列车-隧道动力耦合系统数值模拟方法及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的飞速发展和城市化进程的加快,地铁、轻轨、有轨电车以及磁浮列车等有轨交通系统也进入大发展时期,而地面空间日益拥挤,使得隧道成为交通系统建设中的重要项目,这为研究列车-隧道动力耦合系统提供了重要的现实需求。数值模拟技术可以使许多过去受客观条件限制无法有效地进行科学试验和理论分析的复杂问题,通过计算机数值模拟得到满意的解答,节省大量的时间。本文将列车-隧道动力耦合系统考虑为统一的整体,结合高性能计算平台,研究了列车-隧道动力耦合系统的数值模拟方法,并在具体工程实例的研究中得到了验证和应用,主要研究内容包括:
     研究了列车-隧道动力耦合系统的数值建模方法:采用等效模拟试验方法,建立盾构隧道正交各向异性等效模型,在满足实际工程计算要求的情况下,考虑了隧道横向和纵向不同的力学特性。采用有限元方法构建列车多刚体模型,将刚体列车和变形体结构模型通过有限元方法统一起来,避免了多刚体方法与有限元方法的交互困难。系统中磁浮列车与轨道梁,轮轨列车与轨道,双层衬砌隧道,隧道与土体中的耦合作用采用不同的动力耦合模型。结合弹塑性分层土体模型,利用PML人工边界模拟地下结构动力学分析时的半无限地基边界。
     研究了列车-隧道动力耦合系统的高性能计算方法:列车-隧道大型动力非线性耦合系统计算规模巨大,综合考虑系统初始静应力场和后续动力学计算,采用变时间步长的显式积分算法求解,避免了算法切换造成的模型转换困难,在计算收敛性和环境适应性上具有优势。结合上海超算中心曙光5000A高性能计算平台,基于递归二分法,设计实现了列车-隧道动态均衡的分区方法,以磁浮列车-隧道和轨道列车-隧道两个动力耦合系统作为工程应用实例,证实了该分区方法具有更好的并行计算效率。
     开展了磁浮列车-隧道动力耦合系统数值模拟应用研究。以磁浮上海机场联络线越江隧道为工程应用对象,按照施工图纸和地质勘探资料,建立了磁浮列车-轨道梁-隧道-土体系统的三维精细有限元模型,全面考虑了盾构隧道正交各向异性特征、双层衬砌动态耦合作用等因素的影响。越江隧道还未建成,不能通过与试验结果进行比较来验证数值计算模型,但上海已有高架磁浮线路,所以采用相同的建模与计算方法,建立磁浮列车与高架线路的动力耦合系统,数值计算结果与试验实测结果的加速度振级随场地距离的衰减关系比较接近,证实了模型和方法的可行性。隧道中“π”型轨道梁跨中挠度的动力放大系数与德国设计规范的误差也较小。首先计算结构系统的初始静应力场,以此为基础,计算了单车运行和双车交会时耦合系统的动力响应。计算结果表明:磁浮列车动载荷对外层和内层衬砌影响较小,但对轨道梁结构影响显著;双车交会与单车运行相比,轨道梁跨中挠度、结构应力和内外层衬砌耦合应力均有明显增加,但两种工况下轨道梁跨中挠度均小于设计安全值;内外层衬砌间耦合应力绝对数值较小,但磁浮列车动载荷引起的耦合应力增量与初始静载荷引起的应力值相比不容忽视,耦合应力最大值出现在承轨台的四个支柱处,需要在此位置的内外层衬砌间加入螺栓连接,以增强连接强度。
     开展了轨道列车-隧道动力耦合系统数值模拟应用。以上海崇明长江公铁两用双线隧道为工程应用对象,按照施工图纸和地质勘探资料,建立了轨道列车-轨道-道床-隧道-联络通道-土体系统的三维精细有限元模型,全面考虑了盾构隧道正交各向异性特征、联络通道处变形缝结构等因素的影响。数值模拟了初始工况、列车运行时轨道列车-隧道动力耦合系统的响应。计算结果表明:公路汽车载荷和轨道列车载荷对衬砌变形和应力的影响相对较小;在联络通道和主隧道连接位置,应力集中值约为普通隧道断面处的三倍,需要进行加固以避免疲劳损伤;联络通道处变形缝的变形缝相对位移较小,不会影响结构和变形缝安全。
With the rapid growth of China economics and the acceleration of urbanization, the rail transportation system construction comes into a great growth period, in which the tunnel becomes the important construction projects because of the increasingly crowded ground surface space. Therefore, it is necessary to study the dynamic coupling system of train and tunnel. The numerical simulation techniques can simulate the complex problems to get a satisfactory answer that are used to can't be effectively carried out by scientific experiments or theoretical analysis. Much time could be saved. The vehicle-tunnel dynamic coupling system is considered as a whole system. Based on high performance computer, the numerical simulation method of the vehicle-tunnel dynamic coupling system is studied and applied to projects. The main contents include:
     Numerical modeling method of the vehicle-tunnel dynamic coupling system is studied. The orthotropic equivalent model of shield tunnel is established by numerical simulation experiments, which takes the different horizontal and vertical mechanical properties of shield into account. The finite element method is used to define the multi-body vehicle model, which makes the connection of vehicle and structure model easily. Different non-linear dynamic coupling methods are adopt to simulation the different dynamic interaction between maglev train and guideway, wheel-rail train and track, inner and outer lining, tunnel and soil in the model. The semi-infinite foundation in the dynamic analysis of underground structures is simulated by PML artificial boundary.
     High performance computing method of train-tunnel coupling system is studied. Huge computing resources are required for the large-scale nonlinear vehicle-tunnel system model. The initial static stress field computation and subsequent dynamics calculation are considered as a whole process, the explicit integration algorithm is used to solve this problem, which has advantages in convergence and environment adaptability. The difficulty of model transformation between implicit and explicit algorithm can also be avoided. On Dawning 5000A of the Shanghai Supercomputer Center, a vehicle-tunnel dynamic balanced algorithm for domain decomposition is designed and implemented. Two engineering application example of rail train-tunnel and maglev train-tunnel confirmed that the partition method has a better parallel efficiency.
     Numerical simulation for maglev train-tunnel dynamic coupling system is carried out in the application of the cross-river tunnel in Shanghai Airport maglev connection line. A 3D refined finite element of the maglev train-guideway-tunnel-soil system is established. Using the same modeling and computation method, the Shanghai elevated maglev line is established, and the numerical results and experimental results of the acceleration vibration level with distance shows the reasonable agreement, which confirmed the feasibility of the model and method. The initial static stress field, the cases of one maglev train travelling and two maglev train meeting are computed using this model. The results show that: the maglev dynamic load has little effect on the inner and outer lining, but has significant effect on guideway; the deflections of guideway mid-span in the two maglev travelling cases are less than the design safety; the maximum coupling stress between inner and outer lining lies in the four pillars locations of the guideway support platform; the dynamic coupling stress has the same level compared to the initial static stress, and therefore, bolts should be added in these locations to enhance the connection strength between inner and outer lining.
     Numerical simulation for rail train-tunnel dynamic coupling system is carried out in the application of the Shanghai Chongming cross Yangtze tunnel. A 3D refined finite element of the rail train-track-bed-tunnel-soil system is established. The initial static stress field and the train travelling through the tunnel are computed. The results show that: the road and train load have relatively small influence to the lining deformation and stress compared to the soil and self-gravity static load; the stress at the connectional location between tunnel and connectional passage is about three times that of the ordinary tunnel cross-section, which should be reinforced to avoid fatigue damage; the deformation joints of the connectional passages has small relative displacements, which will not affect the structure security.
引文
[1]吴祥明.磁浮列车[M].上海:上海科学技术出版社, 2003.
    [2]刘华清,李志业,任恩恩.德国磁悬浮列车Transrapid[M].成都:电子科技大学出版社, 1995.
    [3]王江潮,欧阳华,杜朝辉.德国磁悬浮列车的悬浮与驱动系统[J].国外铁道车辆,2004, 41(3): 1-5.
    [4]王延安,陈世元,苏战排. EMS式与EDS式磁悬浮列车系统的比较分析[J].铁道车辆, 2001, 39(10): 17-20.
    [5]李强北.国外磁浮列车评述(上) [J].国外铁道车辆, 1996, 33(4): 1-8.
    [6]李强北.国外磁浮列车评述(下) [J].国外铁道车辆, 1996, 33(5): 7-13.
    [7] Yan L G. Progress of the Maglev Transportation in China [J]. IEEE Transactions on Applied Superconductivity, 2006, 16(2): 1138-41.
    [8]陈卫军,张璞.列车动载作用下交叠隧道动力响应数值模拟[J].岩土力学, 2002, 23(6): 770-774.
    [9] Yang Y, Hung H, Chang D. Train-induced wave propagation in layered soils using finite/infinite element simulation [J]. Soil Dynamics and Earthquake Engineering, 2003, 23(4): 263-278.
    [10]高峰,关宝树,仇文革,等.列车荷载作用下地铁重叠隧道的响应分析[J].西南交通大学学报, 2003, 38(1): 38-42.
    [11]李亮,张丙强,杨小礼.高速列车振动荷载下大断面隧道结构动力响应分析[J].岩石力学与工程学报, 2005, 24(23): 4259-4265.
    [12] Sheng X, Jones C J C, Thompson D J. Prediction of ground vibration from trains using the wavenumber finite and boundary element methods [J]. Journal of Sound and Vibration, 2006, 293(3-5): 575-586.
    [13] Andersen L, Jones C J C. Coupled boundary and finite element analysis of vibration from railway tunnels-a comparison of two- and three-dimensional models [J]. Journal of Sound and Vibration, 2006, 293(3-5): 611-625.
    [14] Forrest J A, Hunt H E M. A three-dimensional tunnel model for calculation of train-induced ground vibration [J]. Journal of Sound and Vibration, 2006, 294(4-5): 678–705.
    [15] Forrest J A, Hunt H E M. Ground vibration generated by trains in underground tunnels [J]. Journal of Sound and Vibration, 2006,294 (4-5): 706–736.
    [16] Hussein M F M, Hunt H E M. A numerical model for calculating vibration from a railway tunnel embedded in a full-space [J]. Journal of Sound and Vibration, 2007, 305(3):401–431.
    [17]彭立敏,施成华,黄娟,等.列车荷载作用下隧道铺底结构疲劳寿命分析[J].铁道学报, 2007, 29(1): 82-85.
    [18]和振兴,翟婉明,罗震.地铁列车引起的地面振动[J].西南交通大学学报,2008, 43(2): 218-221.
    [19]贾颖绚,刘维宁,孙晓静,等.三维交叠隧道列车运营对环境的振动影响[J].铁道学报, 2009, 31(2): 104-109.
    [20]夏禾.车辆与结构动力相互作用[M].北京:科学出版社, 2003.
    [21] Zhai W M, Cai C B, Wang Q C, et al. Dynamic effects of vehicles on tracks in the case of raising train speeds [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2001, 215(2): 125-135.
    [22]王开云,翟婉明,蔡成标.机车-轨道空间耦合动力学模型及其验证[J].铁道学报, 2002, 22(4): 21-27.
    [23]翟婉明,王开云,杨永林,等.车辆-轨道耦合动力学理论在现代机车车辆设计中的应用实践[J].铁道学报, 2004, 26(4): 24-30.
    [24] Zhai W M, Wang K Y, Cai C B. Fundamentals of vehicle–track coupled dynamics [J]. Vehicle System Dynamics, 2009, 47(11): 1349–1376.
    [25] Xia H, Zhang N. Dynamic analysis of railway bridge under high-speed trains[J].Computers and Structures, 2005, 83(23-24): 1891-1901.
    [26]张楠,夏禾.铁路桥梁在高速列车作用下的动力响应分析[J].工程力学, 2005, 22(3): 144-151.
    [27] Xia H, Zhang N, Guo W. Analysis of resonance mechanism and conditions of train-bridge system[J]. Journal of Sound and Vibration, 2006, 297(3-5): 810-822.
    [28] Zhang N, Xia H, Guo W. Vehicle-bridge interaction analysis under high-speed trains[J]. Journal of Sound and Vibration, 2008, 309(3-5): 407-425.
    [29]张楠,夏禾,Roeck G D.车桥系统频谱及参数敏感性分析[J].工程力学, 2009, 26(11): 197-202.
    [30] Lee Y S, Kim S H, Jung J. Three-Dimensional Finite Element Analysis Model of High-Speed Train-Track-Bridge Dynamic Interactions [J]. Advances in Structural Engineering, 2005, 8(5): 513-528.
    [31] Lee Y S, Kim S H. Structural analysis of 3D high-speed train–bridge interactions for simple train load models [J]. Vehicle System Dynamics, 2010, 48(2): 263–281.
    [32] Dinh V N, Kim K D, Warnitchai P. Dynamic analysis of three-dimensional bridge-high-speed train interactions using a wheel-rail contact model [J]. Engineering Structures, 2009, 31(12): 3090-3106.
    [33]谢云德. EMS型磁浮列车系统动力学建模与仿真研究[D].长沙:国防科技大学, 1998.
    [34] Zhai W M, Zhao C F, Cai C B. Dynamic Simulation of the EMS Maglev Vehicle-Guideway-Controller Coupling System [C]. MAGLEV'2004 proceedings, Shanghai.
    [35] Shi J, Wei Q C, Zhao Y. Analysis of dynamic response of the high-speed EMS maglevvehicle/guideway coupling system with random irregularity [J]. Vehicle System Dynamics, 2007, 45(12): 1077-1095.
    [36]时瑾,魏庆朝,万传风,等.随机不平顺激励下磁浮车辆轨道梁动力响应[J].力学学报, 2006, 38(6): 154-159.
    [37] Shen G, Meisinger R, Shu G. Modelling of a high-speed maglev train with vertical and lateral control [J]. Vehicle System Dynamics, 2008, 46(Supplement): 643-651.
    [38] Han H S, Yim B H, Lee N J, et al. Prediction of ride quality of a maglev vehicle using a full vehicle multi-body dynamic model [J]. Vehicle System Dynamics, 2009, 47(10):1271-1286.
    [39] Yim B H, Han H S, Lee N J, et al. Curving performance simulation of an EMS-type maglev vehicle [J]. Vehicle System Dynamics, 2009, 47(10): 1287-1304.
    [40]翟婉明.车辆-轨道耦合动力学(第3版)[M].北京:科学出版社, 2007.
    [41]翟婉明.车辆-轨道耦合动力学研究的新进展[J]. 2002, 23(2): 1-14.
    [42]蔡成标.高速铁路列车-线路-桥梁耦合振动理论及应用研究[D].成都:西南交通大学, 2004.
    [43] Gardien W, Stuit H G. Modeling of soil vibrations from railway tunnels [J]. Journal of Sound and Vibration, 2003, 267(3): 605–619.
    [44]由广明,刘维宁.交叠车站与区间隧道列车振动对环境的影响[J].北京交通大学学报, 2005, 29(04): 40-44.
    [45]王祥秋,杨林德,高文华,周治国.基于小波分析的隧道衬砌结构动力响应规律研究[J].岩石力学与工程学报, 2005, 24(10): 1746-1750.
    [46]王祥秋,杨林德,高文华.复杂围岩隧道洞口段动力响应特性分析[J].岩石力学与工程学报, 2005, 24(24): 4461-4465.
    [47]王祥秋,杨林德,周治国.列车振动荷载作用下隧道衬砌结构动力响应特性分析[J].岩石力学与工程学报, 2006, 25(7): 1337-1342.
    [48]王祥秋,张玉红,杨林德.珠三角地区典型地层地铁区间隧道动力特性分析[J].振动与冲击, 2008, 27(1): 151-1544.
    [49]莫海鸿,邓飞皇,王军辉.营运期地铁盾构隧道动力响应分析[J].岩石力学与工程学报, 2006, 25(增刊2): 3507-3512.
    [50]吴祥松,朱合华,袁海平.列车激震荷载下地铁双圆隧道的动力响应研究[J].岩土力学, 2006, 27(增刊): 1059-1062.
    [51]张玉娥,白宝鸿,张昀清.埋深对地铁区间隧道列车振动响应的影响[J].振动与冲击, 2006, 25(3): 58-60.
    [52] Degrande G, Clouteau D, Othman R, et al. A numerical model for ground borne vibrations from underground railway traffic based on a periodic finite element–boundary element formulation [J]. Journal of Sound and Vibration, 2006, 193(3-5): 645-666.
    [53]白冰,李春峰.地铁列车振动作用下交叠隧道的三维动力响应[J].岩土力学, 2007, 28(S1): 715-718.
    [54]白冰,李春峰.地铁列车振动作用下近距离平行隧道的弹塑性动力响应[J].岩土力学, 2009, 30(1): 123-128.
    [55] Bian X C, Chen Y M, Hu T. Ground motions generated by harmonic loads moving in subway tunnel[C]. Proceedings of the Third International Symposium on Environmental Vibrations: Prediction, Monitoring, Mitigation and Evaluation. ISEV2007,Taipei, Taiwan, 2007.
    [56] Yang Y B, ASCE F, Hung H H. Soil Vibrations Caused by Underground Moving Trains [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(11): 1633-1644.
    [57] Gupta S, Liu W F, Degrande G, et al. Prediction of vibrations induced by underground railway traffic in Beijing [J]. Journal of Sound and Vibration, 2008, 310(3): 608-630.
    [58] Gupta S, Degrande G, Lombaert G. Experimental validation of a numerical model for subway induced vibrations [J]. Journal of Sound and Vibration, 2009, 321(3-5): 786-812.
    [59] Gupta S, Stanus Y, Lombaert G, et al. Influence of tunnel and soil parameters on vibrations from underground railways [J]. Journal of Sound and Vibration, 2009, 327(1-2): 70-91.
    [60] Gupta S, Van den Berghe H, Lombaert G, et al. Numerical modelling of vibrations from a Thalys high speed train in the Groene Hart tunnel [J]. Soil Dynamics and Earthquake Engineering, 2010, 30(3): 82-97.
    [61] Mesquita E, Pavanello R. Numerical methods for the dynamic of unbounded domains [J]. Computational & Applied Mathematics, 2005, 24(1): 1-26.
    [62] Liu Y J, Nishimura N. The fast multipole boundary element method for potential problems: A tutorial [J]. Engineering Analysis with Boundary Elements, 2006, 30(5): 371-381.
    [63] Beer G, Smith I, Duenser C. The boundary element method with programming: for engineers and scientists [M]. Berlin: Springer, 2008.
    [64] Seo C G, Yun C B, Kim J M. Three-dimensional frequency-dependent infinite elements for soil–structure interaction[J]. Engineering Structures, 2007, 29(11): 3106-3120.
    [65] Yang Y B, Hung H H, Hong X H. Wave propagation for train-induced vibrations: a finite/infinite element approach [M]. Singapore: World Scientific, 2009.
    [66] Lysmer J, Kulemeyer R L. Finite dynamic model for infinite media [J]. Journal of Engineering Mechanics (ASCE), 1969, 95(EM4): 759-877.
    [67]王振宇.大型结构-地基系统动力反应计算理论及其应用研究[D].北京:清华大学,2002.
    [68]谷音.结构-地基动力相互作用问题高效数值方法研究及工程应用[D].北京:清华大学,2005.
    [69] Liu J B, Li B. A unified viscous-spring artificial boundary for 3-D static and dynamic applications [J]. Science in China Series E: Technological Science, 2005, 48(5): 570-584.
    [70] Liu J B, Du Y X, Du X L, et al.3D viscous-spring artificial boundary in time domain [J]. Earthquake Engineering and Engineering Vibration, 2006, 5(1): 93-102.
    [71] Liao Z P, Wong H L. A transmitting boundary for the numerical simulation of elastic wavepropagation [J]. Soil Dynamics and Earthquake Engineering, 1984, 3(4): 174-183.
    [72] Kellezi L. Local transmitting boundaries for transient elastic analysis [J]. Soil Dynamics and Earthquake Engineering, 2000, 19(7): 533-547.
    [73] Du X L, Zhao M. A local time-domain transmitting boundary for simulating cylindrical elastic wave propagation in infinite media [J]. Soil Dynamics and Earthquake Engineering, 2010, 30(10): 937-946.
    [74] Sedarat H, Kozak A, Hashash Y M A, et al. Contact interface in seismic analysis of circular tunnels [J]. Tunnelling and Underground Space Technology, 2009, 24 (4): 482-490.
    [75]杜修力,赵源,李立云.土体-结构界面接触对地下结构动力反应的影响[J].防灾减灾工程学报, 2010,30(5): 471-478.
    [76]李立云,杜修力,李亮.土与结构界面接触问题研究进展评述[J].力学进展,2009, 39(5): 588-597.
    [77] Goodman R F, Taylor R L, Brekke T L. A model for the mechanics of jointed rock [J]. Journal of Soil Mechanics and Foundation Engineering (ASCE), 1968, 94(3): 637-660.
    [78] Desai C S, Zaman M M. Thin layer element for interfaces and joints [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8(1): 19-43.
    [79]赵振东,蔡永恩.模拟基础与地基接触面的弹塑性薄层连接元法[J].地震工程与工程振动, 1990, 10(3): 97-107.
    [80]邵炜,金峰,王光纶.用于接触面模拟的非线性薄层单元[J].清华大学学报(自然科学版), 1999, 39(2): 34-38.
    [81]金峰,邵炜,张立翔,等.模拟软弱夹层动力特性的薄层单元及其工程应用[J].工程力学, 2002, 19 (2): 36-40.
    [82] Badie S S, Salmon D C. A quadratic order elastic foundation finite element [J]. Computers & Structures, 1996, 58(3): 435-443.
    [83] Badie S S, Salmon D C, Beshara A W. Analysis of shear wall structures on elastic foundations [J]. Computers & Structures, 1997, 65(2): 213-224.
    [84] Badie S S, Salmon D C. Three-Noded curved isoparametric soil interface element [J]. Computers & Structures, 1997, 65(2): 205-212.
    [85] Coutinho A L G A, Martins M A D, Sydenstricker R M, et al. Simple zero thickness konematically consistent interface elements [J]. Computers and Geotechnics, 2003, 30(5): 347-374.
    [86] Clough G W, Duncan J M. Finite element analysis of retaining wall behavior [J]. Journal Journal of the Soil Mechanics and Foundations Division (ASCE), 1971, 97(12): 1657-1674.
    [87]王勖成.有限单元法[M].北京:清华大学出版社, 2003.
    [88] Belytschko T, Neal M O. Contact-impact by the pinball algorithm with penalty and Lagrangian methods [J]. International Journal for Numerical Methods in Engineering, 1991, 31(3): 547-572.
    [89] Peri? D, Owen D R J. Computational model for 3-D contact problems with friction based on the penalty method [J]. International Journal for Numerical Methods in Engineering, 1992, 35(6): 1289-1309.
    [90] Laursen T A. Computational Contact and Impact Mechanics [M]. Berlin: Springer, 2002.
    [91] Cooperrider N K. Analytical and Experimental Determination of Nonlinear Wheel/Rail Constrains [C]. Proceedings of Symposium on Equipment Dynamics, ASME, 1979.
    [92] De Pater A D, Yang G. The Geometrical Contact between Track and Rail [J]. Vehicle System Dynamics, 1988, 17(3): 126-135.
    [93]严隽耄.具有任意轮廓形状的轮轨空间几何约束的研究.西南交通大学学报,1983(3): 40-47.
    [94]严隽耄,王开文.锥形及磨耗形踏面轮对的空间轮轨接触几何约束特点[J].铁道学报,1985, 7(2): 9-17.
    [95]王开云,翟婉明,蔡成标.轮轨型面及系统参数对轮轨空间接触几何关系的影响[J].铁道车辆, 2002, 40(2): 14-18.
    [96]王珏,李治.一种轮轨接触几何算法[J].西南交通大学学报, 2003, 38(2): 1-6.
    [97] Carter F W. On the Action of a Locomotive Driving Wheel[C]. Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, 1926, 112(760): 151-157.
    [98] Johnson K L. The Effect of a Tangential Contact Force upon the Rolling Motion of an Elastic Sphere on a Plane [J]. Journal of Applied Mechanics, 1958, 25: 339-346.
    [99] Vermeulen J K, Johnson K L. Contact of Non-spherical Bodies Transmitting Tangential Forces [J]. Journal of Applied Mechanics, 1964, 31(2): 338-340.
    [100] Kalker J J. On the Rolling Contact of Two Elastic Bodies in the Presence of Dry friction [D]. Netherlands: Delft University, 1967.
    [101] Kalker J J. A Fast Algorithm for the Simplified Theory of Rolling Contact [J]. Vehicle System Dynamics, 1982, 11(1): 1-13.
    [102] Kalker J J, Van Random Y. A Minimum Principle for Friction Less Elastic Contact with Application to Non-Hertzian Half-space Contact Problems [J]. Journal of Engineering Mathematics, 1972, 6(2): 193-206.
    [103]金学松,张立民.轮轨蠕滑力分析计算中几种蠕滑力模型的比较[J].铁道学报,1998, 20(增刊): 56-61.
    [104]张军.基于有限元法的轮轨蠕滑理论研究[D].大连:大连理工大学, 2003.
    [105] Sinha P K. Electromagnetic Suspension Dynamics and Control [M]. Peter Peregrinus Ltd, London, 1987.
    [106] Cai Y, Chen S S, Rote D M, et al. Vehicle/guideway dynamic interaction in maglev systems[J].Journal of Dynamic Systems, Measurement and Control, 1996, 118(5): 526-530.
    [107]曾佑文,王少华,张昆仑. EMS磁浮列车-轨道垂向耦合动力学研究[J].铁道学报, 1999,21(2): 22-25.
    [108]曾佑文,王少华,张昆仑.磁浮列车车辆-轨道耦合振动及悬挂参数研究[J].西南交通大学学报,1999,34(2): 168-173.
    [109]赵春发,翟婉明,蔡成标.磁浮车辆/高架桥垂向耦合动力学研究[J].铁道学报, 2001, 23(5): 27-33.
    [110] Zhao C F, Zhai W M. Maglev Vehicle/Guideway Vertical Random Response and Ride Quality[J]. Vehicle System Dynamics, 2002, 38(3): 185-210.
    [111]吴范玉,高亮,魏庆朝.高架轨道梁结构特性对磁浮系统的动力影响[J].工程力学, 2004, 21(4): 144-149.
    [112]时瑾,魏庆朝.线路不平顺对高速磁浮铁路动力响应特性的影响[J].工程力学, 2006, 23(1): 154-159.
    [113] Liu X, Guan X, Zhang J. Simulation of stochastic vibration of maglev track inspection vehicles [J]. Mechanical Systems and Signal Processing, 2007, 21(4): 1927–1935.
    [114] Kwon S D, Lee J S, Moon J W, et al. Dynamic interaction analysis of urban transit maglev vehicle and guideway suspension bridge subjected to gusty wind [J]. Engineering Structures, 2008, 30(12): 3445-3456.
    [115] H?gele N, Dignath F. Vertical dynamics of the Maglev vehicle Transrapid [J]. Multibody System Dynamics, 2009, 21(3): 213-231.
    [116] Ren S, Romeijn A, Klap K. Dynamic Simulation of the Maglev Vehicle/Guideway System [J]. Journal of Bridge Engineering, 2010, 15(3): 269-278.
    [117] Han H S. A Study on the Dynamic Modeling of a Magnetic Levitation Vehicle [J]. JSME international journal. Series C, Mechanical systems, machine elements and manufacturing, 2003, 46(4): 1497-1501.
    [118]邓永权,罗世辉,梁红琴,等.基于SIMPACK的磁悬浮车辆耦合动力学性能仿真模型[J].交通运输工程学报, 2007, 7(2): 12-20.
    [119] Teng Y F, Teng N C, Kou X J. Vibration Analysis of Maglev Three-span Continuous Guideway Considering Control System[J]. Journal of Zhejiang University SCIENCE-A. 2008, 9(1): 8-14.
    [120] Teng Y F, Teng N C, Kou X J. Vibration Analysis of Maglev Three-span Rigid Frame Bridge Considering Control System[J]. Journal of Southeast University. 2007, 23(4): 571-576.
    [121] Teng Y F, Teng N C, Kou X J. The Vibration Analysis of Continuous Maglev Guideway Considering the Magnetic Levitation System [J]. Journal of Shanghai Jiao Tong University, 2008, 13(2): 211-215.
    [122]邓亚士,魏庆朝,时瑾.高速磁浮桥上轨道梁振动特性初步研究[J].振动工程学报, 2008, 21(3): 248-354.
    [123] Wei Q, Deng Y, Ni Y. Effects of Train Formation on Maglev Guideway on Bridge and RideComfort [J]. Journal of System Simulation, 2008, 20(24): 6843-6847.
    [124]招阳,魏庆朝,许兆义,等.高速磁浮曲线地段简支轨道梁墩体系动力响应仿真[J].系统仿真学报, 2008, 20(21): 5783-5786.
    [125]招阳.考虑墩体参振的高速磁浮交通轨道梁动力特性研究[D].北京:北京交通大学, 2009.
    [126] Lee J S, Kwon S D, Kim M J, et al. A parametric study on the dynamics of urban transit maglev vehicle running on flexible guideway bridges [J]. Journal of Sound and Vibration, 2009, 328(3): 301-317.
    [127] Han H S, Yim B H, Lee N J, et al. Effects of the guideway's vibrational characteristics on the dynamics of a Maglev vehicle [J]. Vehicle System Dynamics, 2009, 47(3): 309-324.
    [128] Yau J D. Response of a maglev vehicle moving on a series of guideways with differential settlement [J]. Journal of Sound and Vibration, 329, 324 (3-5): 816-831.
    [129] Yau J D. Interaction response of maglev masses moving on a suspended beam shaken by horizontal ground motion [J]. Journal of Sound and Vibration, 2010, 329 (2): 171-188.
    [130] Benson D J, Hallquist J O. A Simple Rigid Body Algorithm for Structural Dynamics Program [J]. International Journal for Numerical Methods in Engineering, 1986, 22(3): 723-749.
    [131] Hughes T J R, Winget J. Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analyses [J]. International Journal for Numerical Methods in Engineering, 1980, 15(12): 1862-1867.
    [132]王彪.上海长江隧道衬砌结构整环试验与研究[D].上海:同济大学, 2007.
    [133] Yang Y B, Kuo S R, Hung H H. Frequency-independent infinite elements for analyzing semi-infinite problems [J]. International Journal for Numerical Methods in Engineering, 1996, 39(20): 3553-3569.
    [134] Basu U, Chopra A K. Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation [J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(11-12): 1337-1375.
    [135] Basu U, Chopra A K. Perfectly matched layers for transient elastodynamics of unbounded domains [J]. International Journal for Numerical Methods in Engineering, 2004, 59(8): 1039-1074.
    [136] Basu U. Explicit finite element perfectly matched layer for transient three-dimensional elastic waves [J]. International Journal for Numerical Methods in Engineering, 2009, 77(2): 151-176.
    [137] Barth T J, Griebel M, Keyes D E, et al. Numerical solution of partial differential equations on parallel computers [M]. Berlin: Springer, 2008.
    [138] Magnetschnellbahn Ausführungsgrundlage Fahrweg: Teil II, Eisenbahn-Bundesamt, Bonn, Germany, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700