基于HMM-SVM的磁流变自抑振智能镗杆颤振在线预报理论和方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于镗杆的长径比通常比较大、镗削系统结构刚度较低,镗削加工过程极易发生颤振,这给精密孔的加工带来了极大的困难,往往导致精密孔加工精度低、表面质量差、加工效率低等问题。为了对镗削颤振进行快速有效的抑制,确保精密孔的加工质量,本文结合浙江省自然科学基金项目(Y104462)和国家自然科学基金项目(50405036),利用理论推导、数值仿真分析和实验研究等手段,对磁流变自抑振智能镗杆镗削颤振的在线识别预报理论和方法展开了深入研究。
     第1章,阐述了课题的研究背景与意义,详细介绍了金属切削颤振及其在线识别预报技术的研究现状和发展趋势,提出了本文的主要研究内容。
     第2章,对金属切削颤振产生机理进行了深入的研究,建立了再生型颤振的系统动力学模型,并对机床金属切削系统的稳定性进行了分析,推导出了金属切削系统稳定性极限图;在此基础上,对变速切削法抑振机理进行了研究,揭示其颤振抑制的本质;研究了系统结构刚度和阻尼对系统稳定性的影响,分析了变刚度切削进行颤振抑制的可行性,最后设计了一种基于磁流变液材料的自抑振智能镗杆,并对其抑振原理进行了阐述。
     第3章,提出了将EMD分解和HHT变换方法引入镗削颤振征兆特征提取过程中,并对其基本理论和实现过程进行深入的研究。首先,利用EMD对镗削振动信号进行分解,并通过将分解所得的IMF分量的能量变化情况与颤振的“能量频移”现象进行对比,验证了EMD分解在镗削颤振征兆特征提取是可行的。其次,再对IMF分量进行Hilbert变换,得到振动信号的时频图,最终快速有效的实现镗削颤振征兆特征的提取。
     第4章,在研究多特征信息融合技术的基础上,提出将FastICA引入到镗削颤振识别预报中,并建立了基于IMF虚拟通道的FastICA镗削颤振征兆信号分离系统,将前一章中所提取的颤振征兆特征进一步融合,从而分离出更能反映颤振征兆的特征信号,经数值仿真分析表明,该方法能有效提高镗削颤振的征兆特征精准度,为后续的镗削状态识别系统打下基础。
     第5章,在对HMM、SVM两个模式识别模型的基本算法、优缺点和适用范围进行深入分析的基础上,结合镗削颤振形成过程中过渡阶段较短且容易与相邻的正常镗削、颤振阶段混淆的特点,提出了一种基于HMM-SVM混合模型的镗削颤振识别系统。在该系统中,HMM作为第一层进行初步筛选,得到镗削过程最为接近的两种可能状态,然后再利用SVM分类器进一步分类识别,得到最终的识别结果,这样既发挥了HMM模型较强的时间序列建模能力,又充分利用了SVM较强的二类分类能力。
     第6章,为了对本文提出的颤振预报理论和方法的正确性进行验证,建立了智能镗杆切削颤振识别预报系统的软硬件实验平台,并开展实验研究。首先,利用EMD对镗削振动信号进行分解,再利用FastICA分离出颤振爆发征兆信号,然后利用HHT进行Hilbert变换,得到镗削颤振征兆特征向量;再次,利用本文提出的HMM-SVM混合模型,进行镗削状态识别预报和颤振抑制实验,并通过实验方法对本文提出的镗削颤振在线预报控制方法的有效性进行验证。
     第7章,对本文的主要研究工作进行总结与展望。
Due to the low structural stiffness of boring bar, chatter occurs frequently during precision hole boring process, it results in low quality of finished surface and even damages the cutting tool. To solve this problem, the theory and method of online chatter prediction for MR intelligent boring bar was studied systematically in this dissertatioa The research work is supported by the Natural Science Foundation of Zhejiang Province (Grant No. Y104462) and the National Natural Science Foundation of China (Grant No.50405036).
     In Chapter1, the background and significance of the research were introduced, the research status and development trend of the technology of online chatter prediction were described in detail. Then, the main research contents of this dissertation were put forward.
     In Chapter2, firstly, the generation mechanism of cutting chatter was studied, the stability of cutting machine tools was analyzed, and the Stability Lobe Diagram of cutting machine tools was derived. Secondly, in order to find out appropriate methods for the chatter suppression, the effect of structural stiffness and damping on system stability was analyzed. Then a magnetorheological fluid based intelligent boring bar was proposed.
     In chapter3, firstly, the Empirical Mode Decomposition (EMD) and Hilbert-Huang Transform (HHT) based method for chatter feature extraction was proposed, and the basic theories of EMD and HHT were investigated. Then, the vibration signal of boring bar was decomposed by EMD and then transformed by HHT. Finally, the features of chatter symptom were extracted by analyzing the Hilbert spectrum of each Intrinsic Mode Function (IMF), which can provide sufficient guarantee for follow-up chatter recognition and prediction.
     In chapter4, based on the study of feature fusion technology, FastICA theory was introduced into boring chatter recognition and prediction field, then the IMF virtual channels and FastICA based chatter symptom separation system was established. The signal-noised separation was accomplished by ICA, and the chatter symptom was gained. The simulation results showed that the EMD-ICA based vibration signal processing could separate the chatter symptom signal rapidly and effectively.
     In chapter5, based on the study of Hidden Markov Model (HMM) and Support Vector Machine (SVM), an HMM-SVM based method for boring chatter recognition method was proposed, and the chatter identification system was established. In the system, HMM was used for the boring status preliminary selection to get two possible boring status, and then SVM was used for the deeper classification, and gain the final recognition results.
     In chapter6, to verify the proposed theory and method, the experimental setup of MR fluid intelligent boring bar was built. Firstly, the boring vibration signal was descomposed by EMD. Then, IMFs were separated by FastICA and gained the chatter symptom signal. Finally, the boring statuses were classified by the HMM-SVM chatter recognition system. Series of experiments were carried out, and the results showed that the method could recognize boring chatter accurately and rapidly, and the intelligent boring bar could suppress chatter efficiently.
     In Chapter7, the main research work of this dissertation was summarized and prospected.
引文
[1]于骏一,吴博达.机械加工振动的诊断、识别与控制[M].北京:清华大学出版社,1994.
    [2]赵宏伟,王晓军,于骏一.机床再生型切削颤振系统稳定性极限预测.西南交通大学学报,2003,38(5):547-552.
    [3]P. Aldabaldetrecu. Machine tool technical evolution (Evolucion tecnica de la maquina-herramienta). Ed. Metalunivers. www.metalunivers.com/arees/historia/general/tecnologica.htm
    [4]W. W. Seto. Mechanical vibration theory and practice (Teoriay problemas de vibraciones mecanicas). Me Graw-Hill Panama,1970.
    [5]S. A. Tobias. Machine tools vibrations (Vibraciones en Maquinas-Herra-mientas), URMO, Spain,1961.
    [6]F. W. Taylor. On the art of cutting metals. A. S. M. E.,1907,Vol.10(6):31-33.
    [7]S. A. Tobias, W. Fishwick. Theory of regenerative machine tool chatter. The engineer.1958, Vol.258.
    [8]N.H. Hanna, S. A. Tobias. Theory of nonlinear regenerative chatter. Journal of Engineering for Industry, Transactions of the A. S. M. E.,1974,Vol.96 Ser. B(1):247-255.
    [9]Elsevier B.V. Scopuss [Database on the Internet]. Available at:http://www.scopus.com.
    [10]G. Quintana, J. Ciurana. Chatter in machining processes:A review. International Journal of Machine Tools and Manufacture.2011,Vol.51:363-376.
    [11]SciVerse Hubs [Database on the Internet]. Available at:http://www.hub.sciverse.com.
    [12]R. P. Faassen. Chatter prediction and control for high-speed milling:modelling and experiments, Technische Universiteit Eindhoven. Thesis,2007.
    [13]R. S. Hahn. On the theory of regenerative chatter in precision-grinding operation. Trans. A. S. M. E., 1954,Vol.76:593-597.
    [14]汤爱君,马海龙.机床再生颤振系统研究现状的综述.机床与液压,2007,35(8):223-225.
    [15]S. Smith, J. Tlusty. NC programming for quality in milling[C].//16th NAMRC.1988:279-286.
    [16]J. Tlusty, L. Spacek. Self-excited vibration in machine tools. Nakl CSAV, Prague,1954.
    [17]J. Tlusty, F. Ismail. Basic nonlinearity in machining chatter. CIRP Annals-Manufacturing Technology, 1981,30(1)299-304.
    [18]王立刚.机床切削颤振的非线性振动研究[硕士学位论文].天津大学,2003.
    [19]王立刚,刘习军,贾启芬.机床颤振的若干研究和进展,机床与液压,2004,11:1-5.
    [20]师汉民.关于机床自激振动的一个非线性理论模型(第一部分).应用力学学报,1984,1(1):1-14.
    [21]师汉民.关于机床自激振动的一个非线性理论模型(第二部分).应用力学学报,1984,2(2):75-88.
    [22]吴雅.机床切削系统的颤振、噪声及其控制—理论于实践[博士学位论文].华中理工大学,1991.
    [23]吴雅,师汉民,梅志坚,杨叔子.金属切削机床颤振理论与控制的新进展.中国科学基金,02:99-105.
    [24]鲁宏伟,杨叔子.基于非线性模型的切削过程的混沌研究.振动工程学报,1996,9(2):169-172.
    [25]Y S. Tarng, H. T. Young, B. Y Lee. An analytical model of chatter vibration in metal-cutting. International Journal of Machine Tools and Manufacture.1994, Vol.34(2):183-197.
    [26]B. Y. Lee, Y S. Tarng, Prediction of specific cutting force and cutting force ratio in turning. Journal of Material Processing Technology.1994, Vol.41(1):71-82.
    [27]B. Y. Lee, Y S. Tarng, S. C. Ma. Modelling of the process damping force in chatter vibration. International Journal of Machine Tools and Manufacture.1995, Vol.35(7):951-962.
    [28]R. N. Arnold. The mechanism of tool vibration in the cutting of steel. Proc. Inter. Mech. Eng.,1946, Vol.154:261-284.
    [29]M. Wiercigroch, A.M. Krivtsov. Frictional chatter in orthogonal metal cutting, Philosophical Transactions:Mathematical, Physical and Engineering Sciences (Series A).2001, Vol.359 (1781): 713-738.
    [30]M. Week, E.Verhaag, M. Gather. Adaptive control for face-milling operations with strategies for avoiding chatter-vibrations and for automatic cut distribution. Annals of the CIRP.1975,Vol.24 (1): 405-409.
    [31]T. Sata, T. Inamura. Development of method to predict and prevent chattering in metal cutting. Annals of the CIRP,1975,Vol.24 (1):309-314.
    [32]T. Inamura, T. Senda, T. Sata. Computer control of chatter in turning operation. Annals of the CIRP, 1977,Vol.25(1):181-186.
    [33]M. D. Tsai, S. Takata, M. Inui M, et al. Prediction of chatter vibration by means of a model based cutting simulation system. Annals of the CIRP,1990,Vol.39(1):447-450.
    [34]K. Shirase, Y Altintas, Cutting force and dimensional surface error generation in peripheral milling with variable pitch helical end mills. International Journal of Machine Tools and Manufacture,1996, Vol.36 (5):567-584.
    [35]N. D. Sims, B. Mann, S. Huyanan. Analytical prediction of chatter stability for variable pitch and variable helix milling tools. Journal of Sound and Vibration,2008, Vol.317:664-686.
    [36]H. Fazelinia, N. Olgac. New perspective in process optimisation of variable pitch milling. International Journal of Materials and Product Technology,2009, Vol.35 (1-2):47-63.
    [37]E. Budak. An analytical design method for milling cutters with nonconstant pitch to increase stability, part I:theory. Journal of Manufacturing Science and Engineering, Transactions of the A. S. M. E.,2003, Vol.125 (1):29-34.
    [38]E. Budak. An analytical design method for milling cutters with nonconstant pitch to increase stability, part2:application. Journal of Manufacturing Science and Engineering, Transactions of the A. S. M. E., 2003, Vol.125 (1):35-38.
    [39]S. Turner, D. Merdol, Y Altintas, et al. CIRP (Eds.). Modelling of the stability of variable helix end mills. Vancouver, British, Columbia, Canada,12-13 June 2006.
    [40]S. Turner, D. Merdol, Y. Altintas, et al. Modelling of the stability of variable helix end mills, International Journal of Machine Tools and Manufacture.2007,Vol.47 (9):1410-1416.
    [41]N. Suzuki, K. Nishimura, R. Watanabe, et al. Development of novel anisotropic boring tool for chatter suppression.5th CIRP Conference on High Performance Cutting, Procedia CIRP,2012, Vol.1:56-59.
    [42]T. Takemura, T. Kitamura, T. Hoshi. Active suppression of chatter by programmed variation of spindle speed. Annals of the CIRP.1974,Vol.23 (1):121-122.
    [43]E. Al-Regib, J. Ni, S. Lee. Programming spindle speed variation for machine tool chatter suppression. International Journal of Machine Tools and Manufacture,2003,Vol.43 (12):1229-1240.
    [44]S. Smith, J. Tlusty. Stabilizing chatter by automatic spindle speed regulation. Annals of the CIRP,1992, Vol.41 (1):433-436.
    [45]K. J. Kalinski, M. A. Galewski. Chatter vibration surveillance by the optimal-linear spindle speed control. Mechanical Systems and Signal Processing,2011,Vol.25:383-399.
    [46]K. H. Hajikolaei, H. Moradi, G Vossoughi, et al. Spindle speed variation and adaptive force regulation to suppress regenerative chatter in the turning process. Journal of Manufacturing Processes,2010, Vol. 12:106-115.
    [47]A. Otto, G. Radons. Application of spindle speed variation for chatter suppression in turning. CIRP Journal of Manufacturing Science and Technology,2013, Vol.6:102-109.
    [48]E. Shamoto, T. Mori, B. Sencer, et al. Suppression of regenerative chatter vibration in multiple milling utilizing speed difference method—Analysis of double-sided milling and its generalization to multiple milling operations. Precision Engineering,2013,Vol.37:580-589.
    [49]星铁太郎.机械加工颤振的分析与对策.上海:学技术出版社,1977.
    [50]李军.在机械加工中用变速切削抑制再生颤振.机械与电子,2008,(1):94-96.
    [51]吴雅.机床切削系统的颤振及其控制.北京:科学出版社,1993.
    [52]王跃辉,王民.金属切削过程颤振控制技术的研究进展.机械工程学报,2010,46(7):166-174.
    [53]N. D. Sims, A. Amarasinghe, K. Ridgway. Particle dampers for workpiece chatter mitigation. International Mechanical Engineering Congress and Exposition, New Orleans, LA, USA. New York, USA:A. S. M. E.,2005:825-832.
    [54]N. H. Kim, D. Won, J. C. Ziegert. Numerical analysis and parameter study of a mechanical damper for use in long slender end mills. International Journal of Machine Tools and Manufacture,2006,Vol.46 (5):500-507.
    [55]S. Ema, E. Marui. Suppression of chatter vibration of boring tools using impact dampers. International Journal of Machine Tools and Manufacture,2000,Vol.40 (8):1141-1156.
    [56]M. Wang, T. Zan, Y Yang, R. Fei, Design and implementation of nonlinear TMD for chatter suppression:An application in turning processes. International Journal of Machine Tools and Manufacture.2010,Vol.50(5):474-479.
    [57]D. Sathianarayanan, L. Karunamoorthy, J. Srinivasan, et al. Chatter suppression in boring operation using magnetorheological fluid damper. Material Manufacturing Process,2008,Vol.23 (4):329-335.
    [58]T. Aiba, R. Murata, N. Henmi, et al. An investigation on variable-attractive-force impact damper and application for controlling cutting vibration in milling process. Journal of the Japan Society of Precision Engineering,1995,Vol.61 (1):75-79.
    [59]D. G. Lee, H. Y Hwang, J. K. Kim. Design and manufacture of acarbon fiber epoxy rotating boring bar. Composite Structures,2003, Vol. (60):115-124.
    [60]欧进萍,隋莉莉.结构振动控制的半主动磁流变质量驱动器(MR-AMD)地震工程与工程振动,2002(2):108-115.
    [61]G. T. Sanjiv, E. R. Keith, L. W. Bruce. Study of cutting process stability of a boring bar with a:tive dynamic absorber. International Journal of Machine Tools and Manufacture,1995,Vol.35(1):91-108.
    [62]T. R. Comstock, F. S. Tse, J. R. Lemon. Application of controlled mechanical impedance for reducing machine tool vibration. Journal of Engineering for Industry,1969, Vol.91 (4):1057-1062.
    [63]C. L. Nachtigal, N. H. Cook. Active control of machine tool chatter. Journal of basic engineering,1970, Vol.92 (2):238-244.
    [64]H. Tanaka, F. Obata, T. Matsubara, et al. Active chatter suppression of slender boring bar using piezoeletric actuators. JSME International Journal. Series C:Dynamics, Control, Robotics, Design and Manufacturing,1994,Vol.37 (3):601-606.
    [65]乔晓利,祝长生.基于内置力执行器的铣削颤振的主动控制.机械工程学报,2012,48(1):185-192.
    [66]A. Ganguli, A. Deraemaeker, M. Horodinca, et al. Active damping of chatter in machine tools—demonstration with a'hardware-in-the-loop' simulator. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering,2005,219(5):359-369.
    [67]A. Ganguli. Chatter reduction through active vibration damping[D]. Universite Libre de Bruxelles: Faculty of Applied Sciences, Active Structures Laboratory, Department of Mechanical Engineering and Robotics,2005.
    [68]A. Ganguli, A. Deraemaeker, I. Romanescu, et al. Simulation and active control of chatter in milling via amechatronic simulator, Journal of Vibration and Control.2006, Vol.12 (8):817-848.
    [69]A. Ganguli, A. Deraemaeker, A. Preumont. Regenerative chatter reduction by active damping control. Journal of Sound and Vibration.2007,Vol.300 (3-5):847-862.
    [70]A. Parus, B. Powalka, K. Marchelek, et al. Active vibration control in milling flexible workpieces. Journal of Vibration and Control.2013, Vol. 19(7):1103-1120.
    [71]I. Rivin, L. Xu. Damping of NiTi shape memory alloys and its application for cutting tools [C]// American Society of Mechanical Engineers, Noise Control and Acoustics Division (Publication), Chicago, IL, USA. New York, USA:A. S. M. E.,1994:35-41.
    [72]D. Segalman, J. Redmond. Chatter suppression through variable impedance and smart fluids[C]. Proceedings of SP1E—The International Society for Optical Engineering, San Diego, CA, USA. Bellingham, WA 98227-0010, United States,1996:353-363.
    [73]王茂华,于骏一,张永亮.电流变技术在机床颤振控制中应用的研究.机械工程学报,2000,36(11):94-97.
    [74]王民,费仁元.切削系统可变刚度结构及其颤振控制方法的研究.机械工程学报,2002,38(增刊):219-222.
    [75]S. M Tabatabaei, S. Behbahani, S. M. Mirian. Analysis of ultrasonic assisted machining (UAM) on regenerative chatter in turning. Journal of Materials Processing Technology.2013,vol.213:418-425.
    [76]费仁元,王民.切削颤振在线监控的研究现状及进展.中国机械工程,2001,12(9):1075-1079.
    [77]江涌涛.基于隐马尔科夫模型及支持向量机的机床切削颤振在线监测[硕士学位论文].南华大学,2007.
    [78]张永亮,于骏一,侯东霞,等.基于电流变效应的车削颤振预报控制技术的研究.机械工程学报,2005,41(4):206-211.
    [79]吴石,刘献礼王艳鑫.基于连续小波和多类球支持向量机的颤振预报.振动、测试与诊断,2012,32(1):46-50.
    [80]1 Minis, R. Yanushevsky. A new theoretical approach for the prediction of machine tool chatter in milling. Transactions of A. S. M. E., Journal of Engineering for Industry,1993,vol.115(11):1-8.
    [81]王太勇,郭千里.刀具状态的声振多级在线监测模式研究.机械工程学报,1995,31(6):17-20.
    [82]于骏一,周晓勤.基于似然比检验原理的机床切削颤振早期监测.振动工程学报,1997,10(2):139-146.
    [83]于骏一,周晓勤.切削颤振的预报控制.中国机械工程,1999,10(9):1028-1032.
    [84]I. Grabec, J. Gradisek, E. Govekar. A new method for chatter detection in turning. CIRP Annals-Manufacturing Techology,1999,Vol.48(1):29-32.
    [85]包善斐,张文国,于骏一,等.用切削力的频数差对切削颤振进行早期预报.振动工程学报,1992,6(2):140-144.
    [86]R. Mahdavinejad. Finite element analysis of machine and workpiece instability in turning. International Journal of Machine Tools and Manufacture.2005,Vol.45 (7-8):753-760.
    [87]K. Ahmadi, F. Ismail. Machining chatter in flank milling. International Journal of Machine Tools and Manufacture,2010,Vol.50 (1):75-85.
    [88]S. M. Afazov, S.M. Ratchev, J. Segal, et al. Chatter modelling in micro-milling by considering process nonlinearities. International Journal of Machine Tools and Manufacture,2012,Vol.56:28-38.
    [89]S. Tangjitsitcharoen. In-process monitoring and detection of chip formation and chatter for CNC turning. Journal of Materials Processing Technology,2009, Vol.56 (209):4682-4688.
    [90]M. Siddhpura, R. Paurobally. A review of chatter vibration research in turning. International Journal of Machine and Manufacture,2012,Vol.61:27-47.
    [91]黄伟国.基于振动信号特征提取与表达的旋转机械状态监测与故障诊断研究[博士学位论文].中 国科技大学,2010.
    [92]贺长生,李慧,庞海文,等.切削颤振预报方法探讨,长春大学学报,2003,13(6):4-6.
    [93]付连宇,于骏一.切削颤振预报的研究综述.吉林工业大学学报,1997,27(3):109-112.
    [94]赵志宏.基于振动信号的机械故障特征提取与诊断研究[博士学位论文].北京交通大学,2012.
    [95]M. E. Badaoui, J. Antoni, F. Guillet, et al. Use of the moving cepstrum integral to detect and localise tooth spalls in gears. Mechanical Systems and Signal Processing.2001,Vol.15(5):873-885.
    [96]N. Tandon. A comparison of some vibration parameters for the condition monitoring of rolling element bearings. Measurement,1994,Vol.12 (3):285-289.
    [97]苘执元,徐龙云,李贵明.基于倒频谱理论的滚动轴承故障检测.轴承,2007,1:35-37.
    [98]樊永生.机械设备诊断的现代信号处理方法.北京:国防工业出版社,2009.
    [99]白士红,孙斌.包络方法诊断齿轮箱故障.沈阳航空工业学院学报,2000,17(4):73-74.
    [100]马波,魏强徐春林,等.基于Hilbert变换的包络分析及其在滚动轴承故障诊断中的应用.北京化工大学学报(自然科学版),2004,31(6):95-97.
    [101]盛兆顺,尹椅岭.设备状态监测与故障诊断技术及应用[M].北京:化学工业出版社,2003.
    [102]M. Bai, J. Huang, M. Hong, et al. Fault diagnosis of rotating machinery using an intelligent order tracking system. Journal of sound and vibration,2005, Vol.280(3-5):699-718.
    [103]J. D. Wu, M. Bai, F. C. Su, et al. An expert system for the diagnosis of faults in rotating machinery using adaptive order-tracking algorithm. Expert Systems with Applications,2009,Vol.36(3): 5424-5431.
    [104]孔庆鹏.发动机变速阶段振动信号阶比跟踪研究[博士学位论文].浙江大学,2006.
    [105]L. Qu, Y. Chen, X. Liu. Anew approach to computer-aided vibration surveillance of rotating machinery. International Journal Computer Application Techonlogy,1989,Vol.2(2):108-117.
    [106]L. Qu, X. Liu, G. Peyronne, et al. The holospectrum:a new method for rotor surveillance and diagnosis. Mechanical Systems and Signal Processing,1989, Vol.3(3):255-267.
    [107]程发斌,汤宝平,刘文艺.一种抑制维格纳分布交叉项的方法及故障诊断中应用.中国机械工程,2008,19(14):1727-1731.
    [108]Z. H. Yao, D. Q. Mei, Z. C. Chen. On-line chatter detection and identification based on wavelet and support vector machine. Journal of Materials Processing Technology,2010,Vol.210(5):713-719.
    [109]Y. YU, D. J. Yu, J. S. Cheng. A roller bearing fault diagnosis method based on EMD energy entropy and ANN. Journal of Sound and Vibration,2006,Vol.294(1-2):269-277.
    [110]X. Li, D. Q. Mei, Z. C. Chen. An effective EMD-based feature extraction method for boring chatter recognition. Applied Mechanics and Materials,2010, Vol.34-35:1058-1063.
    [111]B. Liu, S. Riemenschneider, Y Xu. Gearbox fault diagnosis using empirical mode decomposition and hilbert spectrum. Mechanical Systems and Signal Processing,2006, Vol.20 (3):718-734.
    [112]李欣,梅德庆,陈子辰.基于经验模态分解和希尔伯特-黄变换的精密孔镗削颤振特征提取.光学精密工程,2011,19(6):1291-1297.
    [113]B. Samanta, K. R. Al-Balushi. Artificial neural network based fault diagnostics of rolling element bearing using time-domain features. Mechanical Systems and Signal Processing,2003, Vol.17(2): 317-328.
    [114]Y. Lei, Z. He, Y Zi, et al. New clustering algorithm-based fault diagnosis using compensation distance evaluation technique. Mechanical Systems and Signal Processing,2008,Vol.22(2):419-435.
    [115]M. Ge, R. Du, Y Xu. Hidden Markov Model based fault diagnosis for stamping processes. Mechanical Systems and Signal Processing,2004,Vol.18(2):391-408.
    [116]Z. N. Li, Y Y He, F. L. Chu, et al. Fault recognition method for speed-up and speed-down process of rotating machinery based on independent component analysis and factorial hidden markov model. Journal of Sound and Vibration,2006,Vol.291(1-2):60-71.
    [117]D. Q. Mei, X. Li, Z. C. Chen. Prediction of cutting chatter based on hidden markov model. Key Engineering Materials,2007,Vol.353-358:2712-2715.
    [118]V N.Vapnik. The nature of statistical learning theory [M]. New Yorks:Spinger-Verlag,1995.
    [119]Y. Yang, D. J. Yu, J. S. Cheng. A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM. Measurement,2007,Vol.40(9-10):943-950.
    [120]C. C. Hsu, M. C. Chen, L. S. Chen. Intelligent ICA-SVM fault detector for non-Gaussian multivariate process monitoring. Expert Systems with Applications,2010,Vol.37 (4):3264-3273.
    [121]T. Denoeux. A k-nearest neighbor classification rule based on Dempster-Shafer theory. Systems, Man and Cybernetics, IEEE Transactions on,1995,Vol.25(5):804-813.
    [122]R. Casimir, E. Boutleux, G. Clerc, et al. The use of feature selection and nearest neighbors rule for faults diagnostic in induction motors. Engineering Applications of Artificial Intelligence,2006,Vol. 19(2):169-177.
    [123]M. Pal. Random forest classifier for remote sensing classification. International Journal of Remote Sensing,2005,Vol.26(1):217-222.
    [124]B. S. Yang, X. Di, T. Han. Random forests classifier for machine fault diagnosis. Journal of Mechanical Science and Technology,2008,Vol.22(9):1716-1725.
    [125]Q. Hu, Z. He, Z. Zhang, et al. Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble. Mechanical Systems and Signal Processing,2007,Vol.21(2): 688-705.
    [126]E. Zio, P. Baraldi, G. Gola. Feature-based classifier ensembles for diagnosing multiple faults in rotating Machinery. Applied Soft Computing,2008,Vol.8(4):1365-1380.
    [127]D. Q. Mei, T. R. Kong, A J. Shin, et al. Magnetorheological fluid-controlled boring bar for chatter suppression, Journal of Material Processing Technology,2009,Vol.209(4):1861-1870.
    [128]D. Q. Mei, Z. H. Yao, T. R. Kong, et al. Parameter optimization of time-varyingstiffness method for chatter suppression based on magnetorheologicalfluid-controlled boring bar. International Journal of Advanced Manufacturing Technology,2010,Vol.46(9-12):1071-1083.
    [129]王民.基于电流变材料的切削颤振在线控制与预报[博士学位论文].北京:北京工业大学,1999.
    [130]王民,费仁元,杨建武,等.基于电流变材料的变刚度切削颤振在线控制方法.北京工业大学学报,2001,27(4):456-459.
    [131]胡寿涛.自动控制原理.北京:国防工业出版社,2000.
    [132]王民,费仁元,杨建武,等.镗削颤振快速预报技术研究.机械科学与技术,2002,21(4):520-523.
    [133]B. J. Stone. The effect of time varying parameters on the build-up of chatter in turning. Annals of CIRP, 1985,Vol.34(1):371-374.
    [134]杨仕清,张万里,龚捷,等.磁流变液的流变学性质研究.功能材料,1998,29(5):550-552.
    [135]司鹄.磁流变体的力学机理研究[博士学位论文].重庆大学,2003.
    [136]M. R. Jolly, J. D. Carlson, B. C. Munoz. A model of the behaviour of magnetorheological materials. Smart Materials and Structures,1996, Vol.5:607-614.
    [137]G. Q. Yang. Large-scale magnetorheological fluid damper for vibration mitigation:modeling testing and control, PH.D Dissertation of University of Notre Dame,2001.
    [138]Z. Lou, R. D. Ervin, F. E. Filisko. Apreliminary parametric study of electrorheological dampers. Trans. of A. S. M. E., J. of Fluids Engineering,1994,Vol.116:570-576.
    [139]关剑,费仁元,王民,等.智能结构在镗削颤振抑制中的应用.北京工业大学学报,2000,26(3):16-19.
    [140]孔天荣.磁流变自抑振智能镗杆的理论与方法研究[博士学位论文].浙江大学,2009.
    [141]孔天荣,梅德庆,陈子辰.基于变结构刚度抑制精密孔镗削加工的颤振.光学精密工程,2009,17(12):3040-3046.
    [142]廖昌荣.汽车悬架系统磁流变阻尼器研究[博士学位论文].重庆大学,2001.
    [143]王炅,王乾龙,黄文良.磁流变装置结构与磁路耦合有限元分析.弹道学报,2004,16(4):62-67.
    [144]N. E. Huang, S. H. Zheng, R. L. Steven, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences,1998,Vol.454(1971):903-995.
    [145]Better algorithms for analyzing nonlinear, nonstationary data[EB/OL]. http://tco.gsfc.nasa.gov, 2005-07-10.
    [146]N. E. Huang, M. L. Wu, W. D. Qu, et al. Applications of Hilbert-Huang transform to non-stationary financial time series analysis. Applied Stochastic Models in Business and Industry,2003,Vol.19(3): 245-268.
    [147]杨永锋,任兴民,秦卫阳,等.基于EMD方法的混沌时间序列预测.物理学报,2008,57(10):6139-6144.
    [148]D. Marcus, S. Torsten. Performance and limitations of the Hilbert-Huang transformation (HHT) with an application to irregular water waves. Ocean Engineering,2004,Vol.31(9):1783-1834.
    [149]H. L. Liang, S. L. Bressler, E. A. Buffalo, et al. Empirical mode decomposition of field potentials from macaque V4 in visual spatial attention. Biological Cybernetics,2005,Vol.92:380-392.
    [150]N. Senroy, S. Suryanarayanan, P. F. Ribeiro. An improved Hilbert-Huang method for analysis of time-varying waveforms in power quality. IEEE Transactions on Power Systems,2007,22(4): 1843-1850.
    [151]唐贵基,向玲,朱永利.基于HHT的旋转机械油膜涡动和油膜振荡故障特征分析.中国电机工程学报,2008,28(2):77-8].
    [152]杨世锡,胡劲松,吴昭同,等.基于高次样条插值的经验模态分解方法研究.浙江大学学报(工学版),2004,38(4):267-270.
    [153]S. B. Marian, R. M. Javier, J. S. Terrenee. Face recognition by independent component analysis. IEEE transactions on neural networks,2002,Vol.3(6):1450-1464.
    [154]C. Y Pong, J. H. Lai. Face representation using independent component analysis. Pattern Recognition, 2002, W.35:1247-1257.
    [155]赵立权.ICA算法及其在阵列信号处理中的应用研究[博士学位论文].哈尔滨工程大学,2009.
    [156]B. Mijovic, M. D.Vos, I. Gligorijevic, et al. Source separation from single-channel recordings by combining empirical-mode decomposition and independent component analysis. IEEE Transactions on Biomedical Engineering,2010,Vol.57(9):2188-2196.
    [157]张晓丹,姚谦峰,刘佩.基于快速独立分量分析的模态振型识别方法研究.振动与冲击,2009,28(7):158-161.
    [158]孙云莲,罗卫华,李洪.基于EMD的ICA方法在电力载波通信信号提取中的应用.中国电机工程学报,2007,27(16):109-113.
    [159]李欣,梅德庆,陈子辰.基于ICA的智能镗杆镗削颤振征兆信号分离方法研究.振动与冲击,2013,32(9):5-9.
    [160]陈建国,张志新,郭正刚,等.独立分量分析方法在经验模式分解中的应用.振动与冲击,2009,28(1):109-111.
    [161]周昌军.基于图像重构和特征融合的人脸识别方法研究[博士学位论文].大连理工大学:2008.
    [162]何友,王国宏,陆大金,等.多传感器信息融合及应用.北京:电子工业出版社,2000.
    [163]韩增奇,于俊杰,李宁霞,等.信息融合技术综述.情报杂志,2010,29(6):1]0-114.
    [164]胡良梅,基于D-S证据理论的神经网络形状识别系统[硕士学位论文].合肥工业大学,2002.
    [165]L. F. Pau. Fusion of multisensor data in pattern recognition in pattern recognition. Theory and Application. Reidel,1982:189-201.
    [166]耿伯英,彭稳高,朱强华,等.基于信息融合的模式识别方法研究.模式识别与人工智能,2002,15(3):339-342.
    [167]陈文颇,窦丽华,陈杰,等.融合多特征信息的模式识别方法.北京理工大学学报,2002,22(2):173-176.
    [168]孔锐,施泽生,郭立,等.基于全局特征和局部特征组合的脸谱识别方法.系统仿真学报,2004(5):1077-1080.
    [169]王蕴红.融合全局与局部特征的子空间人脸识别算法.计算机学报,2005,28(10):1657-1663.
    [170]刘瑾,徐可欣,陈小红,等.采用图像融合技术的多模式人脸识别.工程图学学报,2007(6):72-78.
    [171]Z. L. Deng, Y Gao, Y Li, et al. New approach to information fusion steady-state kalman filtering. Automatica,2005,Vol.41(10):1695-1707.
    [172]吴欣,郭创新,曹一家.基于贝叶斯网络及信息时序属性的电力系统故障诊断方法.中国电机工程学报,2005,25(13):14-18.
    [173]M. Dong, Z. Yan, L. Yang, et al. An evidential reasoning approach to transformer fault dagnosis. Proceedings of the CSEE,2006,Vol.26(1):106-114.
    [174]A. Hyvarinen. A fast fixed-point algorithm for independent component analysis. Neural computation. 1997, VOl.9(7):1483-1492.
    [175]A. Hyvarinen. A family of fixed-point algorithm for independent component analysis. IEEE International Conference of Acoustics, Speech and Signal Processing. Munich, Germany,1997(5): 3917-3920.
    [176]敦文杰,穆志纯.基于ICA的非线性自适应特征融合的人耳识别.计算机辅助设计与图形学报,2009,21(3):382-388
    [177]L. Shang, D. S. Huang, J. X. Du, et al. Palmprint recognition using FastICA algorithm and radial basis probabilistic neural network. Neurocomputing,2006,Vol.69(13-15):1782-1786.
    [178]杨竹青,李勇,胡德文.独立成分分析方法综述.自动化学报,2002,28(5):762-772.
    [179]杨世锡,胡劲松,吴昭同,等.旋转机械振动信号基于EMD的希尔伯特变换和小波变换时频分析比较.中国电机工程学报,2003,23(6):102-107.
    [180]L. R. Baum, T. Petrie. Statistical inference for Probabilistic functions of finite state Markov chains. The annals of mathematical statistics,1966,Vol.37(6):1554-1563.
    [181]L. Rabiner, B. H. Juang. Fundamentals of speech recognition[M]. (Prentice-Hall PTR, New Jersey, 1993).
    [182]谢锦辉.隐马尔科夫模型及其在语音处理中的应用[M].武汉:华中理工大学,1995.
    [183]冯长建.HMM动态模式识别理论、方法以及在旋转机械故障诊断中的应用[博士学位论文].浙江大学,2002.
    [184]K. Bilge, R. Rajeev, W. E. Snyder. A comparative analysis of structural risk minimization by support vector machines and nearest neighbor rule. Pattern Recognition Letters,2004, Vol.25(1):63-71.
    [185]岳夏.基于HMM的复杂条件故障诊断技术研究[博士学位论文].华南理工大学,2012.
    [186]L. R. Rabiner. A tutorial on hidden markov models and selected application in speech recognition. Proceedings of the IEEE,1989, Vol.77(2):257-286.
    [187]马赓宇.基于HMM的时间序列聚类与识别[博士学位论文].清华大学,2004.
    [188]李杰.隐马尔可夫模型的研究及其在图像识别中的应用[博士学位论文].清华大学,2004.
    [189]M. Almeida, A. Braga, J. Braga. SVM-KM:Speeding SVMs learning with a priori cluster selection and k-means. Proceedings 6th Brazilian Symposium on Neural Network,2000,Vol.1:162-167.
    [190]J. Wang, X. Wu, C. Zhang. Support vector machines based on K-means clustering for real-time business intelligence systems. International Journal of Business Intelligence and Data Mining,2005, Vol.1(1):54-64.
    [191]V N.Vapnik. An overview of statistical learning theory, IEEE Transactions on Neural Networks,1999, Vol.10(5):988-999.
    [192]彭兵.基于改进支持向量机和特征信息融合的水电机组故障诊断[博士学位论文].华中科技大学,2008.
    [193]Y. Lou. Modeling of high temperature flow stress of AZ80 magnesium alloy with support vector machines and artificial neural network. Advanced Materials Research,2012,Vol.486:227-232.
    [194]杨宇.基于EMD和支持向量机的旋转机械故障诊断方法研究[博士学位论文].湖南大学,2005.
    [195]S. Mahadevan, S. L. Shah. Fault detection and diagnosis in process data using one-class support vector machines. Journal of Process Control,2009,Vol.19(10):1627-1639.
    [196]H. Kim, A. C. Tan, J. Mathew, et al. Bearing fault prognosis based on health state probability estimation. Expert Systems with Applications,2012,Vol.39(5):5200-5213.
    [197]孔天荣,李欣,梅德庆,等.磁流变智能镗杆的动力学模型.浙江大学学报(工学版),2010,44(11):2050-2055.
    [198]Z. H. Yao, D. Q. Mei, Z. C. Chen. Chatter suppression by parametric excitation:Model and experiments. Journal of Sound and Vibration,2011,Vol.330(13):2995-3005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700