金属纳米颗粒电磁/热极性驱动分析与吸收特性实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,金属纳米壳球体的制备和应用研究已经成为材料科学中十分活跃的领域,这类材料因为具有很高的可调控性和独特的光学性质而受到研究者的青睐。金属纳米壳球体在药物缓释、免疫分析、癌症治疗、成像以及生物传感等很多领域有着广阔的应用前景。随着纳米材料制备技术的发展,许多研究组已经依据不同方法制备出了各种尺寸的球状、椭球状、棒状、三角状、棱柱体等形状的金或银纳米颗粒。
     本文介绍了金纳米壳球体消光性的产生机理,金的Drude模型、Mie散射理论,并对文中要用到软件的算法进行了介绍。
     本文提出了一种具有非对称球壳的金纳米壳球体,介绍了该粒子的材料和结构。利用有限积分法针对单个非对称粒子明确了其入射电磁波入射方向、极化方向、粒子椭球形金冠厚度等参数对其电磁极性分布的影响,为选定实际需要的粒子与入射波组合提供依据。而且针对电磁极性的最优组合,分析了单个粒子的热极性,结果表明热极性分布与电磁极性分布有很大关系,电场能量大的位置也就是热量大的位置,增强粒子的电磁极性,热极性也会随之增大。并对多个非对称金壳纳米粒子组合模式进行了分析,结果表明组合模式可以对电场强度的峰值大小和位置进行调节。
     本文针对具有热极性的粒子,讨论了流体初速度、粒子热源朝向、流道热源位置等对流道内流体运动情况的影响。结果表明粒子热源朝向对运动情况基本没有影响;流道添加热源会改变流体速度的分布;流道和流体同时添加热源后,流体大小速度的分布以粒子为界线,在流经粒子前较无大速度出现。压力差比单纯的流道加热源情况要大,对粒子的引导作用也就更强。
     本文使用胶体还原法和分子自组装法制备了以二氧化硅为核金为壳的核壳结构的纳米粒子,并使用扫描电子显微镜和紫外可见光分光光度计对其进行了表征,实验得到的金纳米壳球体形状均匀、粒径均一,粒径大约为160nm,也就是壳厚30nm,吸收峰值在540nm左右。并通过改变实验中试剂的浓度和用量,改变了粒子的核壳比。
In recent years, the research on the fabrication and application of metal nanoshell has become very active in the field of material science. Its high tenability and unique optical properties have attracted much attention of scientists. Metal nanoshells display a wide range of application prospect in the field of drug delivery, immunoassay, cancer treatment, imaging, biological sensor and etc. With the developing of fabrication technique, a variety size of spherical, ellipsoidal, rod-like, triangular-shaped, prism-shaped gold and silver nanoparticles have been fabricated based on different methods.
     In this paper, the mechanism of extinction property is discussed, and the drude model of gold, Mie scattering theory and algorithms used in this paper are introduced.
     A kind of nanoparticle consisting of asymmetrical metal nanoshell and polystyrene core are put forward. With the use of finitude integration technique, the influence of incident direction, polarization direction, the thickness of ellipsoidal shape gold coronal on electromagnetic polarity of single asymmetrical nanoshell are analyzed, which underlie the selection of incident wave and particles properties. For the combination which has the best electromagnetic polarity, its thermal polarity is also calculated. The result shows that the distributions of thermal polarity are closely related to that of electromagnetic polarity, the position where a lot of electric field energy exists also has more heat. So the thermal polarity can be enhanced by strengthening electromagnetic polarity. Some preliminary investigations on combining cluster mode are also carried out for observing the changes of the polarity in multi particles condition. And it indicates that the position of peak of electric field could be adjusted with combining mode, providing a new possibility to control the behavior of particles.
     What would fluidic initial velocity, particle heat source orientation and location of flow channel heat source effect on the fluid motion is discussed. It turns out that particle heat source orientation has nothing to do with fluid motion. When flow channel heat source is added, the distribution of fluid velocity changes. If particle heat source and flow channel heat source are added at the same time, there would be a clearly boundary of fast and slow velocity at the position of nanoparticle. The fast velocities show up at the half channel near the exit, and slow velocities the other half one. The pressure difference is bigger than that of only particle heat source and flow channel heat source, so is the driving power.
     A kind of nanoshell consisting of gold shell and silica core are fabricated using colloid reduction method and molecular self-assembly method. And use SEM, ultraviolet visible spectrophotometer to analyses the characterization. It proves that the shape of nanoshells fabricated here is uniform, and the size is uniformity. The diameter of nanoshell is about 160nm, which means the thickness of gold shell is 30nm. The absorption peak is around 540nm. And at the end of experiment, the core-shell ratio is altered by changing the concentration and amount of reagent.
引文
[1] Gleiter H. On the structure of grain boundaries in metals. Mater Sci&Eng, 1982, 52: 91- 102
    [2]张中太,林元华,唐子龙等.纳米材料及其技术的应用前景.材料工程, 2000, 3: 42-48
    [3]张小塔,宋武林,胡木林,谢长生等.核壳机构纳米复合材料研究进展.材料导报, 2006, 20: 209- 211
    [4] Oldenburg S J, Averitt R D, Westcott S L, et al. Nanoengineering of optical resonance. Chem Phys Lett, 1998, 288: 243 -247
    [5] Christopher Loo, Alex Lin, Leon Hirsch, et al. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technology in Cancer Research & Treatment, 2004, 3(1): 33- 40
    [6]杨晓峰,董相廷,周艳慧等.贵金属核壳纳米粒子最新研究进展.稀有金属材料与工程, 2009, 38: 368-372
    [7]谈勇,丁少华,王毅等.金纳米壳球体的制备及其潜在的生物学应用.化学学报, 2005, 10: 64-68
    [8] Westcott S L, Averitt R D, Wolfgang J A. Adsorbate-induced quenching of hot electrons in gold core-shell nanopaticles. J Phys Chem B, 2011(105): 9913-9917
    [9] Westcott S L, Halas N J.Electron relaxation dynamics in semicontinuous metal films on nanoparticle surfaces. Chem Phys Lett, 2002, 356: 207-213
    [10] Hao E, Li S, Bailey R C, et al. Optical properties of metal nanoshells. J Phys Chem B, 2004, 108: 1224-1229
    [11] Maria E A, Warren C W, Pirjo Laakkonen. Nanocrystal targeting in vivo. PNAS, 2002, 99: 12617-12621
    [12] Hirsch L R, Stafford R J, Bankson J A, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. PNAS, 2003, 100: 13549-13554
    [13]李原芳,方承志,胡小莉.共振光散射技术的原理及在生化研究和分析中的应用.分析化学, 1998, 26(12): 1508-1515
    [14]刘昶时,施维林.表面等离激元共振生物传感分析及应用.光谱实验室, 2004(02): 10- 13
    [15]赵杰,崔大付,韩泾鸿.用表面等离子体谐振(SPR)测量物质的折射率.激光测量, 1999, 10(1): 40-41
    [16] Josrph R C, N J Halas. Optimized plasmonic nanoparticle distributions for solar spectrum harvesting. Applied Physics Letter, 2006, 89: 153120.1-3
    [17] Jiang Z J, Liu C Y. Seed-mediated growth technique for the preparation of a silver nanoshell on a silica sphere. J Phys Chem B,2003(107): 12411-12415
    [18]谈勇,钱卫平.金纳米壳球体的光学特性及其应用研究进展.科学通报, 2005(06): 3-9
    [19] Ryan D, Nagle L, Rensmo H, et al. Programmed Assembly of Binary Nanostructures in Solution. J Phys Chem B, 2002(106): 5371-5377
    [20] Graf C, Blaaderen A V. Metallodielectric colloidal core-shell particles for photonic applications. Langmuir, 2002, 18: 524~534
    [21] Lim T Y, Park O O, Jung H T. Gold nanolayer-encapsulated silica particles synthesized by surface seeding and shell growing method: near infrared responsive materials. J Col Inter Sci, 2003, (263):449-453
    [22]刘钟馨,宋宏伟,于立新等.纳米Au球壳材料的制备及其近红外光热转换性质.发光学报, 2005(03): 126-129
    [23]徐键,徐铁峰,聂秋华.金-氧化硅核壳结构复合球的制备.硅酸盐学报, 2005(01): 19-22
    [24]颜丙海,杨杨,王永昌.金复合纳米微粒的消光特性.光子学报, 2003(06): 59-62
    [25] Mulvaney P, Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir, 1996, 12(3): 788-800
    [26] Sanchez S, Garcia J V. Morphological study of sliver colloids employed in surface-enhanced Raman spectroscopy: Activation when exciting in visible and near-infrared region. J Colloid.Interface.Sci, 1995, 175(2): 358-368
    [27] Fu S Y, Zhang P X. Chemical effect of chloride ions on SERS in silver sol. J. Raman Spectrosc, 1992, 23(2): 93-97
    [28] Liang E J, Engert C, Kiefer W. Surface-enhanced Raman scattering of pyridine in the near-infrared region. J. Raman Spectrosc, 1993, 24(2): 775-779
    [29] Liang E J, Engert C, Kiefer W. Surface-enhanced Raman scattering of halide ions, pyridine and crystal violet on colloidal silver with near-infrared excitation: low-wavenumber vibrational modes. Vibrational Spectrosc, 1995, 8(3): 435-444
    [30]韩卫.金属纳米粒子的电磁场分布及结构优化研究: [硕士士学位论文].成都:电子科技大学, 2010
    [31]陈秉乾,王稼军,程福臻. Drude的金属经典电子论(1900)与超导体的London方程(1935).大学物理, 2007, 26: 8-11
    [32]王磊,周庆.频率相关材料的计算模型分析,大学物理, 2007(26): 48-52
    [33]文尚胜,彭俊彪.固体物理简明教程.广州:华南理工大学出版社, 2007, 176-185
    [34] Singleton J.固体能带理论和电子性质.北京:科学出版社, 2009, 1-7
    [35]李强,王连洲,逯高清等.银包覆PMMA纳米核壳颗粒的局域表面等离激元共振行为的模拟计算.功能材料2010年论文集.重庆:功能材料, 2010, 375-378
    [36]郑春开,等离子体物理.北京:北京大学出版社, 2009, 20-35
    [37]高治文,陈丽娜,赵景星.表面等离激元共振.大学物理实验, 1994, 7: 1-4
    [38]包宇.表面等离子体共振检测系统设计与实现: [硕士士学位论文].长春:东北师范大学, 2008
    [39]关丽,田贵才.小粒子Mie散射理论及应用(Ⅰ).通化师范学院学报, 2001, 22: 30-33
    [40]关丽,田贵才.小粒子Mie散射理论及应用(Ⅱ).通化师范学院学报, 2001, 22: 46-48
    [41]张伟,路远,杜石明等.球形粒子Mie散射特性分析.光学技术, 2010, 36: 936-939
    [42]沈建琪,刘蕾.经典Mie散射的数值计算方法改进.中国粉体技术, 2005, 4: 1-5
    [43]王秉中.计算电磁学.北京:科学出版社, 2002, 1-18
    [44]袁国胜.探地雷达自适应天线的数值仿真: [硕士士学位论文].重庆:重庆大学, 2006
    [45]陈小亮.近场虚拟光探针设计及其光场分布特性研究: [硕士士学位论文].南京:江苏大学, 2006
    [46]王红丽.超宽带(UWB)四臂平面螺旋天线仿真设计: [硕士士学位论文].上海:同济大学, 2008
    [47]于勇. FLUENT入门与进阶教程.北京:北京理工大学出版社, 2008, 49-54
    [48]江帆,黄鹏. Fluent高级应用于实例分析.北京:清华大学出版社, 2008, 1-39
    [49] Tan P, Joseph B. J, N J. Halas, et al. Preparation and Characterization of Gold Nanoshells Coated with Self-Assembled Monolayers. Langmuir, 2002, 18: 4915-4920

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700