynamics in magnetism CO2 laser and He discharge. J. Appl. Phys.,1990, 68: 3935-3946
    [181] 菅井秀郎编著.等离子体电子工程.北京:科学出版社,2002.P49
    [182] Wang E Y, Intrator T, Hershkowitz H N et al. Direct indication technique of plasma potential with differential emissive probe. Rev. Sci. Instrum., 1985, 56(4): 519-524
    [183] Lagarde T, Arnal Y, Lacoste A, et al. Determination of the EEDF by Langmuir probe diagnostics in a plasma excited at ECR above a multipolar magnetic field. Plasma Sources Science and Technology, 2001, 10: 181-190
    [184] 刘明海,胡希伟,邬钦崇等,2000物理学报 49 497
    [185] 牟宗信,李国卿,黄开玉.非平衡磁控溅射系统的离子束流控制.核聚变与等离子体物理,2004,24:225-230

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700