射频反应磁控溅射法制备Al_2O_3薄膜结构与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化铝(Al_2O_3)薄膜具有许多优良的物理化学性能,在机械、光学及微电子等高科技领域有着广泛应用,一直受人们高度关注。尤其是Al_2O_3薄膜具有非常高的硬度(可达20~30GPa)和高温稳定性(α—Al_2O_3熔点为2015℃),在机械领域作为保护涂层涂覆在器件上可提高寿命减少经济损失。目前,制备薄膜的方法很多,磁控溅射法具有高速、低温的优点得到越来越多的应用。然而溅射工艺参数的选取以及沉积的薄膜结构和性能是人们主要关注的课题。
     本文采用射频反应磁控溅射技术在Si(001)和不锈钢衬底上制备出Al_2O_3薄膜,用XRD、AFM、XPS、和显微硬度计等测试手段对沉积的薄膜进行了表征。结果表明,Al_2O_3薄膜沉积速率对射频功率、溅射气压、靶基距、氧气流量等溅射工艺参数有很大的依赖性并随之规律性变化;室温沉积的Al_2O_3薄膜是典型的非晶态结构;薄膜中O:Al位于1.50附近,基本达到理想配比。随着沉积温度的不断增加,Al_2O_3薄膜沉积速率无明显变化;薄膜结构在沉积温度为500℃时开始向晶态γ-Al_2O_3转化;Al_2O_3薄膜的粗糙度R_(RMS)和Ra都不断增加;薄膜的显微硬度也不断增加。
     另外,对沉积在不锈钢衬底上不同厚度的Al_2O_3薄膜进行了800℃/6h和1000℃/6h的退火处理,研究了膜层厚度和退火温度对Al_2O_3薄膜的晶体结构、表面形貌和显微硬度的影响。研究结果表明,膜层厚度对Al_2O_3薄膜的结构基本没有影响,但随厚度的增加,薄膜的显微测试硬度受衬底的影响减小。非晶Al_2O_3薄膜经不同温度退火处理后XRD实验数据表明其相变过程是:非晶a-Al_2O_3→γ-Al_2O_3(主晶相)+α-Al_2O_3+κ-Al_2O_3(800℃)→α-Al_2O_3(主晶相)+γ-Al_2O_3+δ-Al_2O_3+θ-Al_2O_3+κ-Al_2O_3(1000℃),并且结晶状况愈来愈好,薄膜变得更加致密。薄膜的粗糙度随退火温度的增加而增加,显微硬度也随之不断增大。退火温度为1000℃时,1000nm厚的Al_2O_3薄膜的显微硬度可达23GPa。
Aluminum oxide( Al_2O_3)thin films are widely used in mechanical, optical and microelectronic applications because of their excellent physical and chemical properties. Especially, Al2O3 thin films have very high hardness(up to 20~30 GPa) and very good thermal stability(melting point of α-Al2O3 is 2015℃). As a result, Al2O3 thin films may be coated on the devices as a protective coating to elongate their lifetimes and decrease the economic loss. At the present time, there are a lot of methods to prepare thin films and magnetron sputtering technique is more and more widely used to deposit all sorts of thin films due to its high sputtering velocity and low temperature. However, it is still a question how to determine sputtering process parameters, microstructure and properties of thin films.In this paper, Al2O3 thin films are successfully deposited by radio frequency (RF) reactive magnetron sputtering on silicon wafer and stainless-steel substrates. The properties of thin films are characterized in terms of x-ray diffraction (XRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and micro-hardness tester and so on. The result shows that the deposition rates of Al2O3 thin films are dependent on the process parameters used such as radio frequency power, sputtering pressure, target-to-substrate distance, and oxygen flow rate;Al2O3 thin films deposited on room temperature are a typical amorphous and columnar structure;the oxygen/aluminum atomic ratio in the deposited film is in the vicinity of 1.50. With the increase of the substrate temperature, the deposition rate of Al2O3 thin films are very stable, the phase of thin films begins to transit from amorphous Al2O3 to γ-Al2O3 at deposition temperature of 500℃ , the roughness Rrms and Ra and micro-hardness of Al2O3 thin films increase continually.In addition, the different thickness aluminum oxide thin films deposited on stainless-steel substrates are annealed at 800 ℃ and 1000℃ for 6 hours, respectively. It is studied that the film thickness and annealing temperature have an influence on crystalline structure, surface morphology and micro-hardness of Al2O3 thin films annealed. The experimental results show that the film thickness has nearly influence on microstructure, while influence from the substrate on the
    film micro-hardness measured decreases with the increase of the film thickness. XRD shows that the process of phase transition of amorphous aluminum oxide thin film is a-Al2O3-> y-Al2O3 (majority) + a-Al2O3 (minority) +k-A12O3(800°C) ^a-Al2O3(majority)+y-Al2O3 (minority) + 5-Al2O3 + 0-Al2O3 +k-A12O3 (1000°C). Crystallization and density of films get better. The square roughness and micro-hardness of A12O3 thin films are increasing with the increase of annealing temperature. When the annealing temperature is 1000°C, micro-hardness of A12O3 thin film whose thickness is lOOOnm is up to 23GPa.
引文
[1] J. A. Venables, G. D. T. Spiller and M. Harbucken, Rep. Prog. Phys. 1984, 47: 399.
    [2] K. Reichelt, UHV Apparatus for Electron-stimulated Desorption: Experimental Procedure and Characteristics. Vacuum, 1988, 38: 1038.
    [3] J. A. Venables and G. I. Price. Epitaxial Growth (Academic, New York, 1975), Part B, Chap 4.
    [4] B. Lewis and J. C. Anderson. Nucleation and Growth of Thin Films(Academic, New York, 1978).
    [5] G. Zinsmeister. A contribution to Frenkel's theory of condensation[J]. Vacuum, 1966, 16: 529.
    [6] 姜燮昌.薄膜科学与技术手册[M].1990,10.
    [7] 钱苗根,姚寿山,张少宗.现代表面技术[M].北京:机械工业出版社,1994:219.
    [8] 王喜娜,敬承斌,赵修建.溶胶—凝胶法制备致密α—Al_2O_3涂层的研究[J]材料科学与工艺,2005,2:1-3
    [9] O. Zywitzki, G. Hoetzsch. Influence of coating parameter on the structure and properties of Al_2O_3 layers reactively deposited by means of pulsed magnetron sputtering[J]. Surf. Coat. Technol. 1996, 86/87: 640-647.
    [10] Y. Yamada-Takamura, F. Koch, H. Maier, H. Bolt. Characterization of α—phase aluminum oxide films deposited by filtered vacuum arc[J]. Surf. Coat. Technol., 2001, 142-144: 260~264.
    [11] O. Zywitzki, G. Hoetzsch, Correlation between structure and properties of reactively deposited Al_2O_3 coatings by pulsed magnetron sputtering[J]. Surf. Coat. Technol.. 1997, 95: 303~308.
    [12] Jochen M. Schneider, William D. Sproll. Crystalline alumina deposited at low temperature by ionized magnetron sputtering, journal of vacuum science and technology[J]. 1997, 15(3): 1084.
    [13] M. Birkholz, U. Albers, T. Jurg. Nanocomposite layers of ceramic oxides and metals prepared by reactive gas-flow sputtering[J]. Surface and Coatings Technology, 2004. 179: 279-285.
    [14] 朱祖芳.铝合金阳极氧化与表面处理技术[M].化学工业出版社.2004,pp:11-13.
    [15] Karikoski, Jorma Holse, Pierre Juliet. Properties of aluminum oxide thin films deposited by reactive magnetron sputtering[J]. Thin Solid Films, 1999, 339: 240~248.
    [16] 谭训彦,王昕,尹衍升等.α-Al_2O_3的晶体结构和价电子结构[J].中国有色金属学报,2002,12(1):18~23.
    [17] 张孝文,薛万荣,杨兆雄.固体材料结构基础[M].北京:中国建筑工业出版社,1980.152.
    [18] 李世普.特种陶瓷工艺学[M].武汉:武汉工业大学出版社,1990.83.
    [19] Frieser R G. J Electrochem Soc.1996, 113: 357.
    [20] Thornton J A, Chin J. Ceram Bull. 1977, 56: 504.
    [21] Salama C A T J Eletrochem Soc. 1970, 117: 913.
    [22] Dragoo and A L, Diamond J. J Am Ceram Soc. 1967, 50: 568.
    [23] 张煦.未来的全光通讯网[J].光通讯技术,1995,19:91~97.
    [24] 赵玉文.用等离子体化学工艺制备Al_2O_3薄膜[J].硅酸盐学报.1994,22(1):102~106.
    [25] G N ven den Hoven, Snoeks E, Polman A. Photolum in escence characterization of Erim planted Al_2O_3 films[J]. FOM-Institute for Atomic and Molecular Physics, 1994, 62: 3065~3067.
    [26] 梁燕萍.多孔氧化铝介质膜的光功能特性[J].材料保护,2000,33(5):26~28.
    [27] Kwatera A. Carbon—doped α-Al_2O_3 films synthesized on cemented carbide tools by the metal organic LPCVD technique[J]. Thin Solid Films, 1991, 200: 19.
    [28] Zhang Xuping, Chert Guoping. Proc of SPIE, 1996;2892: 28.
    [29] M Kharraziolsson, K. Macak, W. GRAF. Reactive dc magnetron sputter deposited Al_2O_3 films: large area coatings for industrial applications[J]. Surface and Coatings Technology, 1999, 122: 202~207.
    [30] 茅昕辉,张浩康,陈国平.用于LCD的氧化铝阻挡层的射频反应溅射沉积及其性能研究[J].光电子技术,1998,18(2):134~137.
    [31] Dong-Hau Kuo, Bo-Yu Cheung, Ren-Jyewu Growth and properties of alumina films obtained by low-pressure metal-organic chemical vapor deposition [J]. Thin Solid Films. 2000, 398~399: 35~40.
    [32] M. A. Novice, J. A. Bennett and K. B. Cross. J. Vac. Sic. Technol.1, 1964, 73.
    [33] E. Krikorian: 13th AVS. Symp., 1966, p: 175, Herbick and Held Printing Co., Pittsburg, Pa.
    [34] R. B. Schilling. Proc. IEEE, 1964, 52: 1350.
    [35] Musil J. Recent advances in magnetron sputtering technology[J]. Surface and Coatings Technology, 1998, 100~101: 280~286.
    [36] ARNEELRD, KELLYPJ. Recent advances in magnetron sputtering[J]. Surface and Coatings Technology, 1999, 112: 170~176.
    [37] Y. Miyagawa, S. Nakao, M. Ikeyama, S, Miyagawa. Surface and Coatings Technology, 2001, 136: 122~126.
    [38] Xing-zhao Ding, Fu-min Zhang, Xiang-huai Liu, P. W. Wang, W. G. Durrer, W. Y. Cheung, S. P. Wong, I. H. Wilson. Thin Solid Films, 1999, 346: 82-85.
    [39] S. Aisenberg, F. M. Kimock. Mater. Sci. Forum, 1990, 52~53: 1~40.
    [40] Q. Wei and J. Narayan. Internationals Materials Reviews, 2000, 4(45): 133~164.
    [41] 李美成,杨建平,王菁等.脉冲激光薄膜制备技术[J].真空与低温,2000,6(2):63~68.
    [42] GOTTMANNJ, KREUTZEW. Pulsed laser deposition of alumina and zirconia thin films on polymers and glass as optical and protective coating[J]. Surface and Coatings Technology, 1999, 116~119: 1189~1194.
    [43] 文尚胜.现代MOCVD技术的发展与展望[J].华南师范大学学报,1993,3:99~107.
    [44] 田民波等.薄膜科学与技术手册(上)[M].北京:机械工业出版社,1991:520~521.
    [45] 郑伟涛等.薄膜材料与薄膜技术[M].化学工业出版社,2004,1:130~131.
    [46] 甘国友,郭守忠,苏云生.溶胶—凝胶法制备薄膜工艺及其应用[J].昆明理工大学学报,1997,22(1):142~144.
    [47] 王保玲,吴兴惠等.溶胶-凝胶法制备氧化铝薄膜的研究[J].云南大学学报,2002,24(1A):56~57.
    [48] 叶宪曾,江子伟,李赛君等.仪器分析教程[M].北京大学出版社,1997.
    [49] 李学丹,万学英,姜祥棋等.真空沉积技术[M].浙江大学出版社,1994.
    [50] 田民波,刘德令.薄膜科学与技术手册(上)[M].机械工业出版社,1991.
    [51] 孙希泰.材料表面强化技术[M].北京:化工工业出版社,2005,4.
    [52] K.H.哈比希.材料的磨损与硬度[M].联邦德国.
    [53] P. J. Kelly, R. D Arnell. Magnetron sputtering: a review of recent developments and applications[J]. Vacuum, 2000, 56: 159~172.
    [54] P. J. Kelly, J. Hisck, Y. Zhou, R. D. Pilkington and R. D. Arnell. Advance coatings through pulsed magnetron sputtering[J]. Surface Engineering, 2004, 20(3): 157~162.
    [55] 王银川.真空镀膜技术的现状及发展[J].现代仪器,2000,(6):1~4.
    [56] 吴大维,曾昭元,刘传胜等.高速钢镀氮化碳超硬涂层及其应用研究[J].核技术,2003,26(4):279~283.
    [57] 贾嘉.溅射法制备纳米薄膜材料及进展[J].半导体技术,2004,29(7):70~73.
    [58] K. E. Cooke, J. Hampshire, W. Southall and D. G. Teer. Industrial application of pulsed d. c. bias power supplies in closed field unbalanced magnetron sputter ion plating[J]. Surface Engineering, 2004, 20(3): 189~195.
    [59] 孙银洁,马林,齐宏进.磁控溅射法制备防水透湿织物[J].高分子材料科学与工程,2003,19(4):188~191.
    [60] E. S. Thian, J. Huang, S. M. Best, Z. H. Barber, W. Bonfield. Magnetron co-sputtering silicon containing hydroxyapatite thin films an in vitro study[J]. Biomaterials, 2005, 26: 2947~2956.
    [61] 徐万劲.磁控溅射技术进展及应用(上)[J].综述与专论,2005,5.
    [62] 陈荣发.电子束蒸发与磁控溅射镀铝的性能分析研究[J].真空,2003,(2):11~15.
    [63] D. Mart? nez-Mart? nez, J. C. Sanchez-Lopez, T. C. Rojas A. Fernandez, P. Eaton, M. Belin. Structural and microtribological studies of Ti-C-N based nanocomposite coatings prepared by reactive sputtering[J]. Thin Solid Films. 2005, 472: 64~70.
    [64] M. Debessaia, P. Filipb, S. M. Aouasia. Niobium zirconium nitride sputterdeposited protective coatings[J]. Applied Surface Science, 2004, 236: 63~70.
    [65] Kwatera A. Carbon-doped α—Al_2O_3 films synthesized on cemented carbide tools by the metal organic LPCVD technique[J]. Thin Solid Films, 1990, 189: 161.
    [66] AbbottRA, Kamins T I. Solid State Technol, 1981, 24: 182.
    [67] Dorre E, Hubner H, Aluminum(Springer, Berlin. 1984).
    [68] Aboaf J A. J Electrochem Soc, 1967, 114: 948.
    [69] Zaininger K H, Waxman A S. IEEE Trans Electron Devices, 1969, 16: 333.
    [70] 张庆瑜,赵文军,王平生等.离子束辅助沉积Al_2O_3薄膜的微观状态及其物理特性研究[J].真空科学与技术,2003,23(2):123-128.
    [71] 李小换.ZnO和AlN薄膜结构及其性能的研究(M).北京工业大学硕士学位论文,2003.
    [72] 李学丹,万学英,姜祥祺等.真空沉积技术[M].杭州:浙江大学出版社,1984.
    [73] 田民波,刘德令.薄膜科学与技术手册(上册)[M].北京:机械工业出版社,1991.
    [74] 杨邦朝,王文生.薄膜物理与技术[M].成都:电子科学技术大学出版社, 1997:144~160.
    [75] 张随新,陈国平.磁控反应溅射氧化锡的工艺研究[J].真空科学与技术,1995.15(6):415~419.
    [76] K. Koski, J. Holsa, P. Juliet. Deposition of aluminum oxide thin films by reactive magnetron sputtering[J]. Surface coatings and technology, 1999. 116~119: 716~720.
    [77] 严一心,林鸿海.薄膜技术[M].国防工业出版社,1994.
    [78] Zywitzki O, Hortzsch G. Surf. Coat. Technol., 1966, 86~87: 640~647.
    [79] Schneider J M, Sproul W D, Matthew A. Surf. Coat. Technol., 1997, 94~95: 179~183.
    [80] J. A. Yhorton, ANN. Rev. Mater. SCI. 1977, 7: 239.
    [81] Y. H. Sohn, R. R. Bieoerman, R. D. Sisson JR. Thin Solid Films, 1994, 1: 250.
    [82] 薛增泉,吴全德,李洁等.薄膜物理[M].北京:电子工业出版社,1991:337~349.
    [83] 黄胜涛.非晶态材料的结构和结构分析[M].北京:科学出版社,1987:134~349.
    [84] 张庆瑜,赵文军,王平生等.离子束辅助沉积Al_2O_3薄膜的微观状态及其物理特性研究[J].真空科学与技术,2003,2(23):123-128.
    [85] Fischer K, Oettel H. Microstructure gradients in thin hard coatings-tailor made[J]. Surf Coat Technol, 1997, 97: 308~312.
    [86] 田民波,刘德令.薄膜科学与技术手册(下册)[M].北京:机械工业出版社,1991:738.
    [87] Stan Veprek. The search for novel superhard materials[J]. J Vac Sci Technol(A), 1999, 17(5): 2401~2420.
    [88] Shinn M, Hultman L, Barnett S A. Grown structure and microhardness of epitaxial TiN/NbN superlattics[J]. Journal of Material Rescovery, 1992, 7(4): 901~911.
    [89] Cammarata R C, Schlesinger T E. Nanoindentation study of the mechanical properties of copper-nickel multilayered thin films[J]. Applied Physical Letters, 1990, 56(19): 1862~1864.
    [90] Jonsson B, Hogmark S. Hardness Measurements of Thin Films[J]. Thin Solid Films, 1984, 114: 257~227.
    [91] 雷明凯,袁力江,张仲麟.等离子体源增强磁控溅射沉积Al_2O_3薄膜研究[J].无机材料学报,2002,4:887~890.
    [92] Li M K, Li Q, Zhou Z F, et al. Thin Solid Films, 2001, 339: 194~199.
    [93] 李河清、马峰、陈秋龙等.影响薄膜(涂层)硬度测试的因素[J].材料保护, 2001,34(9):45~47.
    [94] Cai X, Bangert H. Hardness Measurements of Thin Films-Determining the Critical Radio of Depth to Thickness Using FEM[J].Thin Solid Films, 1995,264:59 — 71.
    [95] Chechenin N G, Bottiger J, Krog J P. Nanoindentation of Amorphous Aluminum Oxide Films I: The Influence of the Substrate on the Plastic Properties [J]. Thin Solid Films ,1995 ,261 :219~227.
    [96] 吴自勤,王兵等.薄膜生长[M].北京:科学出版社.2001,213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700