用户名: 密码: 验证码:
磁流变传动理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流变液(Magnetorheological Fluids,MRF)是一种新型智能材料。凭借优良的可控流变性能,磁流变液已经成为智能材料发展的一个重要分支,是当今世界智能材料与器件研究的热点之一,近年来受到国内外科学界的高度重视,纷纷投入大量人力物力用于磁流变液材料及器件的研究开发。由于磁流变技术独特的机-电耦合性能,使得它在传动工程领域的启动、制动、转矩调节、无级变速、过载保护等方面具有得天独厚的优势,因此在传动工程领域进行磁流变技术的研究和相关器件的开发具有广泛而深入的意义。本文结合磁流变材料及其器件的研究现状,对磁流变传动技术进行了深入系统的研究,分析了磁流变传动的设计理论及磁流变传动装置(Magnetorheological Transmission Device,MRTD)设计的相关技术,完成磁流变传动装置的各项性能分析,设计和研制了磁流变传动装置样机并进行了相关试验测试,以期实现磁流变传动技术的实用化,推动磁流变液在传动工程领域的应用发展。具体的研究内容如下:
     ①通过回顾磁流变材料和磁流变器件的研究现状,指出了目前磁流变技术中存在的主要问题,阐述了开展磁流变传动技术研究的必要性与重要性,介绍了本文将要开展的主要内容。
     ②磁流变效应与磁流变液性能研究。基于链化模型解释了磁流变效应机理,介绍了磁流变液的组成及制备方法,利用磁流变效应的机理来解释和分析了磁流变液各项性能及其影响因素。
     ③磁流变传动理论及磁流变传动装置设计。系统地研究阐述了磁流变传动理论,讨论了磁流变传动的定义、原理、特点、失效形式及对磁流变材料的要求;系统地研究分析了磁流变传动装置的设计理论,包括结构设计理论和磁学设计理论:阐述了磁流变传动装置的基本结构型式,分析了磁流变传动装置的工作原理,基于Bingham流体模型建立了传动装置传递转矩的计算模型,提出了磁流变传动装置磁学设计准则,对磁流变传动装置的磁路进行了分析与计算;在磁流变传动装置设计理论的基础上,结合原始设计参数,完成了磁流变传动装置的实例设计,确定了装置主要的结构参数和磁学参数,并对相关设计结果进行了讨论。
     ④磁流变传动装置性能的理论分析。研究了磁流变传动装置的传动性能特点,并对各项传动性能的影响因素进行了讨论;采用有限元方法对传动装置的磁路进行了仿真,得到了磁路中磁场的详细分布;基于Bingham流体模型及Navier-Stokes方程,建立了磁流变液在传动装置中流动的数学模型,分析了在稳态及瞬态情况下磁流变传动装置的流体动力学特性,包括传动装置中磁流变液的流场分布、流场中临界屈服面的形成和变化及传动装置传递转矩的变化;讨论了磁流变传动装置的动态响应特性,分析了传动装置的电磁回路响应时间和流变响应时间以及各自的影响因素;在传热学基础上对磁流变传动装置进行了热分析,讨论了磁流变传动装置的发热状况及装置中的热传递,并通过有限元仿真模拟了传动装置的温度场,得到了装置的整体温度分布,为传动装置的散热研究奠定了基础。
     ⑤磁流变传动装置采用新型热管散热的研究。阐述了发热对磁流变传动装置的危害和现今常用的散热方式及其局限;介绍了热管散热的优点,提出了采用热管对磁流变传动装置进行散热的新方案;根据磁流变传动装置的整体结构及主要发热区域的特点,设计了一种适用于该传动装置散热的新型热管形式——整体针翅回转热管(Integral pin-fin revolving heat pipe,PRHP),对该回转热管的工作原理、材料选择、轴向压强和温度分布、管内液膜分布、充液量、传热热阻、传热功率及传热极限进行了详细讨论与分析;加工了整体针翅回转热管实物,并通过热管的单管试验测试了该回转热管的性能特点,讨论了影响该回转热管散热性能的影响因素,验证了该回转热管工作的有效性;该回转热管还可广泛应用于旋转机械的散热。
     ⑥磁流变传动装置试验研究。在理论分析的基础上,设计并研制了磁流变传动装置样机,对磁流变传动装置的空转力矩、静特性、调节特性、恒转矩特性、传动效率、动态响应等传动性能进行了测试,同时对有、无整体针翅回转热管散热时磁流变传动装置的散热性能进行了对比试验,验证了磁流变传动装置传动性能的优越性及采用回转热管提高磁流变传动装置散热性能的有效性。
     ⑦总结了全文的研究内容,介绍了论文的创新之处,指出了还需作进一步深入研究的内容。
Magnetorheological fluid(MRF) is a new type of intelligent material. Due to the outstanding controllable rheological performance, MRF has become an important branch of intelligent material development and one of hot issue of intelligent material and intelligent device researches. In the last decades, MR technology is taken account by scientific field and is invested large quantity financial and human resource. MRF, with the unique electro-mechanical coupling performance, has a marvelous advantage in terms of starting, braking, torque regulating, continuously variable transmitting, overload protecting, etc. in the transmission engineering field, so it will brings a new revolution that researching on MR technology in the transmission engineering field. In this dissertation, in view of the process of MRF fluid and MR devices, the MR transmission technology has been studied systematically, the MR transmission theory has been explained, the overall design and various performance analysis about MR transmission device(MRTD) have been completed, the prototype of MRTD has been manufactured and some experiments about it has been done in order to achieve the commercialization of MR transmission technology and promote the application development of MRF in the transmission engineering field. The main research contents in this dissertation are as follows:
     ①Through the review of application prospect and development tendency of MRF and MR devices, the main defects of the studies on MR technology are pointed out, the necessity and importance of developing the MR transmission technology are introduced, the goal and contents of this dissertation are put forward briefly.
     ②The studies on MR effect and MRF performance. The MR effect mechanism is explained based on chain model, the factors, which influence the MR effect are analyzed according to the model above-mentioned.
     ③The MR transmission theory and the design of MRTD. The MR transmission theory is introduced detailedly, the working modes, characteristics and failure modes of MR transmission are discussed. The design theories of MRTD are studied systematically, including the strucuture design theory and the magnetic design theory: the working principle of MRTD is analyzed, the calculation model of transfer torque of MRTD is established based on Bingham liquid model, the magnetic design rule of MRTD is put forward and the magnetic circuit of MRTD is analyzed and calculated; According to the design theories above-mentioned, the prototype design of MRTD is completed, the main structure parameters and magnetic parameters are determined and some design results are also discussed.
     ④The theoretical studies on performances of MRTD. The factors, which influence the transmission performance of MRTD is analyzed. By means of finite element emulation, the magnetic field distribution of MRTD is obtained. On the basis of Bingham liquid model and Navier-Stokes equation, the mathematic flow model of MRF in the MRTD is established, the hydrodynamic performances of MRTD are studied under the steady state and the transient state, including the distribution of fluid field, the formation and variation of critical yield surface and the variation of transient transfer torque. The dynamic response performances of MRTD are discussed, the influence factors of electromagnetic circuit response time and rheological response time are analyzed respectively. The thermal analysis about MRTD is carried out referring to the heat transfer theory, the heat generation and heat transfer in MRTD are discussed, and the whole temperature field of MRTD is obtained based on finite element emulation.
     ⑤The heat dissipation studies on MRTD with new type of heat pipes. Due to the harm of heat generation for MRTD, a new heat dissipating scheme that took the integral pin-fin revolving heat pipe(PRHP) as the heat dissipating tool is put forward. The detail design and analysis about PRHP are done, including the working principle, the choice of materials, the pressure and temperature drop along the axial direction, the thermal resistance, the heat transfer power, the heat transfer limitation. The prototype of PRHP is processed and the performances of PRHP are tested through the single-tube experiment, the working effectiveness of PRHP has been proved.
     ⑥The experimental studies on MRTD. Based on the theoretical analysis, the prototype of MRTD is manufactured, the various transmission performances of it are tested, including the no-exciting torque, the transfer torque, the regulating performance, the constant-torque performance, the transmission efficiency, the dynamic response performance, etc. Simultaneously, the contrast experiments are done for heat dissipating capacity of MRTD with and without the PRHP. The advantages of transmission performance of MRTD and the feasibility of heat transfer by PRHP have been verified.
     ⑦Lastly, the dissertation is concluded, the main achievements of this dissertation are summed up and some problems should be deeply studied are pointed out.
引文
[1] Window W M.Method and Means for Translating Electrical Impulses into Mechanical Force[P]. USA:US Patent:2417850,1947.
    [2] Rabinow J.The Magnetic Fluid Clutch[J].AIEE Transactions,1948,67:1308-1315.
    [3] Eige J J,Fraser E C. Feasibility Study of Vibration and Shock Exciter Using Electric Field Modulation of Hydraulic Power.WADD Technical Report no.61-185,Wright patterson Air Force Base,Ohio,1961.
    [4] Standrud H T, Electric-field Valves Inside Cylinder Control Vibrator[J]. Hydraulics & Pneumatics,1966,9:39-143.
    [5] Bullough W A. Proceedings 5th Int. Conf. on ER Fluids,MR Suspensions and Associated Technology[C],Singapore:World Scientific,1996.
    [6] Nakano M,Koyam K. Proceedings 6th Int. Conf. on ER Fluids,MR Suspensions and Associated Technology[C],Singapore:World Scientific,1998.
    [7] Tao R. Proceedings 7th Int. Conf. on ER Fluids,MR Suspensions and Associated Technology[C],Singapore:World Scientific,2000.
    [8] Shtarkman E M. Fluid response to magnetic field[P].USA:US Patent:5167850,1992.
    [9] Carlson J D,Catanzarite D M,Clair K A St. Commercial MR fluid devices [A]. In: Bullogh W A. Proc. of the 5th Int. Conf. on ER Fluids,MR Suspensions and Associated Technology [C].Singapore:WorldScientific,1996:20-28.
    [10] http:/ /www.rheonetic.com,2003.
    [11] Ginder J M,Davis L C. Shear Stress in Magnetoreological Fluids:Role of Magnetic Saturation[J]. Appl. Phys. Lett,1994,65:3410-3412.
    [12] Jolly M R,Carlson J D. A Model of the Behaviour of′Magnetorheological Materials[J]. Smart Mater.Struct,1996,5:607-614.
    [13] Foister R T. MR fluid devices[P]. USA:US Patent:5667715,1997.
    [14] Gopalswamy S,Linzell S M,Jones G L,et al. MR fluid clutch with minimized reluctance [P]. USA:US Patent:5896965,1999.
    [15] Felt D W,Hagenbuchle M,Liu J. Rheology of a Magnetorheological Fluid[A]. In:BulloghW A. Proc. of the 5th Int Conf. on ER Fluids, MR Suspensions and Associated Technology [C].Singapore:World Scientific,1996.738-746.
    [16] Kordonsky W L. Elements and Devices Based on Magnetorheological Effect[J]. Journal of Intelligent Material Systems and Structures,1993,4(1):65-69.
    [17] Kordonsky W I. Magnetorheological Effect as a Base of New Devices and Technologies[J]. Magnetism and Magnetic Materials,1993,122:395-398.
    [18] Kordonsky W I. Magnetorheological Fluids and Their Applications[J].Materials Technology, 1993,11:240-242.
    [19] Golini D,Kordonski W I,Dumas P,et al. Magnetorheological Finishing(MRF) in Commercial Precision Optics Manufacturing[A]. Proc. SPIE,1999,3782:81-90.
    [20] Bossis G,Mathis C,Mimouni Z,et al.Magnetorheolgical suspensions[J].Euro phys Lett, 1990,11(2):133-137.
    [21] Kormann C,Laun H. M,Richter H J.MR Suspensions and Associated Technology[A].In: Bullough W A.Proceedings of 5th International Conference on ER Fluids,MR Fluids and Associated Technologies,Singapore:World Scientific,1996:362-367.
    [22] Kormann C,Laun H. M,Richter H J.MR Fluids with Nano-Sized Magnetic Particles Technology[J].International Journal of Modern Physics,1996,10(23-24):3167-3172.
    [23] Yang G,Spencer Jr B F,Carlson J D,et al. Large-scale MR Fluid Dampers:Modeling and Dynamic Performance Considerations[J]. Engineering Structures,2002,24:309-323.
    [24] Weiss K D,Duclos T G.Controllable Fluids:the Temperature Dependence of Post-Yield Properties[A].In:Tao R. Proc. Of the 4th International Conf. on ER Fluids,Singapore: World Scientific,1994:43-59.
    [25] Polunina I A, Roldughin V I, Matrosova G S,et al. Surface Modification of Ferromagneics for Polymer Composites[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2004,239(1-3):95-99.
    [26] Taran E Y,Pridatchenko Y V,Gryaznova V. A. Features of Magnetorheology of Suspension with the Cowin Polar Carrier Fluid[J]. Journal of Magnetism and Magnetic Materials,2002, 252:229-231.
    [27] Vicente J,Duran J, Delagdo D G,et al. Electrokinetic and Viscoelastic Properties of Magnetorheological Ssuspensions of Cobalt Ferrite[J].Colliods and Surfaces A: Physicochemical and Engineering Aspects,2001,195(1-3):181-188.
    [28] Ilarraza L A,Arizmendi C M,Salas A L. Controlling a leaky tap[J]. Physics Letters,1999, 259(2):115-128.
    [29] Lokander M,Stenbery B. Improving the Magnetorheological Effect in Isotropic Magentorheological Rubber Materials[J]. Polymer Testing,2003,22(6):677-680.
    [30] Milecki A. Investigation and Control of Magneto-rheological Fluid Dampers[J]. Internatinal Journal of Machine Tools and Manufacture,2001,41(3):379-391.
    [31] Aldemir U. Optimal Control of Structures with Semiacitve-turned Mass Dampers[J]. Journalof Sound and Vibration,2003,266(4):847-874.
    [32] Bica I. The Obtaining of Magneto-rheological Suspensions Based on Silicon Oil and Iron Particles[J]. Materials Science and Engineering,2003,98(2):89-92.
    [33] Kimata M,Nakagawa D,Hasegawa M. Preparation of Monodisperse Magnetic Particles by Hydrolysis of Iron Alkoxide[J]. Powder Technology,2003,132(2-3):112-118.
    [34] Park J H,Chin B D,Park O O. Rheological Properties and Stabilization of Magneto-rhological Fluids in a Water-in-Oil Emulsion[J]. Journal of Colloid and Interface Science, 2001,240(1):349-354.
    [35] Li W H,Du H,Chen G,et al. Experimental Investigation of Creep and Recovery Behaviors of Magnetorheological Fluids[J]. Materials Science and Engineering,2002,333(1-2): 368-376.
    [36] Jha S, Jain V K. Design and Development of the Magnetorheological Abrasive Flow Finishing(MRAFF) Process[J]. International Journal of Machine Tools and Manufacture, 2004,44(10):1019-1029.
    [37] Harland N R,Mace B R,Jones R W. Wave Propagation, Reflection and Transmission in Tunable Fluid-Filed Beams[J]. Journal of Sound and Vibration,2001,241(5):735-754.
    [38]唐新鲁.有关电流变液、磁流变液机理若干问题的研究[D].合肥:中国科学技术大学,1996.
    [39]杨仕清,彭斌,蒋洪川等.复合智能磁流变液的制备及流变性质研究[J].材料工程,2000,9:21-24.
    [40]杨仕清,彭斌,王豪才等.超细Co-Ni合金复合磁流变液的制备及流变性质研究[J].功能材料,2001,32(2):142-146.
    [41]潘胜,吴建耀,胡林等.磁流变液的屈服应力与温度效应[J].功能材料,1997, 28(2):264-266.
    [42]汪建晓,孟光.磁流变液阻尼器-转子-滑动轴承系统稳定性实验研究[J].振动工程学报,2003,16(1):71-74.
    [43]汪建晓,孟光.磁流变液阻尼器-柔性转子系统振动特性与控制的再研究[J].机械强度,2003,25(4):378-383.
    [44]翁建生,胡海岩.磁流变液的流变力学特性试验和建模[J].应用力学学报,2000,17(3):1-5.
    [45]何亚东,黄金枝.智能磁流变阻尼器的半主动控制研究[J].振动工程学报,2003,16(2):198-202.
    [46]倪建华,张智谦,张可等.一种新型的磁流变阻尼器及其再半主动控制车辆悬架中的应用研究[J].机械科学与技术,2004,23(1):7-10.
    [47]彭小强.确定性磁流变抛光的关键技术研究[D].长沙:国防科学技术大学,2004.
    [48]张峰.磁流变抛光技术的研究[D].长春:中国科学院长春光学精密机械与物理研究所,2000.
    [49]常建,杨运民,彭向和等.一种磁流变液流变特性测试装置的研究[J].仪器仪表学报,2001,22(4):354-368.
    [50]廖昌荣,余淼,陈伟民等.汽车磁流变减振器设计原理与实验测试[J].中国机械工程,2002,13(16):1391-1394.
    [51]梁锡昌,蒋建东.磁流变无级调速技术的研究[J].机械工程学报,2005,41(9):146-149.
    [52]郑军,曹兴进,张光辉.磁流变软启动传动装置的I-T关系研究[J].工程设计学报,2005,12(5):284-287.
    [53]郑军,张光辉,曹兴进.磁流变传动装置工作机理分析[J].重庆大学学报,2007,30(11):19-22.
    [54]关新春,欧进萍,李金海.磁流变液组分选择原则及其机理探讨[J].化学物理学报,2001,14(5):592-596.
    [55]李忠献,吴林林,徐龙河.磁流变阻尼器的构造设计及其阻尼力性能的试验研究[J].地震工程与工程振动,2003,23(1):128-132.
    [56]王振东.奇异的电磁流变液体[J].力学与实践,1998,20(6):74-76.
    [57]彭金松,萧蕴诗,苏永清等.磁流变液特性和潜在应用[J].液压与气动,2003,8:27-29.
    [58]李金,张华良.磁流变液研究和应用[J].上海大学学报,2004,10(1):21-29.
    [59]阎为革,刘淑艳,李俊杰等.被动式磁流变体车辆动力液压悬置的研究[J].北京理工大学学报,2000,9(4):434-438.
    [60]刘丁雷,李德才,袁祖贻.磁流变液的发展及应用[J].新技术新工艺,1999,6:14-15.
    [61]程海斌,李立春,官建国等.纳米Fe3O4/Fe复合磁流变液流变性[J].中国粉体技术,2003,9(4):22-25.
    [62]周强,瞿伟廉.磁流变阻尼器的两种力学模型和试验验证[J].地震工程与工程振动,2002,22(4):144-150.
    [63]黄豪彩,黄宜坚.磁流变技术及其在机械工程中的应用[J].制造技术与机床,2003,4:24-27.
    [64]黄豪彩,黄宜坚.圆筒式磁流变传动机构的研究[J].机械科学与技术,2003,22(4): 605-608,621.
    [65]夏毅彩,郭勇,何清华.磁流变液-一种新型的流体传动介质[J].润滑与密封,1998,2:56-58.
    [66]吕建刚,易当祥,张进秋等.履带车辆磁流变减振器响应时间研究[J].实验力学,2001,16(3):320-324.
    [67]郑坚,熊超,张进秋等.磁流变液研究进展及其在军事领域应用综述[J].军械工程学院学报,2001,16(1):6-10.
    [68]刑志,吕建刚,李猛.磁流变液特性分析及实验研究[J].磁性材料及器件,2005,36(3):21-23.
    [69]董平,李黎,叶昆.智能磁流变阻尼器的实验研究[J].噪声与振动控制,2002,2:42-44.
    [70]刘奇,张平,王东亚等.磁流变体(MRF)材料的制备与性质研究[J].功能材料,2001,32(3):257-259.
    [71] Lord Corporation Rheonetic Linear Damper,Rd-1001/Rd-1004,Product Information Sheet, Lord core. Pub. 1997.
    [72] http://www.delphiauto.com.
    [73] Dyke S J,Spencer Jr B F,Sian M K,et al. Experimental Verification of Semi-Active Structural Control Strategies Using Acceleration Feedback[A]. Proc. the 3rd Int Conf. on Motion and Vibr. Control[C],Chiba,Japan,1996,3:291-296.
    [74] Housner G W. Structural Control: Past, Present and Future[J]. Journal of Engineering Mechanics,1997,123(9):897-971.
    [75] Dyke S J,Spencer Jr B F,Sian M K,et al. Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction[J]. Smart Mater. Struct.,1996,5:565-575.
    [76] Neil McLellan. On the Development of a Real-Time Embedded Digital Controller for Heavy Truck Semi-active Suspensions[D]. Master dissertation of the Faculty of Virginia Tech,1998.
    [77] Hao Kang. Rotor Blade Lag Damping Using Embedded Chordwise Absorbers[D]. Doctor dissertation of The Pennsylvania State University,2001.
    [78] Carlson J D. Magnetorheological fluid actuators[A]. In:Janocha H. Adaptronics and Smart Structures[C]. Berlin:Springer-Verlag Berlin Heidelberg,1999:180-195.
    [79] Carlson J D ,Catanzarite D M. Magnetorheological fluid devices and process of controlling force in exercise equipment utilizing same[P]. USA:US Patent 5816372,1998.
    [80] Gopalswamy S, Linzell S M, Jones G L,et al. Magnetorheological fluid fan clutch[P].USA: US Patent:5896965,1999.
    [81] Gopalswamy S,Jones G L. Magnetorheological transmission clutch[P]. USA:US Patent: 5823309,1998.
    [82] Gopalswamy S ,Linzell S M,Jones GL. Magnetorheological Fluid Clutch with Minimized Reluctance[P]. USA:US Patent:5845752,1998.
    [83] York TM, Gilmore C D, Libertiny T G. Magnetorheological fluid coupling device and torque load simulator system[P]. USA:US Patent:5598908,1997.
    [84] Bansbach E A. Torque transfer apparatus using magnetorheological fluids[P]. USA:US Patent: 5779013,1998.
    [85] Bansbach E A. Torque transfer apparatus using magnetorheological fluids[P]. USA:US Patent: 5845753,1998.
    [86] Wendt E,Pohl A,Rosenfeldt H. Clutch with Electrorheological or Magnetorheological Liquid Pushed through an Electrode or Magnet Gap by Means of a Surface Acting as a Piston[P]. USA:US Patent:5988336,1999.
    [87] Johnston G L,Kruckemeyer W C,Longhouse R E. Passive Magnetorheological Clutch[P]. USA:US Patent:5848678,1998.
    [88] Lee W,Hur N,Jeon D. Design Analysis and Experimental Evaluation of an MR FluidClutch[A].In: Tao R. Proc. of the 7th Int. Conf. on ER Fluids and MR Suspensions[C]. Singapore:World Scientific,2000:686-693.
    [89] Kavlicoglu B,Gordaninejad F,Evrensel C A.,et al. A High-Torque Magnetorheological Fluid Clutch[A]. Proceedings of SPIE Conference on Smart Materials and Structures[C],San Diego,2002:1-8.
    [90] Wei Zhou,Chee-Meng Chew,Geok-Soon Hong. Development of a Compact Double-Disk Magnetorheological Fluid Brake[J]. Cambridge University Press,2007,25:493-500.
    [91] Yalcintas M. Magnetorheological Fluid Based Torque Transmission Clutches[A], Proceedings of the International Offshore and Polar Engineering Conference[C], Brest,1999,4:563-569.
    [92] Bica I. Magnetorheological Suspension Electromagnetic Brake[J]. Journal of Magnetism and Magnetic Materials,2004,270(3):321-326.
    [93]黄金,杨岩,魏玉卿等.圆筒式磁流变制动器原理及转矩分析[J].固体力学学报,2002,23:25-29.
    [94] Huang J,Zhang J Q,Yang Y,et al. Analysis and Design of a Cylindrical Magneto-rheological Fluid Brake[J]. Journal of Materials Processing Technology,2002,129(1-3):559-562.
    [95]郑军,张光辉,曹兴进.传动装置中磁流变液瞬态流动特性的数值计算[J].西安交通大学学报,2007,41(9):1053-1057.
    [96]郑军,张光辉,曹行进.传动装置中磁流变液的流动分析[J].中南大学学报,2008,39(1):149-1154.
    [97] Kordonski W I. Adaptive Structures Based on Magnetorheological Fluids[A]. In:Wada.Proc 3rd Int. Conf. Adaptive Struct. [C],San Diego,CA,1992:13-17.
    [98] Prokhorov L V,Kordonski W I,Gleb L K,et al. New High-Precision Magnetorheological Instrument-Based Method of Polishing Optics[J]. OSA OF&T Workshop Digest, 1992, 24:134-136.
    [99] Kordonski W I,Prokhorov I V,Kashevski B E,et al. Basic Properties of Magnetorheological Fluids for Optical Finishing and Glass Polishing Experiments Using Magnetorheological Fluids[J],OSA OF&T Workshop Digest,1994,13:104-109.
    [100] Kordonski W I,Jacobs S D. Magnetorheological Finishing[J]. International Journal of Modern Physics,1996,10:2837-2848.
    [101] Lambropoulos J, Yang F, Jacobs S D. Toward a Mechanical Mechanism for Material Removal in Magnetorheological Finishing[J]. Optical Fabrication and Testing Workshop, OSA Technical Digest Series,1996,7:I50-153.
    [102] Kordonski W I,Jacobs S D,Golini D,et al. Vertical Wheel Magnetorheological Finishing Machine for Flats,Convex and Concave Surface[J]. Optical Fabrication and Testing Workshop,OSA Technical Digest Series,1996,7:146-149.
    [103] Golini D,Jacobs S D, Kordonski W I,et al. Precision Optics Fabrication using Magnetorheological Finishing[A]. Proc. Advanced Materials for Optics and Precision Structures SPIE[C],CR,1997,67:251-274.
    [104] Jacobs S D,Kordonski W I. Precision Control of Aqueous Magnetorheological Fluids for Finishing of Optics[A]. Proc. of 6th. Int. Conf. on MRF, MR Suspensions and their Applications[C].Singapore:World Scientific,1998:861-869.
    [105] Jacobs S D,Yang F,Fess E M,et al. Magnetorheological Finishing of IR Materials[A]. Proc. of SPIE-Int[C],Soc.Opt. Eng. Washington:SPIE,1997,134(3):258-269.
    [106] Sakaya K,Kurobe T,Suzuki S,et al. GLP (Grinding-Like Polishing) Using Magnetic Fluid-Surface Polishing Characteristics of Silicon Wafer[J]. Int. J. Japan Soc. Prec. Eng., 1996,30(2).
    [107] Kordonsky W I,Gorodkin S R,Kolomentsev A V,et al. Magnetorheological Valve and Devices Incorpprating Magnetorheological Elements[P].USA:US Patent:5452745,1995
    [108] Kuzhir P,Bossis G,Bashtovoi V,et al. Flow of Magnetoeheological Fluid through Porous Mdeia[J]. European Journal of Mechanics-B/Fluids,2003,22(4):331-343.
    [109] Huang J,He J M,Zhang J Q. Viscoplastic Flow of the MR Fluid in a Cylindrical Valve[J]. Key Engineering Materials,2004,274-276:969-974.
    [110] Kordonsky W I,Gorodkin S R. Magnetorheological Fluid Based Seal[A]. Proc. of 5th. Int. Conf. on ERF and MR Suspensions[C],Singapore:World Scientific, 1996: 704-709.
    [111] Fujita T,J eyadevan B,Yoshimura K,et al. Characterization of MRF for seal[A]. Proc. of 7th Int. Conf. on ERF and MR Suspensions[C],Singapore:World Scientific,2000: 721-727.
    [112]李松晶,聂伯勋,徐本洲.新型磁流体密封圈的仿真及试验研究[J].机械工程学报, 2003, 39(8):61-64.
    [113] Weiss K D,Duclos T G,Chrzan M J,et al. Magnetorheological Fluid Composite Structures[P]. USA:US Patent:5547049,1996.
    [114] http:/ /www.rheonetic.com.2000.
    [115] Tang X,Zhang X,Tao R. Flexible Fixture with Magnetorheological Fluids[A]. Proc. of the 7th Int. Conf. on ER Fluids and MR Suspensions[C]. Singapore:World Scientific,2000: 712-720
    [116] Carlson J D.Magnetorheological Fluid Actuators[A]. In:Janocha Hed. Adaptronics and Smart Structures[C], Berlin:Springer-Verlag,1999:180-195.
    [117] Sheng R,Flores G A,Liu J. In Vitro Investigation of a Novel Cancer Therapeutic Method Using Embolizing Properties of Magnetorheological Fluid[J]. Journal of Magnetism & Magnetic Materials,1999,194:167-175.
    [118]魏宸官.一种新型的可控无级调速传动装置[J].北京工业学院学报,1985,3:44-54.
    [119]张以都,张启先.液体粘性软启动传动装置的研究[J].煤炭学报,1998,23(6):658-662.
    [120] Ginder J M,Davis L C. Shear Stress in Magnetorheological Fluids:Role of Magnetic Saturation[J]. Applied Physics Letters,1994,65:3410-3418.
    [121] Ginder J M,Davis L C, ELIE L D. Rheology of Magnetorheological Fluids:Models and Measurements[A].In:Tao, R. Proc. of the 5th International Conference on ER and MR Fluids[C],1995:504-515.
    [122] Jolly M R, et al. A Model of the Behavior of Magnetorheological Materials[J]. Smart Mater. Strut.,1996,3(5):607-614.
    [123] Lemaire E, Bossis G. Influence of the Particle Size on the Rheological Fluids[J]. Journal of Rheology,1995,39(5):1011-1020.
    [124] http://www.mrfluid.com.
    [125] Carlson J D. Magnetorheological Materials Based on Alloy Particles[P]. USA:US Patent: 5382373,1995.
    [126] Phule P P, Ginder J M, Jatkar A D. Synthesis and Properties of Magnetorheological(MR) Fluids for Active Vibration Control[J]. Material for Smart System,1997:99-104.
    [127] Kordonsky W I,Demchuk S A. Additional Magnetic Dispersed Phase Improves the MR Fluid Properties[A]. In:Bullough W. Proc. of the 5th Int. Conf. on ER/MR Suspensions and Associated Technology[C],Singapore:World Scientific,1996,613-619.
    [128] Bossis G,Mathis C, Mimouni Z,Paparoditis C.Magnetoviscosity of Micronic Suspensions [J].Europhys Lett,1990,11(2):133-137.
    [129] Phule P P,Ginder J M.[A]. Synthesis and Properties of Novel Magnetorheological Fluids Having Improved Stability and Redispersibility[A]. In: NakanoM , Koyama Keds. Proc. of the 6th Int Conf. on ER Fluids,MR Suspensions and their Applications[C],Singapore: World Scientific,1998:445-453.
    [130] Chen Z Y,Tang X,Zhang G C,et al. A Novel Approach of Preparing Ultrafine Magnetic Particles and the Magnetorheological Fluid[A]. In: Nakano M,Koyama K eds. Proc. of the 6th Int. Conf. on ER Fluids,MR Suspensions and their Applications[C],Singapore:World Scientific,1998:486-493.
    [131] Felt D W,Hagenbuchle M,Liu J. Rheology of Magnetorheological Fluid[A]. In: Bullogh W. Proc. of the 5th Int. Conf. on ER Fluids,MR Suspensions and Associated Technology [C],Singapore:World Scientific,1996.738-746.
    [132]潘胜,吴建耀.磁流变液的屈服应力与温度效应[J].功能材料,1997,28(2):264-266.
    [133] Kordonski W I,Gorodkin S R,Novikova Z A. The Influence of Ferroparticle Concentrationand Size on MR Fluid Properties[A]. In:Nakano M,Koyama K. Proc. of the 6th Int. Conf. on ER Fluids,MR Suspensions and their Applications[C], Singapore: World Scientific, 1998:535-542.
    [134] Jiang F Q,Z.Wang W. Magnetorheological Materials and their Application in Shock Absobers[A]. In:Nakano M,Koyama K Proc. of the 6th International Conf. on Electrorheological Fluids,Magnetorheological Suspensions and their Applications[C],1997: 494-451.
    [135] Carlson J D,Jolly M R. MR Fluid,Foam and Elastomer Devices[J]. Mechatronics, 2000, 10(4-5):555-569.
    [136] Weiss K D,Duclos T G, Carlson J D,et al. High Strength Magneto- and Electro- rheological Fluids[J], Society of Automotive Engineers,SAE Paper,No:932541,1993.
    [137] Jeon D,Park C,Park K. Vibration Suppression by Controlling an MR Damper[A]. In:Nakano M, Koyama K. Proc. of the 6th Int. Conf. on ER Fluids,MR Suspensions and their Applications[C],Singapore:World Scientific,1998:853-860.
    [138] Bednark S. Magnetic Suspension Based on Composite Particles[J]. J. Magnetism and MAagnetic Materials,1998,183:195-201.
    [139] Donada F F,Mendoza M E,Carrillo J L. Dynamic elastic properties of magneto-rheological slurries[J]. Statistic Mechanics and its Applications,2001,295(1-2):81-84.
    [140] Carlson J D. Critical Factors for MR Fluids in Vehicle Systems[J]. International Journal of Vehicle Design,2003,33(1-3):207-217.
    [141] Boelter R,Janocha H. Design Rules for MR Fluid Actuator in Different Working Modes[A]. Proceeding of SPIE[C],1997,3045:148-159.
    [142]曹兴进,郑军.磁流变软启动传动装置[P].中国,ZL200410081536,2004.
    [143] Lee U,Doh Y K,Nahmkeon H. Design Mnalysis and Experimental Evaluation of an MR Fluid Cluch[J]. Journal of Intelligent Mateial Systems and Structures,1999,10(9):701-707.
    [144] Ginder J M, Davis L C. Shear Stresses in Magnetorheological Fluids:Role of Magnetic Saturation[J]. Appl Phys Lett,1994,65(26):3410-3418.
    [145]唐兴伦,范群波,张朝晖.ANSYS工程应用教程-热与电磁学篇[M].北京:中国铁道出版社,2003.
    [146]蔡元宇,陈永祥,杨其允.电路及磁路(第二版)[M].北京:高等教育出版社,2000.
    [147]梁灿彬,秦光戎,梁竹健.电磁学[M].北京:高等教育出版社,1980.
    [148]秦曾煌.电工学[M].北京:高等教育出版社,1999.
    [149]田金铭.电磁离合器设计与应用[M].苏州:江苏科学技术出版社,1982.
    [150]潘存治,申玉良,杨绍普.磁流变液风扇离合器的设计与试验研究[J].汽车工程,2005,27(2):195-199.
    [151]兵器工业无损检测人员技术资格鉴定考核委员会.常用钢材磁特性曲线速查手册[M].北京:机械工业出版社,2003.
    [152]徐灏.机械设计手册(第四卷)[M].北京:中国机械工业出版社,1995.
    [153]陈矛章.粘性流体动力学基础[M].香河:高等教育出版社,1993.
    [154]潘祖梁,陈仲慈.工程技术中的偏微分方程[M].杭州:浙江大学出版社,1995.
    [155]关新春,欧进萍.磁流变减振驱动器的响应时间试验与分析[J].地震工程与工程振动,2002,22(6):96-102.
    [156]黄曦,余淼,陈爱军等.磁流变液阻尼器动态响应及其影响因素分析[J].功能材料,2006,37(5):808-813.
    [157]潘文全.工程流体力学[M].北京:清华大学出版社,1988.
    [158]鲍里先科,丹科,亚科夫列夫.电机中的空气动力学与热传递[M].北京:机械工业出版社,1985.
    [159]丁舜年.大型电机的发热与冷却[M].北京:科学出版社,1992.
    [160]王明权,易传云.划片机气静压电主轴热变形的有限元分析[J],封装与设备,2007,147:39-44,48.
    [161]陆龙,朱刚恒.磁粉制动器温度场的有限元计算[J].东南大学学报,1989,19(6):109-113.
    [162]机械工程材料性能数据手册编委会.机械工程材料性能数据手册[M].北京:机械工业出版社,1995.
    [163]廖昌荣.汽车悬架系统磁流变阻尼器研究[D].重庆:重庆大学,2001.
    [164]张红辉.磁偏置内旁通式磁流变阻尼器研究[D].重庆:重庆大学,2006.
    [165] Dogruoz M B,Wang E L,Gordaninejad F,et al. Augmenting Heat Transfer from Fail-Safe Magneto-rheological Fluid Dampers using Fins[J]. Journal of Intelligent Material System and Structures,2003,14(2):79-86.
    [166]庄骏,张红.热管技术及其工程应用[M].北京:化学工业出版社,2000.
    [167]庄骏,徐通明,石寿椿.热管与热管换热器[M].上海:上海交通大学出版社,1989.
    [168] Jian Ling,Yiding Cao. Closed-Form Analytical Solutions for Radically Rotating Miniature High-Temperature Heat Pipes Including Non-Condensable Gas Effects[J]. Heat and Mass Transfer,2000,43:3661-3671.
    [169]郭荣良,郭清南.流体力学及其应用[M].北京,机械工业出版社,1986.
    [170]孔珑.工程流体力学[M].北京:中国电力出版社,1992.
    [171] Niekawa J,Matsumoto K,Koizumi T,et al. Peformance of Revolving Heat Pipes and Application to a Rotary Heat Exchanger[J]. Journal of Heat Recovery Systems,1981, 14:331-338.
    [172] Pokorny B,Polasec F,Schneller J. Heat transfer in co-axial and parallel rotating heat pipes[A], Proceedings of the 5th International Heat Pipe Conference[C],Tsukuba, Japan,1984:259–267.
    [173]陈健,屠传经.平行轴旋转热管的放热特性研究[A].传热传质学术会议[C],扬州,1986:1-18.
    [174]张琳,张锁龙.台阶型旋转热管充液量的研究[J].动力工程,2002,21(1):1635-1639.
    [175]张琳,张红卫.台阶型旋转热管传热性能的试验研究[J].石油化工高等学校学报,2004,17(4):46-49.
    [176]池田义雄,伊藤谨司,槌田昭.实用热管技术[M].北京:化学工业出版社,1988.
    [177]吴汝胜,杨丽明,钱颂文等.整体针翅管针翅温度场的数值分析与试验研究[J].化工设备与防腐蚀,2001,6:17-21.
    [178]杨丽明,赖学江,张亚君等.整体针翅强化传热管的传热和压降性能研究与比较[J].制冷,2001,20(3):5-9.
    [179]钱颂文,马小明,方江敏等.三维整体针翅强化传热管的传热和压降性能研究与比较[J].化工学报,2002,53(7):701-704.
    [180]丁铭,阎昌琪,缪红建等.整体针翅管强化传热实验研究[J].核动力工程,2005,26(5):453-455.
    [181]何川,高胜利,冯洁等.新型针翅管换热实验研究[A].全国能源与热工学术年会[C],张家界,2006:711-712,718.
    [182]高胜利.不同边界条件下管外对流换热性能的实验研究[D].重庆:重庆大学,2006.
    [183]周明衡.离合器、制动器选用手册[M].北京:化学工业出版社,2003.
    [184]王思刊,李伟刚.磁粉离合器温度场的计算方法[J].青岛大学学报,2000,15(3):77-82.
    [185]王思刊.磁粉离合器允许滑差功率的实验研究[J].机械设计,2000,11:42-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700