旋转磁场电动式磁悬浮系统的建模与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁悬浮技术由于其运作无机械接触的优势,具有噪音小、易维护、可靠性高的优点,在交通运输、特种电机、机器人、金属加工等很多场合得到了应用。
     本文提出了一种新型的磁悬浮方案——旋转磁场电动式磁悬浮系统,采用电动式磁悬浮原理,通过在盘式感应电机初级绕组中通入交变电流,在悬浮气隙中产生圆周运动的磁场,与其在轨道导体板中感应出的涡流相互作用产生悬浮力和水平力。这一磁悬浮方案结构稳定、控制简单,能够实现固有稳定的静止磁悬浮和运行导向,有较为广阔的应用范围。为能够准确分析这一全新的磁悬浮系统的性能、设计方法,设计合理的悬浮控制策略,本文提出了一整套分析方法。
     首先,利用电磁场理论分析系统内部的电磁关系,为系统建模和确定控制方法提供依据。针对旋转磁场电动式磁悬浮系统的环形铁心结构,为简化计算,提高计算精度,建立了系统的分环模型,对每环按照该环参数平均值求解,并沿铁心周向展开为矩形结构,便于使用二维电磁场分析。
     基于截面上的二维电磁场解析法分析了系统中横向端部效应对电磁场分布和系统磁场储能的影响,得到了等效气隙长度表达式和系统特性的动态横向端部效应修正系数。
     建立了系统的多层行波磁场模型,应用Maxwell电磁场方程进行了系统的电磁场分布求解,利用表面阻抗分析得到了较为简洁的电磁场分布表达式,采用有限元方法进行了时步有限元计算验证电磁场分布结果,并根据坡印亭定理得到储能的解析表达式,作为分析系统运行性能和控制参数的依据。
     其次,研究了系统的主要特性及其与系统参数的关系。根据磁场分布和储能,利用麦克斯韦张量定理和虚位移法,求得了系统的悬浮力、转矩、侧向推力、复原力和次级损耗等特性,以及这些特性与系统电流激励以及结构参数之间的关系。搭建特性试验台,分别对样机采用力特性测定试验和温升试验验证了力和损耗特性的结果。
     根据现有的研究成果,研究了在系统次级采用不同的结构、材料和尺寸时的系统特性,为旋转磁场电动式系统的设计提供了理论依据。
     根据悬浮力和次级损耗之间存在的固定关系以及系统的总能耗情况,提出了系统的一项评价标准,利用这一评价标准分析了不同工作状况下系统能够输出的最大悬浮力。
     从电磁场波动性质的角度解释了初级磁场的运动速度与电动式磁悬浮系统的悬浮力之问的关系,通过水平方向的波矢量和角速度的等效将这一结论推广到大多数电动式磁悬浮系统,解释了系统初级极距对系统产生磁悬浮的能力的影响。
     利用磁场分析求得的系统磁场储能表达式解得系统的等效电路,以气隙长度作为变量,利用等效电路参数通过坐标变换得到了两相同步旋转坐标系下的系统变气隙状态方程,用于系统的悬浮力解耦控制,对样机采用空载试验和短路试验验证了等效电路参数。
     利用系统的状态方程,采用次级磁场定向策略,将悬浮力和次级磁链解耦,将悬浮高度作为主要控制对象,加入损耗最小为优化目标,设计了基于次级磁场定向控制,悬浮高度和次级磁链双闭环的矢量悬浮控制策略,实现系统的稳定悬浮控制。采用Matlab/Simulink仿真软件验证了悬浮控制策略。
     最后,设计制作旋转磁场电动式磁悬浮控制系统,基于DSP设计了控制系统硬件,并在悬浮试验台上对样机进行了悬浮运行试验,证明了本文提出的数学模型的正确性和控制方法的有效性。
Magnetic levitation could operate contactlessly, has the advantages of low noise, low maintenance and high reliability, it could be used in transportation, special motors, robot and metal working.
     A new configuration of maglev system--rotating field electrodynamic levitation system(RFELS) is proposed in this dissertation, the system uses electrodynamic levitation principle, rotating magnetic field (RMF) in its air-gap is generated by3-phase AC current in the primary windings, the interaction between RMF and secondary eddy current inducted by RMF produces lift force and horizontal force. This system's structural is stable, its control is simple, it can realize intrisic stable static levitation and guidance, has a widely application prospect. A series of analyzing tools was proposed to analyze the system's characteristics, structure design and levitation control system design method correctly.
     Firstly, providing evidences to system modeling and control, analyzed the electromagnetic relationship in RFELS using electromagnetic theory. RFELS's primary core is ring-shaped, sub-loop model was set to simplify the calculation and improve the calculation accuracy, analyzed each loop using average values of the loop.Unfold the ring-shaped sub-loop model into a rectangle sub-loop model to employ2-dimension electromagnetic analysis.
     Analyzed transverse end effect's influence to magnetic field distribution and energy storage based on2-dimension electromagnetic analysis, derived equivalent air-gap length expression and modified coefficients of main characteristics.
     Established RFELS's multi-layer model, solved electromagnetic distribution by Maxwell equations, simplified the expressions using surface impedance method, verified the results by time-stepping finite element calculation using Ansoft Maxwell.12, derived electromagnetic field energy storage expression by Poynting theorem. The results could be used in characteristic analysis and control parameters calculation.
     Secondly, the relationships between system parameters and key characteristics are investigated. According to the field distribution and energy storage, solved the lift force, torque, side force, recovery force and secondary force characteristics, relationships of the characteristics to current excitation and structure parameters. Set up test platform, performed force characteristics test an temperature rise test to testify the former characteristics. According to existing research results, investigated RFELS's main characteristics under various secondary structure, material, thickness, provided evidences to RFELS design.
     Proposed evaluation criterion for the system based on the fixed relationship between lift force and secondary loss, analyzed maximam lift force outputs under various working condition using the evaluation criterion.
     Analyzed the relationship between primary electromagnetic field travelling speed and lift force by electromagnetic field wave properties, generalize this conclusion to most electrodynamic levitation system by horizontal wave vector and palstance equivalent, explained how primary polar distance influent system'capacity of generating lift force.
     Thirdly, the control method of the system is investigated. Calculated RFELS equivalent circuit according to field energy storage, testified the equivalent circuit parameters by no-load test and short-circuit test. Regarded air-gap length as the key variable, derived air-gap state equations under2-phases synchronous rotating coordination system through synchronous rotating reference frame by the equivalent circuit parameters, and used in lift force decoupling control.
     According to the state equations, decoupled lift force and flux linkage based on secondary field orientation, took levitation height as key controlled object, added loss minimum optimization objective, designed secondary field orientation levitation height and flux linkage double closed-loop levitation vector control strategy, realized stable levitation control. Testified control strategy using Matlab/Simulink simulation software.
     Lastly, designed control system hardware based on DSP, performed operation test on levitation operation test platform, RFELS and its control system realized stable static levitation in the experiments.
引文
[1]吴祥明.磁浮列车[M].上海:上海科学技术出版社.2003:47-52
    [2]J. Meins, L. Miller. The High Speed Maglev Transportation System Transrapid[J]. IEEE Transactions on Magnetics. Vol.24, No.2, March 1988, pp808-811
    [3]Brian D. Sands. The Transrapid Transportation System:A Technical and Commercial Assessment[D]. Transportation Center, University of California, Berkly, California, USA. March 1992
    [4]G. Bohn, G. Stanmeitz. The Electromagnetic Levitation and Guidance Technologh of the'Transrapid'Test Facility Emsland[J]. IEEE Transactions on Magnetics. Vol.MAG-20, No.5, September 1984, ppl666-1671
    [5]Matoharu Ono, Shunsaku Koga, Hisao Ohtsuki. Japan's Superconducting Maglev Train[J]. IEEE Instrumental and Measurement Magazine. March 2002, pp9-15
    [6]Kazuo Sawada. Outlook of the Superconducting Maglev[J]. Proceedings of the IEEE. Vol.97, No.11, November 2009, pp1881-1885
    [7]S.Suzuki, M. Kawashima, Y. Hosoda, T. Tanida. HSST-03 System[J]. IEEE Transactions on Magnetics. Vol.MAG-20, No.5, September 1984, ppl675-1677
    [8]Yoshio Hikasa, Yutaka Takeuchi. Detail and Experimental Results of Ferromagnetic Levitation System of Japan Air Lines HSST-01/02 Vehicles[J]. IEEE Transactions on Vehicular Technology. Vol. VT-29, No.1,1980, pp35-41
    [9]William A. Jocobs. Magnetic Launch Assist-NASA's Vision for the Future[J]. IEEE Transactions on Magnetics, Vol.37, No.1, January 2001, pp55-57
    [10]Doh Young Park, Byung Chun Shin, Hyungsuk Han. Korea's Urban Maglev Program [J]. Proceedings of IEEE, Vol.97, No.11, November 2009, ppl886-1891
    [11]Yan Luguang. The Maglev Development and Commercial Application in China[C]. Proceedings of International Conference on Electrical Machines and Systems 2007. Octorber 2007, Seoul, Korea, ppl942-1949
    [12]Yan Luguang. Prograss of the Maglev Transportation in China[J]. IEEE Transactions on Applied Superconductivity, Vol.16, No.2, June 2006, ppll38-1141
    [13]Jiasu Wang, Suyu Wang, Changyan Deng, etc. Laboratory-Scale High Temperature Superconducting Maglev Launch system[J]. IEEE Transactions on Applied Superconductivity, Vol.17, No.2, June 2007, pp2091-2094
    [14]Jiasu Wang, Suyu Wang, Jun Zheng. Recent Development of High Temperature Superconducting Maglev System in China[J]. IEEE Transactions on Applied Superconductivity, Vol.19, No.3, June 2009,2142-2147
    [15]Luguang Yan. Development and Application of the Maglev Transportation System[J]. IEEE Transactions on Applied Superconductivity, Vol.18, No.2, June 2008, pp92-99
    [16]Kokichi Ogawa, Yoko Horiuchi. Calculation of Electromagnetic Force for Magnet Wheels[J]. IEEE Transactions on Magnetics. Vol.33, No.2, March 1997, pp2069-2072
    [17]Nobuo Fujii, Makoto Chida. Three Dimensional Force of Magnet Wheel with Revolving Permanent Magnets [J]. IEEE Transactions on Magnetics. Vol.33, No.5, September 1997, pp4221-4223
    [18]N. Fujii, S. Nonaka, G. Hayashi. Design of Magnet Wheel Integrated Own Drive[J]. IEEE Transactions on Magnetics. Vol.35, No.5, September 1999, pp4013-4015
    [19]Jonathan Bird. Thesis an Investigation into the Use of Electrodynamic Wheels for High-Speed for High-Speed Ground Transportation[D]. University of Wisconsin-Madison, Madison, Wisconsin, USA
    [20]Jonathan Bird, Thomas A. Lipo. A 3-D Magnetic Charge Finite-Element Model of an Electrodynamic Wheel [J]. IEEE Transactions on Magnetics, Vol.44, No.2, Feburary 2008, pp253-264
    [21]Jonathan Bird, Thomas A. Lipo. Calculating the Force Created by an Electrodynamic Wheel Using a 2-D Steady-State Finite-Element Method[J]. IEEE Transactions on Magnetics, Vol.44, No.3, March 2008, pp365-372
    [22]J.R. Powell, G.T.Danby. Magnetic Suspension for Levitated Tracked Vehicles[J]. Cryogenics, June 1971, pp192-204
    [23]L. T. Klauder. A Magnetic Field Diffusion Problem[J]. American Journal of Physics, Vol.37, No.3,1969, pp323-325
    [24]C. A. Guderjahn, S. L. Wipf, H.J. Fink. Magnetic Suspension and Guidance for High Speed Rockets by Superconducting Magnets [J]. Journal of Applied Physics, Vol.40, No.5, 1969, pp2133-2140
    [25]Howard T.Coffey, Frank Chilton, Troy W. Barbee. Suspension and Guidance of Vehicles by Superconducting Magnets[J]. Journal of Applied Physics, Vol.40, No.5, 1969, pp2161
    [26]John R. Reitz. Forces on Moving Magnets Due to Eddy Currents[J]. Journal of Applied Physics, Vol.41, No.5,1970, pp2067-2071
    [27]John R.Reitz, L.C.Davis. Force on Rectangular Coil Moving Above a Conducting Slab[J]. Journal of Applied Physics, Vol.43, No.4,1972, pp1547-1553
    [28]R. H. Borcherts, L.C.Davis. Force on a Coil Moving over a Conducting Surface Inducting Edge and Channel Effects [J]. Journal of Applied Physics, Vol.43, No.5,1972, pp2418-2427
    [29]B. T. Ooi, A. R. Eastham. Transverse Edge Effect of Sheet Guidways in Magnetic Levitation[C]. IEEE PES Summer Meeting & Enegry Resourses Conference, July 1974, Anaheim, USA, pp72
    [30]David L. Atherton, A. R. Eastman. Flat Guidance Schemes for Magnetically Levitated High-Speed Guided Ground Transport [J]. Journal of Applied Physics, Vol.45, No.3,1974, 1398-1405
    [31]王厚生.永磁电动式导体板磁悬浮列车轨道结构及相关研究[D].中国科学院电工所,中国,北京,2004年5月,156
    [32]S. A. Nasar. Electromagnetic Fields and Force in a Linear Induction Motor Taking into Account Edge Effect[J]. Pro IEE,1969,116, pp605-609
    [33]H.Bolton. Transverse Edge Effect in Sheet-Rotor Induction Motors[J]. Pro IEE, 1969,116(5), pp973-979
    [34]Anselmo Bittar, Roberto Moura Sales. H2 and H∞ Control for Maglev Vehicles[J]. IEEE Control Systems,1998, pp18-25
    [35]Waihon A. Kwong, Kevin M. Passino. Dynamically Focused Fuzzy Learning Control[J]. IEEE Transactions on Systems, Vol.26, No.1,1996, pp52-74
    [36]Panagiotis Tsiotras, Brian C.Wilson. Zero- and Low-Bias Control Designs for Active Magnetic Bearings [J]. IEEE Transactions on Control Systems Technology, Vol.11, No.6,2003, pp889-904
    [37]Guang-Ren Duan, David Howe, Robust Magnetic Bearing Control via Eigenstructure Assignment Dynamical Compensation[J]. IEEE Transactions on Control Systems Technology, Vol.11, No.2,2003, pp204-215
    [38]Wang Feng-xiang, Wang Bao-guo, Xu Long-ya. Levitation Force Vector Control of a Novel Bearingless Motor with Hybrid Rotor Structure[J]. Proceedings of the CSEE, Vol.25, No.5,2005, pp98-103
    [39]Campo, Alexandre, Pait, Felipe. Propulsion and Levitation Control in a Linear Electrodynamic Motor[C]. Proceedings of the 2002 IEEE International Conference on Control Applicants, September 2002, Glasgow, UK, pp94-99
    [40]M. Andriollo, S. Carmeli, F. Castelli Dezza, M.Mauri. Control Design Aspects for an EDS Levitation System[C].2006 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, May 2006, Taormina, Italy, pp17-22
    [41]Kinjiro Yoshida, Sakutaro Nonaka. Levitation Forces in Single-Sided Linear Induction Motors for High-Speed Ground Transport[J]. IEEE Transactions on Magnetics, Vol.11, No.6,1975, pp1717-1719
    [42]A. Nasar S. Linear motion electric machines[M]. New York:A Wilcy-Interscience Publication,1976:pp57-137.
    [43]Sang-Baeck Yoon, In-Soung Jung, Ki-Chan Kim, Dong-Seok Hyun. Analysis an Optimal Design of the Slit Type Low Speed Linear Induction Motor[C]. IEEE International Electric Machines and Drives Conference Record,1997, ppTB2/8.1-TB2/8.3
    [44]A. K. Rachore, S.N. Mahendra. Simulation of Secondary Flux Oriented Control of Linear Induction Motor Considering Attraction Force & Transverse edge effect[C].9th IEEE International Power Electronics Congress, Octorber 2004, Celaya, Mexico, pp158-163
    [45]龙遐令.直线感应电动机的理论和电磁设计方法[M].北京:科学出版社,2006:1-156.
    [46]J. Eastham, P.D.Evans. Novel disc-motor designs [J]. PROC. IEE, Vol.125, No.5, May 1978, pp416
    [47]关恩禄,关沫.三相盘式感应电机设计要点及优化设计[J].沈阳工业大学学报,1999,21(6):502-505
    [48]Qishan G, Shuhong H. Analytic Approach to Magnetic Circuit for Saturated Axial-Field Induction Machines[J]. IEE Proceedings-Electric Power Applications,1994,141(1):27-32.
    [49]R Wallace, L Moran, G Cea, F Perez. Design and Construction of Medium Power Axial Flux Induction Motors[C]. Fifth International Conference on Electrical Machines and Drives,1991. London, UK, pp260-265.
    [50]Jakob Igelspacher, H.-G Herzog. Analytical Description of a Single-Stator Axial-Flux Induction Machine with Squirrel Cage[C]. XIX International Conference on Electrical Machines. September 2010, Rome, Italy
    [51]Mikko Valtonen, Asko Parviainen, Juha Pyrhonen. Influence of the Air-Gap Length to the Performance of an Axial-Flux Induction Motor[J], Proceedings of the 2008 International Conference on Electrical Machines. Octorber 2008, Wuhan, China, ppl-5
    [52]F. Marignetti, R. Di Stefano, Y. Coia. Analysis of Axial Flux PM Machines Including Stator and Rotor Core Losses[C].34th Annual Conference of IEEE Industrial Electronics, November 2008, Orlando, Florida, USA, pp2035-2040
    [53]A. Bellara, Y. Amara, G. Barakat, P. Reghem. Analytical Modelling of the Magnetic Field in Axial Flux Permanent Magnet Machines with Semi-Closed Slots at No Load[C]. XIX International Conference on Electrical Machines. September 2010, Rome, Italy
    [54]朱熙,范瑜,吕刚,等.单边盘式感应电机的数学模型与转矩分析[J].中国电机工程学报,2010,30(24):pp69-74
    [55]Zhu Xi, Fan Yu, Pei Weina, Qin Wei. Modeling and State Equations of a Solid Rotor Single Side Axial Flux Induction Motor[C]. IEEE International Conference on Electrical Machines and Systems 2010. October 2010, Incheon, Korea
    [56]吴新振,王祥珩.12/3相双绕组异步发电机定子槽漏感的计算[J].中国电机工程学报,2007,27(3):46-51
    [57]王祥珩,孙宇光,桂林,王维俭.大型水轮发电机多回路模型的合理简化[J].中国电机工程学报,2007,27(12):63-67
    [58]张广溢.直线电机静态横向端部效应研究[J].电机与控制学报,1999,3(2):126-128.
    [59]T.W.Prestion,A. B.J. Reece. Transverse Edge Effects in Linear Motors[J]. PROC. IEE, Vol.116, No.6, JUNE 1969, pp973-979
    [60]Sung Gu Lee, Hyung-Woo Lee, Sang-Hwang Ham, etc. Influence of the Construction of Secondary Reaction Plate on the Transverse Edge Effect in Linear Induction Motor[J]. IEEE Transactions on Magnetics, Vol.45, No.6, June 2009, pp2815-2818
    [61]J. Clerk Maxwell, A Treatise on Electricity and Magnetism,3rd ed., vol.2. Oxford:Clarendon,1892, pp.68-73.
    [62]Gieras,J., Dawson, G., Eastham, A., Performance calculation for single-sided linear induction motors with a double-layer reaction rail under constant current excitation[J]; Magnetics, IEEE Transactions on; Volume 22, Issue 1, Jan 1986 Page(s): 54-62
    [63]Deeley, E. M., Charlmes, B. J., Surface Impedence of Saturating iron in traveling fields[J]. IEE Proceedings, Vol.132, Pt.A, No.4, July 1985, pp171-177
    [64]Huazhong Xu, Jinquan He, Changzhe Chen. Design of Vector Controller of PMSM Based onPan-Boolean Algebra Self-Adapting PID Control[C]. International Conference on Mechanics and Automation, August 2009, Changchun China, pp714-718
    [65]Limei Wang, Mingxiu Tian, Yanping Gao. Fuzzy Self-Adapting PID Control of PMSM Servo System[C]. Electric Machines and Drives Conference, May 2007, Antalya, Turkey, pp860-863
    [66]Long Bo, Cao Binggang, Jiang Hui, etc. Position Tracking Controlling System of Position Sensorless BLDCM by Using SMC. Mechatronic and Embedded Systems and Applications, Proceedings of the 2nd IEEE/ASME International Conference on, August 2006, Beijing China
    [67]J. Slepian, The Flow of Power in Electrical Machines [J]. Elect. J., Vol.16,1919, pp301-311
    [68]Urban Lundin, Bjorn Bolund, Mats Leijon. Poynting Vector Analysis of Synchronous Generators Using Field Simulations[J]. IEEE Transactions on Magnetics, Vol.43, No.9 September 2007, pp3601-3606
    [69]罗成,王祥珩,宁圃奇.十二相异步发电机转子损耗[J].清华大学学报(自然科学版),2006,46(1):pp9-12
    [70]Zaim M E. Non-Linear Models for the Design of Solid Rotor Induction Machines[J]. IEEE Transactions on Magnetics, Vol.35, No.3,1999, pp1310-1313
    [71]刘长红,姚若萍.基于场路结合的实心转子异步电机转子参数计算[J].上海交通大学学报,2003,37(9):1372-1374
    [72]唐孝镐,宁玉泉,傅丰礼.实心转子异步电机及其应用[M],北京:机械工业出版社,1991,ppl-296
    [73]王群京,李争,夏鲲,等.新型永磁球形步进电动机结构参数及转矩特性的计算与分析[J].中国电机工程学报,2006,26(10):158-165
    [74]杨艳,邓智泉,曹鑫,等.无轴承开关磁阻电机径向电磁力模型[J].电机与控制学报,2009,13(3):377-388
    [75]Jie Li, Hexu Sun, Shurui Fan, Yi Liu. Switched Reluctance Motor's Magnetic Force Analysis and the Drive System Simulation Verif ication[C].2nd International Conference on Industrial and Information Systems, Dalian, China, July 2010, pp210-214
    [76]康锦萍,李志强,刘晓芳,王靖.汽轮发电机电磁转矩计算方法的对比[J].电工技术学报,2009,24(9):38-43
    [77]J. L. Coulomb, G. Meunier. Finite Element Implementation of Virtual Work Principle for Magnetic or Electric Force and Torque Computation[J]. IEEE Transactions on Magnetics, Vol.Mag-20, No.5, September 1984, pp1894-1896
    [78]Nobuo Fujii, Kouji Naotsuka, Kokichi Ogawa, Toshio Matsumoto. Basic Characteristics of Magnet Wheels with Rotating Permanent Magnets[C]. Industry Applications Society Annual Meeting, Denver, USA, October 1994, pp203-209
    [79]N. Fujii, G. Hayashi, Y.Sakamoto. Characteristics of Magnetic Lift, Propulsion and Guidance Using Magnet Wheels with Rotating Magnets[C].2000 IEEE Industry Applications Conference, Rome, Italy, October 2000, pp257-262
    [80]Zienkiewicz 0. C.. The Finite Element Method-from Intuition to Generality. Appl. Mech. Rev.23,1970:49-56.
    [81]陈金涛,辜承林.轴向磁场无铁心永磁盘式电机的设计[J].微电机,2002,35(5):14-16
    [82]T. Saito, et al. Electromagnetic Force and Eddy Current Loss in Dynamic Behavior of a Superconducting Magnetically Levitation Vehicle[J]. IEEE Transactions on Applied Superconductivity, Vol.3, No.1,1993, pp417-420
    [83]M. Arata, M. Kawai, T. Yamashita, et al. Eddy Current Loss Reduction of Superconducting Magnets for MAGLEV with A Multilayer Superconducting Sheet [J]. IEEE Transactions on Applied Conductivity, Vol.7, No.2,1997, pp912-915
    [84]K. A. Krishna Murthy, R. M. Mathur. A Phase-Controlled Force-Commuted DC Motor Drive with Line Power Factor Improvement [J]. Proceedings of the IEEE, Vol.70, No.12,1982, pp1453-1455
    [85]Yu Ming-hu, Ye Yun-yue, Lu Qin-fen, Xia Yong-ming. A Study on Power Factor of Linear Oscillatory Motor with Two Separated Stators[C].2009 Interenational Conference on Electrical Machines and Systems, Tokyo, Japan, November 2009, pp1-5
    [86]A. Hassanpour Isfahani, B. M. Ebrahimi, H. Lesani. Design Optimization of Low-Speed Single-Side Linear Induction Motor for Improved Efficiency and Power Factor [J]. IEEE Transactions on Magnetics, Vol.44, No.2,2008, pp266-272
    [87]Mei-Shan Jin, A-Lin Hou, Chang-Li Qiu, Da-Chuan Chen. A Maxwell 2D Emulated Analysis in the Performance of Linear Introduction Motor[C].2010 International Conference on Computer, Control and Electronic Engineering, August 2010, Changchun, China, pp348-351
    [88]Seung-Chan Park, Won-Min Lee, Kyung-Min Kim. Analysis of Linear Induction Motors for Maglev According to the Secondary Conductor Structure[C]. Proceeding of International Conference on Electrical Machines and Systems 2007, October 2007, Seoul, Korea, pp1995-1998
    [89]张月莉.大型同步发电机稳态磁场非线性特性及运行特性的计算研究[D].华北电力大学,北京,2004:11-22
    [90]鄂建新,刘晓芳,张新丽,康锦萍.基于有限元的汽轮发电机模型机设计研究[J].现代电力,2007,24(3):39-43
    [91]John J. Stickler. A Study of Single-Sided Linear Induction Motor Performance with Solid Iron Secondaried[J]. IEEE Transactions on Vehicular Technology, Vol.VT-31, No.2, 1982, pP107-112
    [92]T. W. Preston, A. B. J. Reece. Transverse Edge Effects in Linear Induction Motors [J]. PROC. IEE, Vol.116, No.6,1969, pp973-979
    [93]W. J. Gibbs. Induction and Synchronous Motors with Unlaminated Rotors [J]. Journal of the Institution of Electrical Engineers:Part II Power Engineering, Vol.95, No.48, 1948, pp411-420
    [94]J.i-Min Kim, Byeong-Hwa Li, Jeong-Jong Lee, Jung-Pyo Hong. Characteristic Analysis of Tubular Linear Induction Motor Using Axisymmetric Model [C].14th Biennal IEEE Conference on Electromagnetic Field Computation, June 2010, Chicago, IL, USA
    [95]Tong Yang, Libing Zhou, Langru Li. Influence of Design Parameters on End Effect in Long Primary Double-Sided Linear Induction Motor[J]. IEEE Transactions on Plasma Science, Vol.39, No.1,2011, pp192-197
    [96]Sang-Hwan Ham, Sung-Gu Lee, Kwang-Soo Kim, et al. Study on Reduction of Transverse Edge Effect of Single-Sided Linear Induction Motor for Transportation System[C].2009 International Conference on Electrical Machines and Systems, November 2009, Tokyo, Japan
    [97]E. R. Laithwaite, S.A. Nasar. Linear-Motion Electrical Machines[J]. PROC. IEEE, Vol.58, April 1970, pp531-542
    [98]E. R. Laithwaite. Induction Machines for Special Purposes[M]. Chemical Publishing Company, New York,1966, pp1-153
    [99]崔明贤,江菊元,王福顺.高效传热的铝合金散热器[J].天津理工学院学报,2001,17(1):31-35
    [100]Burnham David C.. Asymtotic Lift-to-Drag Ratios for Magnetic Suspension Systems[J]. Journal of Applied Physics, Vol.42, No.9,1971, pp3455-3457
    [101]Borcherts Robert H., Burnham David C.. Force on Superconducting Coils by Induced Body Currents[J]. Journal of Applied Physics, Vol.42, No.1,1971, pp5
    [102]Davis L. C., Reitz John R.. Eddy Currents in Finite Conducting Sheets[J]. Journal of Applied Physics, Vol.42, No.11, pp4119-4127
    [103]Davis L. C., Wilkie Dennis F.. Analysis of Motion of Magnetic Levitation Systems: Implication for High-Speed Vehicles[J]. Journal of Applied Physics, Vol.42, No.12, 1971, pp4779-4793
    [104]Jin Au Kong. Electromagnetic Wave Theory[M]. Wiley-Interscience Publication, New York, USA,1986, ppl-283
    [105]Ann N. Tulintseff, Sami M. Ali, Jin Au Kong. Input Impedance of a Probe-Fed Stacked Circular Microstrip Antenna [J]. IEEE Transactions on Antennas and Propagation, Vol.39, No.3,1991, pp381-390
    [106]Yeh, C. Yao-Xiong. Reflection and Transmission of Electromagnetic Waves by a Delectric Medium[J]. Journal of Applied Physics, Vol.36, No.11, pp3513-3517
    [107]陈军.光学电磁理论[M].北京:科学出版社,2006:pp94-116
    [108]Duncan J, Eng C. Linear induction motor-equivalent-circuit model [J]. IEE Proceedings,1983,130(1):51-57.
    [109]Escalada A J, Poza J, Luri S, et al. Equivalent circuit of a linear induction motor with variable parameters[C]. The 32"d Annual Conference of the IEEE Industrial Electronics Society. Paris France,2006:1569-1574.
    [110]Gastli A. Compensation for the effect of joints in the rotor conductors of a linear induction motor[J]. IEEE Transactions on Energy Conversion,1998,23(2): 111-116.
    [111]徐伟,李耀华,孙广胜,等.短定子单边直线感应电机新型等效电路[J].中国电机工程学报,2009,29(9):80-86.
    [112]吕刚.直线感应电机的解耦最优控制研究[D].北京交通大学,北京,2007:24-135
    [113]Yan Hu, Jinhui Zhang. Thrust Force Analysis of a Vertically Reciprocate Cylindrical Linear Induction Motor[C]. Proceedings of the 8th International Conference on Electrical Machines and Systems, September 2005, Nanjing, China, pp752-755
    [114]Rathore A.K., Mahendra S. N.. Decoupled Control of Attraction Force and Propulsion Force in Linear Induction Motor Drive[C].2003 IEEE International Conference on Industrial Technology, December 2003, Maribor, Slovenia, pp524-529
    [115]Robert D. Lorenz, Sheng-Ming Yang. AC Induction Servo Sizing for Motion Control Applications via Loss Minimizing Real-Time Flux Control[J]. IEEE Transactions on Industry Applications, Vol.28, No.3,1992, pp589-593
    [116]Fidel Fernandez-Bernal, Aurelio Garcia-Cerrada, Roberto Faure. Model-Based Loss Minimization for DC and AC Vector-Controlled Motors Including Core Saturation [J]. IEEE Transactions on Industry Applications, Vol.36, No.3, pp755-763
    [117]Flemming Abrahamsen, Frede Blaabjerg, John K. Pederson, Paul B.Thoegersen. Efficiency-Optimized Control of Medium-Size Induction Motor Drives[J]. IEEE Transactions on Industry Applications, Vol.37, No.6, pp1761-1767
    [118]Lin, F. J., Shen P. H., Hsu S. P.. Adaptive Backstepping Sliding Mode Control for Linear Induction Motor Drive[J]. Electric Power Applications,1EE Proceedings, Vol. 149, Issue 3,2002, ppl84-194
    [119]Lin, F. J., Lee C. C.. Adaptive Backstepping Control for Linear Induction Motor Drive to Track Periodic References [J]. Electric Power Applications,1EE Proceedings, Vol.147, No.6,2000, pp449-458
    [120]Wai R. J., Lin F. J., Hsu S. P.. Intelligent Backstepping Control for Linear Induction Motor Drive [J]. Control Theory and Applications,1EE Proceedings, Vol.148, No.3,2001, pp193-202
    [121]Wai R.J., Liu W. K.. Nonlinear Decoupled Control for Linear Induction Motor Servo-Drive using the Sliding-Mode Technique[J]. Control Theory and Applications, 1EE Proceedings, Vol.148, No.3,2001, pp217-231
    [122]Rong-Jong Wai, Wei-Kuo Liu. Nonlinear Control for Linear Induction Motor Servo Drive [J]. IEEE Transactions on Industrial Electronics, Vol.50, No.5,2003, pp920-935
    [123]Kang G., Nam K.. Field-Oriented Control Scheme for Linear Induction Motor with the End Effect[J]. Electric Power Applications, IEE Proceedings, Vol.152, No.6, PP1565-1572
    [124]Da Silva E. F., Dos Santos E. B.. Vector Control for Linear Induction Motor[C]. 2003 IEEE International Conference on Industrial Technology, December 2003, Maribor, Slovenia, pp518-523
    [125]Da Silva E. F., Dos Santos E. B.. Dynamic Mode for Linear Induction Motors[C]. 2003 IEEE International Conference on Industrial Technology, December 2003, Maribor, Slovenia, pp478-482
    [126]Chin-I Huang, Ko-Lo Chen, Hou-Tsan Lee, Li-Chen Fu. Nonlinear Adaptive Backstepping Motion Control of Linear Induction Motor[C].2002 American Control Conference, May 2002, Alaska, USA, pp3099-3104
    [127]Ba-Razzouk A., Cheriti A., Ohvier G., Sicard P.. Field-Oriented Control of Induction Motors Using Neural-Network Decouplers[J]. IEEE Transactions on Power Electronics, Vol.12, No.4,1997, pp752-763
    [128]Islam S. M., Somuah C. B.. An Efficient High Performance Voltage Decoupled Induction Motor Drive with Excitation Control[J]. IEEE Transations on Energy Conversion, Vol.4, No.1,1989, pp109-117
    [129]Rong-Jong Wai., Kuo-Min Lin.. Robust Decouple Control of Direct Field-Oriented Induction Motor Drive[J]. IEEE Transations on Industrial Electronics, Vol.52, No.3, 2005, pp837-854
    [130]Sheng-Ming Yang, Chen-Haur Lee.. A Deadbeat Current Controller for Field Oriented Induction Motor Drives[J]. IEEE Transactions on Power Electronics, Vol.7, No.5,2002, pp772-778
    [131]Matsushita A., Tsuchiya T.. Decoupled Preview Control System and Its Application to Induction Motor Drive[J]. IEEE Transactions on Industrial Electronics, Vol.42, No.1,1995, pp50-57
    [132]Faa-Jeng Lin, Rong-Jong Wai. Decoupled Stator-Flux-Oriented Induction Motor Drive with Fuzzy Neural Network Uncertainty Observer[J]. IEEE Transactions on Industrial Electronics, Vol.47, No.2,2000, pp356-367
    [133]Rong-Jong Wai, Li-Jung Chang. Decoupling and Tracking Control of Induction Motor Drive [J]. IEEE Transactions on Aerospace and Electronic Systems, Vol.38, No.4,2002, pp1357-1369
    [134]Tengchao Zhang, Huangqiu Zhu, Yuxin Sun. Rotor Suspension Principle and Decoupling Control for Self-Bearing Induction Motors[C]. CES/IEEE 5th International Power Electronics and Motion Control, August 2006, Shanghai, China, pp1-5
    [135]El Moucary C., Mendes E., Razek A.. Decoupled Direct Control for PWN Inverter-Fed Induction Motor Drives[J]. IEEE Transactions on Industry Applications, Vol.38, No.5, 2002, pp1307-1315
    [136]De Doncker R. W., Novomy D. W.. The Universal Field Oriented Controller[J]. IEEE Transactions on Industry Applicatons, Vol.30, No.1,1994, pp92-100
    [137]Takahashi I., Ide Y.. Decoupling Control of Thrust and Attractive Force of a LIM Using a Space Vector Control Inverter[J]. IEEE Transactions on Industry Applications, Vol.29, No.1,1993, pp161-167
    [138]颜寒,郭永基,林兆庄.树脂绝缘干式变压器内部温度场分布仿真研究[J].清华大学学报(自然科学版),1999,39(7)
    [139]孟大伟,刘瑜,徐永明.潜油电机转子三维温度场分析与计算[J].电机与控制学报,2009,13(3):367-370
    [140]徐伟,孙广生,李耀华,金能强.一种新型的直线异步电机参数测定方案[J].电工技术学报,2007,22(6):54-58
    [141]A Microcontroller-Based Induction Motor Drive System Using Variable Structure Strategy with Decoupling[J]. IEEE Transactions on Industrial Electronics, Vol.37, No.3,1990, pp227-235
    [142]D. Fodor, Z. Katona, E. Szestay. Field-Oriented Control of Induction Motors Using DSP[J]. Computing and Control Engineering Journal, Vol.5, No.2,1994, pp61-65
    [143]Ying-Yu Tzou. DSP-Based Robust Control of an AC Induction Servo Drive for Motion Control[J]. IEEE Transactions on Control System Technologh, Vol.4, No.6,1996, pp614-626
    [144]王妍,杜军红,陶伟宜,陈永校.基于DSP的空间矢量法PWM研究[J].电机与控制学报,2000,4(2):98-101
    [145]赵静红,张俊洪,杨涛.基于DSP的SVPWM研究[J].电机与控制学报,2002,6(2):108-110
    [146]成树康,高晗璎.两相混合式同步电动机的SVPWM研制[J].中国电机工程学报,2003,23(2):91-98
    [147]吕刚,范瑜,李国国,等.基于解耦策略的直线感应牵引电机法向力自适应最优控制[J].中国电机工程学报,2009,29(9):73-79.
    [148]朱熙,范瑜,李硕,等.旋转磁场电动式磁悬悬浮装置的状态方程与悬浮力控制[C].第四届电工前沿技术论坛,2010年11月,中国武汉
    [149]J. Bardeen, L. N. Cooper, J. R. Schrieffer. Theory of Superconductivity[J]. Physical Review,1957, Vol.108, No.5,1175-1205
    [150]J. Hove, S. Mo, A. Sudbo. Vortex Interactions and Thermally Induced Crossover from Type-I to Type-II Superconductivity [J]. Physical Review,2002, Vol.66, No.6, pp1-8
    [151]唐跃进,李敬东,潘垣,等.超导旋转电机--发电机和电动机的研究现状[J].电力系统自动化,2001,25(4):72-76
    [152]Stephen D. Umans, Boris A. Shoykhet. Quench in High-Temperature Superconducting Motor Field Coils:Experimental Results[J]. IEEE Transactions on Industry Applications, Vol.42, No.4,2006, pp983-989
    [153]Muxi Shang, Yinming Dai, Qiuliang Wang, et al. Design and Electromagnetic Analysis of a Superconducting Diamagnetic Motor[J]. IEEE Transactions on Applied Superconductivity, Vol.16, No.2,2006, pp1481-1484
    [154]Kazuhiro Kajikawa, Taketsune Nakamura. Proposal of a Superconducting Motor for Liquid Hydrogen Pump with MgB2 Wire[J]. IEEE Transactions on Applied Superconductivity, Vol.19, No.3,2009, ppl669-1673
    [155]0. Tsukamoto, Y. Tanaka, S.Sato. Development of Superconducting Linear Induction Motor for Steel Making Process [J]. IEEE Transactions on Magnetics, Vol.27, No.2,1991, pp2248-2251
    [156]0. Tsukamoto, N. Amemiya, K. Yamagishi. Development of Prototype Superconducting Linear Induction Motor for Steel Making Process[J]. IEEE Transactions on Applied Superconductivity, Vol.5, No.2,1995, pp976-979
    [157]A. Ishiyama, K. Hayashi. Design and Construction of a Superconducting Cylindrical Linear Induction Motor with AC Superconducting Primary Windings [J]. IEEE Transactions on Applied Superconductivity, Vol.9, No.2,1999, pp1217-1220
    [158]A. R. Eastham, Roger M. Katz. The Operation of a Single-Sided Linear Induction Motor with Squirrel-Cage and Solid Steel Reaction Rails[J]. IEEE Transactions on Magnetics, Vol.Mag-16, No.5,1980, pp722-724
    [159]J. F. Gieras. Simplified Theory of Double-Sided Linear Induction Motor with Squirrel-Cage Elastic Secondary[J]. IEE Proceedings, Vol.130, No.6,1983, pp424-430

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700