用户名: 密码: 验证码:
二氧化硅纳米颗粒应用于干细胞增殖、分化及体内示踪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干细胞是一类具有高度增殖和多向分化潜能的细胞群体,近年来随着对干细胞特性认识的加深,其基础与应用研究都有了突破性进展。不过目前一些经典的技术已成为干细胞研究面临的重要瓶颈,新技术的引入对于推动干细胞相关研究具有非常重要的意义。纳米技术作为一门20世纪80年代末发展起来的新兴学科,为干细胞的研究提供了新的契机。作为纳米材料重要成员之一的二氧化硅纳米颗粒,由于易修饰、易合成等优点,在生物医学领域得到了广泛应用,有望为干细胞相关研究提供新的手段。本论文瞄准纳米材料作为载体这一前沿研究方向,在考察二氧化硅纳米颗粒与间充质干细胞干细胞生物相容性的基础上,进一步开展了二氧化硅纳米颗粒作为生物相容性载体用于间充质干细胞的增殖、分化以及体内示踪研究。主要内容包括以下三个方面:
     1、二氧化硅纳米颗粒与间充质干细胞的生物相容性研究
     以间充质干细胞为研究对象,初步考察了二氧化硅纳米颗粒与间充质干细胞的生物相容性。首先利用MTT实验考察一系列浓度(0.05 mg/mL~2 mg/mL)二氧化硅纳米颗粒对间充质干细胞存活率以及细胞形态的影响,结果表明二氧化硅纳米颗粒对间充质干细胞存活率的影响存在浓度依赖性,细胞存活率随着颗粒浓度的增大逐渐降低,但是当与细胞孵育的颗粒浓度在0.1 mg/mL范围内时,细胞存活率都维持在80%以上;而同一浓度的二氧化硅纳米颗粒对间充质干细胞存活率的影响则存在时间依赖性,即随着培育时间的延长,存活率降低,负面影响增大。选择对细胞存活率影响很小浓度下的二氧化硅纳米颗粒处理间充质干细胞,并对处理后的间充质干细胞进行成脂和成骨诱导,通过组织化学染色和定量结果表明,与对照组相比,纳米颗粒处理的间充质干细胞其成脂和成骨分化能力并没有发生明显影响。同时,电子显微镜结果显示,二氧化硅纳米颗粒被间充质干细胞摄取,而摄取大量颗粒后的间充质干细胞依然保持良好的形态,保持了完整的细胞器超微结构。
     2、二氧化硅纳米颗粒作为胰岛素载体用于间充质干细胞的成脂分化
     胰岛素是间充质干细胞成脂分化的诱导因子之一,本章在考察二氧化硅纳米颗粒与间充质干细胞生物相容性的基础上,研究了二氧化硅纳米颗粒作为胰岛素载体诱导间充质干细胞成脂分化的可行性。首先利用直接吸附和PMPI交联两种方法分别将胰岛素修饰到二氧化硅纳米颗粒表面,傅里叶红外转换光谱结果表明,胰岛素能够很好的修饰到颗粒上,且修饰到颗粒上的胰岛素稳定性良好;细胞实验表明,通过两种方法交联到纳米颗粒上的胰岛素其生物活性没有受到影响,能够很好的诱导间充质干细胞向脂肪细胞的分化,因此功能化二氧化硅纳米颗粒有望发展成为一种新型的干细胞诱导因子载体诱导间充质干细胞成脂分化。
     3、荧光二氧化硅纳米颗粒用于间充质干细胞的标记和体内示踪
     结合本实验室已有的二氧化硅荧光纳米标记技术平台,在二氧化硅纳米颗粒应用于肿瘤标记、活体示踪的基础上,初步探讨了荧光二氧化硅纳米颗粒对间充质干细胞的标记与体内示踪的可行性。利用流式细胞仪优化纳米颗粒标记干细胞的最佳浓度与时间,结果表明,1000μg/mL浓度的纳米颗粒与间充质干细胞孵育30min时,颗粒有效的进入细胞,细胞内的颗粒荧光强度达到饱和,表明荧光二氧化硅纳米颗粒可以有效的标记间充质干细胞;在此基础上,将标记的间充质干细胞以皮下注射和静脉注射两种方式移植裸鼠体内,利用活体成像仪成像,皮下注射处24 h内可以观察到荧光,标记的间充质干细胞经静脉移植后,将裸鼠解剖并对相关器官进行组织切片,结果在肝、肺、脾可以观察到荧光,初步推测间充质干细胞经过血液循环后可能迁移到了此部位,这对于研究干细胞的迁徙、归巢等生物学行为具有十分重要的意义。但如何改善纳米颗粒标记的间充质干细胞在体内的荧光强度,还有待于进一步研究。
Stem cells are characterized by the ability to renew themselves through mitotic cell division and differentiate into a diverse range of specialized cell types. Recently, the wide spectrum of nanotechnologies holds great promise toward the study of stem cell biology and the development of new approaches to stem cell research. By combining the two important research fields of nanotechnology and stem cells research, the stem cells nanotechnology has been well developed and become a new intercross interdisciplinary field. Silica nanoparticles (SiNPs) are of interest for their biocompatibility and their mechanical properties. Because of their unique characteristics, SiNPs have been widely studied in a range of areas including chemistry, engineering and biomedicine, especially the application of functionalized SiNPs for cancer diagnostics and therapy. The nanoparticle's good biocompatibility and easy modification make them well-suited for a variety of biomedical studies, which provides a new route for stem cells research. Aiming at the direction of nanomaterials based carriers, the biocompatible silica nanoparticles (SiNPs) based carriers for Rat mesenchymal stem cells (RMSCs) proliferation, differentiation and in vivo tracking have been reported. The three parts of the thesis are as follows.
     1. Bioeffects of silica nanoparticles on mesenchymal stem cells proliferation and differentiation
     The cell viability assay of RMSCs in the presence of pure SiNPs was first performed using MTT assay and morphology test. The results indicated the addition of SiNPs to the cell culture medium with last concentration of 0.05 mg/mL and 0.1 mg/mL did not affect the metabolic activity and the proliferation of RMSCs. As the concentration of SiNPs increased, the cell survival rate decreased. If the last concentration of SiNPs was not higher than 0.1 mg/mL, the survival rate of the cells after exposure for 24 h still kept around 80%. the pure SiNPs with concentration of creating little cytotoxicity had no effect on the on cellular ultrastructures, adipogenic differentiation and osteogenic differentiation. Similarly, TEM analyses of RMSCs results indicated that the the structures of treated RMSCs were preserved by compared with the control group without treatment of SiNPs and stayed in a relatively active period with normal cell function.
     2. Silica nanoparticles as biocompatibile carriers of insulin for mesenchymal stem cells adipogenic differentiation
     In the present study, the SiNPs based carriers of insulin for RMSCs adipogenic differentiation have been reported. SiNPs were then selected as carriers to be conjugated with insulin, one of important growth factor supplements for RMSCs adipogenic differentiation. In vitro cell studies were carried out in order to evaluate adipogenic efficacy of adipogenic induction media containing SiNPs-insulin conjugates through the control experiments. The results showed that the biological activity of insulin conjugated to the SiNPs was not affected and the SiNPs-insulin conjugates could be used for RMSCs adipogenic differentiation, which would help to expand the new potential application of SiNPs in stem cell research.
     3. Fluorescent nanoparticles for stem cell labeling and stem cell in vivo tracking
     The feasibility of cellular labeling and tracking in vivo of Rubpy silica nanoparticles (FSiNPs) in the RMSCs have been studyed based on the the front work of tumor labeling and tracking. FSiNPs in the cells were assessed by flow cytometry and the result showed that 1000μg/mL of FSiNPs could enter RMSCs efficiently after 30 min incubation.The FSiNPs labeled stem cells were firstly injected into the neck of null mice subcutaneously. There was fluorescence of FSiNPs for 24 h by using an optical in vivo imaging system. The labeled stem cells were further injected into the tail veins of null mice and the tissue distribution of these labeled cells in nude mice were examined with fluorescence microscope. The result showed that characteristic fluorescence of FSiNPs was observed in the liver, the lung and the spleen, which primarily presumed the migration of stem cells. The challenge should be how to improve the internalizing efficiency of FSiNPs in the stem cells.
引文
[1]Sanders R C Jr, Slayton W, Cogle C, et al. Stem cell research. Paediatr Respir Rev,2006,7(2):135-140
    [2]He Q, Li J, Bettiol E, et al. Embryonic stem cells:new possible therapy for degenerative diseases that affect elderly people. J Gerontol Med Sci,2003, 58A(3):279-287
    [3]Wu K, Liu Y L, Cui B, et al. Application of stem cells for cardiovascular grafts tissue engineering. Transpl Immunol,2006,16(1):1-7
    [4]Barry F P, Murphy J M. Mesenchymal stem cells:Clinical applications and biological characterization. Int J Biochem Cell B,2004,36(4):568-584
    [5]Zuo L, Wei W, Morris M, et al. New technology and clinical applications of nanomedicine. Med Clin North Am,2007,91(5):845-862
    [6]Jing Y, Moore L R, Williams P S, et al. Blood progenitor cell separation from clinical leukapheresis product by magnetic nanoparticle binding and magnetophoresis. Biotechnol. Bioeng,2007,96(6):1139-1154
    [7]Kuhara M, Yoshino T,Shiokawa M, et al. Magnetic separation of human podocalyxin-like protein 1 (hPCLP1)-positive cells from peripheral blood and umbilical cord blood using anti-hPCLP1 monoclonal antibody and protein A expressed on bacterial magnetic particles. Cell Struct Funct,2009,34(1):23-30
    [8]Shah B S, Clark P A, Moioli E K, et al. Labeling of mesenchymal stem cells by bioconjugated quantum dots. Nano Lett,2007,7(10):3071-3079
    [9]Lei Y, Tang H, Yao L, et al. Applications of mesenchymal stem cells labeled with Tat peptide conjugated quantum dots to cell tracking in mouse body. Bioconjugate Chem,2008,19(2):421-427
    [10]Hork D, Babic M, Jendelov P, et al. D-mannose-modified iron oxide nanoparticles for stem cell labeling. Bioconjugate Chem,2007,18(3):635-644
    [11]Babic M, Horak D, Trchova M, et al. Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling. Bioconjugate Chem,2008,19(3):740-750
    [12]Babic M, Horak D, endelova P, et al. Poly(N,N-dimethylacrylamide)-coated maghemite nanoparticles for stem cell labeling. Bioconjugate Chem,2009, 20(2):283-294
    [13]Huang D M, Hung Y, Ko B S, et al. Highly efficient cellular labeling of mesoporous nanoparticles in human mesenchymal stem cells:implication for stem cell tracking. FASEB J,2005,19(14):2014-2016
    [14]Lu C W, Hung Y, Hsiao J K, et al. Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett,2007,7(1):149-154
    [15]Liu H M, Wu S H, Lu C W, et al. Mesoporous silica nanoparticles improve magnetic labeling efficiency in human stem cells. Small,2008,4(5):619-626
    [16]Hsiao J K, Tsai C P, Chung T H, et al. Mesoporous silica nanoparticles as a delivery system of gadolinium for effective human stem cell tracking. Small, 2008,4(9):1445-1452
    [17]Ahn H H, Lee M S, Cho M H, et al. DNA/PEI nano-particles for gene delivery of rat bone marrow stem cells. Colloids and Surfaces A:Physicochem. Eng. Aspects,2008,313-314:116-120
    [18]Kutsuzawa K, Akaike T, Chowdhury E H. The influence of the cell-adhesive proteins E-cadherin and fibronectin embedded in carbonate-apatite DNA carrier on transgene delivery and expression in a mouse embryonic stem cell line. Biomaterials,2008,29(3):370-376
    [19]Green J J, Zhou B Y, Mitalipova M M, et al. Nanoparticles for gene transfer to human embryonic stem cell colonies. Nano Lett,2008,8(10):3126-3130
    [20]Santos J L, Oramas E, Pego A P, et al. Osteogenic differentiation of mesenchymal stem cells using PAMAM dendrimers as gene delivery vectors. J Control Release,2009,134(2):14.1-148
    [21]Han S W, Nakamura C, Kotobuki N, et al. High-efficiency DNA injection into a single, human mesenchymal stem cell using a nanoneedle and atomic force microscopy. Nanomedicine,2008,4(3):215-225
    [22]Park S, Kim Y S, Kim W B, et al. Carbon nanosyringe array as a platform for intracellular delivery. Nano Lett,2009,9(4):1325-1329
    [23]Ferreira B L, Squier T, Park H, et al. Human embryoid bodies containing nano-and microparticulate delivery vehicles. Adv Mater,2008,20(12):2285-2291
    [24]Oliveira J M, Sousa R A, Kotobuki N, et al. The osteogenic differentiation of rat bone marrow stromal cells cultured with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles. Biomaterials,2009,30(5):804-813
    [25]Dalby M J, Gadegaard N, Tare R, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater,2007,6(12): 997-1003
    [26]Kommireddy D S, Sriram S M, Lvov Y M, et al. Stem cell attachment to layer-by-layer assembled TiO2 nanoparticle thin films. Biomaterials,2006, 27(24):4296-4303
    [27]Park J, Bauer S, Mark K, et al. Nanosize and vitality:TiO2 nanotube diameter directs cell fate. Nano Lett,2007,7(6):1686-1691
    [28]Park J, Bauer S, Schlegel K A, et al. TiO2 nanotube surfaces:15 nm--an optimal length scale of surface topography for cell adhesion and differentiation. Small, 2009,5(6):666-671
    [29]Oh S, Brammer K S, Li Y S, et al. Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci U S A,2009,106(7):2130-2135
    [30]Harrison, B. S, Atala A. Carbon nanotube applications for tissue engineering. Biomaterials,2007,28(26):344-353
    [31]Jan E, Kotov N A. Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. Nano Lett, 2007,7(5):1123-1128
    [32]Kam N W S, Jan E, Kotov N A. Electrical stimulation of neural stem cells mediated by humanized carbon nanotube composite made with extracellular matrix protein. Nano Lett,2009,9(1):273-278
    [33]Lipski A M, Jaquiery C, Choi H, et al. Nanoscale engineering of biomaterial surfaces. Adv Mater,2007,19(4):553-557
    [34]Lipski A M, Pino C J, Haselton F R, et al. The effect of silica nanoparticle-modified surfaces on cell morphology, cytoskeletal organization and function. Biomaterials,2008,29(28):3836-3846
    [35]Na K, Kim S, Park K, et al. Heparin/poly(1-lysine) nanoparticle-coated polymeric microspheres for stem-cell therapy. J Am Chem Soc,2007,129(18): 5788-5789
    [36]Park J S, Park K, Woo D G, et al. PLGA microsphere construct coated with TGF-beta 3 loaded nanoparticles for neocartilage formation. Biomacromolecules,2008,9(8):2162-2169
    [37]Shi X, Wang Y, Varshney R R, et al. In-vitro osteogenesis of synovium stem cells induced by controlled release of bisphosphate additiyes from microspherical mesoporous silica composite. Biomaterials,2009,30(23-24): 3996-4005
    [38]Dang J M, Leong K W. Myogenic induction of aligned mesenchymal stem cell sheets by culture on thermally responsive electrospun nanofibers. Adv Mater Deerfield,2007,19(19):2775-2779
    [39]Lee J B, Jeong S M, Kim K J, et al. Osteogenic differentiation of human adipose-derived- stem cells(hADSCs)on a dexamethasone eluting nanofiber scaffolds. Tissue Eng Regen Med,2009,6(1-3):371-379
    [40]Wang H, Li Y, Zuo Y, et al. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials,2007,28(22):3338-3348
    [41]Chakraborty S K, Fitzpatrick J A, Phillippi J A, et al. Cholera toxin B conjugated quantum dots for live cell labeling. Nano Lett,2007,7(9): 2618-2626
    [42]Shah B S, Clark P A, Moioli E K, et al. Labeling of mesenchymal stem cells by bioconjugated quantum dots. Nano Lett,2007,7(10):3071-3079
    [43]Hsieh S C, Wang F F, Hung S C, et al. The internalized CdSe/ZnS quantum dots impair the chondrogenesis of bone marrow mesenchymal stem cells. J Biomed Mater Res B Appl Biomater,2006,79(1):95-101
    [44]Hsieh S C, Wang F F, Lin C S, et al. The inhibition of osteogenesis with human bone marrow mesenchymal stem cells by CdSe/ZnS quantum dot labels. Biomaterials,2006b,27(8):1656-1664
    [45]Chang J C, Su H L, Hsu S H.The use of peptide-delivery to protect human adipose-derived adult stem cells from damage caused by the internalization of quantum dots. Biomaterials,2008,29(7):925-936
    [46]Chang J C, Hsu S H,Su H L. The regulation of the gap junction of human mesenchymal stem cells through the internalization of quantum dots. Biomaterials,2009,30(10):1937-1946
    [47]Dai G.H, Xiu J G, Zhou Z J, et al. Effect of superparamagnetic iron oxide labeling on neural stem cell survival and proliferation. Nan Fang Yi Ke Da Xue Xue Bao.2007,27(1):49-51,55
    [48]Suh J S, Lee J Y, Choi Y S, et al. Efficient labeling of mesenchymal stem cells using cell permeable magnetic nanoparticles. Biochem Biophys Res Commun, 2009,379(3):669-675
    [49]Krejci J, Pachernik J, Hampl A, et al. In vitro labelling of mouse embryonic stem cells with SPIO nanoparticles. Gen Physiol Biophys,2008,27(3):164-173
    [50]Bulte J W, Kraitchman D L,Mackay A M, et al. Chondrogenic differentiation of mesenchymal stem cells is inhibited after magnetic abeling with ferumoxides. Blood,2004,104(10):3410-3413
    [51]Arbab A S, Yocum G T, Kalish H, et al. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood, 2004,104(4):1217-1223
    [52]Song Y S, Ku J H. Monitoring transplanted human mesenchymal stem cells in rat and rabbit bladders using molecular magnetic resonance imaging. Neurourol Urodyn,2007,26(4):584-593
    [53]Schafer R, Kehlbach R, Miiller M, et al. Labeling of human mesenchymal stromal cells with superparamagnetic iron oxide leads to a decrease in migration capacity and colony formation ability. Cytotherapy,2009,11(1): 68-78
    [54]Mooney E, Dockery P, Greiser U, et al. Carbon nanotubes and mesenchymal stem cells:biocompatibility, proliferation and differentiation, Nano Lett,2008, 8(8):2137-2143
    [55]Zhu L, Chang D W, Dai L, et al. DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Lett,2007,7(12):3592-3597
    [56]Chung T H, Wu S H, Yao M, et al. The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials,2007,28(19):2959-2966
    [57]Huang D M, Chung T H, Hung Y, et al. Internalization of mesoporous silica nanoparticles induces transient but not sufficient osteogenic signals in human mesenchymal stem cells. Toxicol Appl Pharmacol,2008,231(2):208-215
    [58]Kamihira M, Kumar A. Development of separation technique for stem cells. Adv Biochem Eng Biotechnol,2007,106:173-193
    [59]Dainiak M B, Kumar A, Galaev I Y, et al. Methods in cell separations. Adv Biochem Eng Biotechnol,2007,106:1-18.
    [60]Kuhara M, Takeyama H, Tanaka T, et al. Magnetic cell separation using antibody binding with protein a expressed on bacterial magnetic particles. Anal Chem,2004,76(21):6207-6213
    [61]郭小英,王永宁,顾林岗,等.Co@SiO2核壳式纳米磁性粒子的合成、性质表征及在细胞分离和细胞芯片上的应用.高等学校化学学报,2006,27:1725-1728
    [62]Rahaman M N, Mao J J. Stem cell-based composite tissue constructs for regenerative medicine. Biotechnol Bioeng,2005,91(3):261-284
    [63]Walling M A, Novak J A, Shepard J R. E. Quantum dots for live cell and in vivo imaging. Int J Mol Sci,2009,10(2):441-491
    [64]Li Z H, Wang K M, Tan W H, et al. Immunofluorescent labeling of cancer cells with quantum dots synthesized in aqueous solution. Anal Biochem,2006, 354(2):169-174
    [65]李莉华,马印图,王全立.量子点标记技术在生物医学中的研究进展.中华检验医学杂志,2005,28(8):870-872
    [66]Duan H, Nie S. Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. J Am Chem Soc,2007,129(11): 3333-3338
    [67]Zdobnova T A, Dorofeev S G, Tananaev P N, et al. Fluorescent immunolabeling of cancer cells by quantum dots and antibody scFv fragment. J Biomed Opt. 2009,14(2):021004
    [68]Arbab A S, Liu W, Frank J A. Cellular magnetic resonance imaging:current status and future prospects. Expert Rev Med Devices,2006,3(4):427-439
    [69]Liu W, Frank J A. Detection and quantification of magnetically labeled cells by cellular MRI. Eur J Radiol,2009,70(4):258-264
    [70]张文高,杨学军.SPIO在非吞噬细胞成像中的应用及研究进展.国际医学放射学杂志,2008,31(6):473-475
    [71]何晓晓,王柯敏,谭蔚泓,等.基于生物荧光纳米颗粒的新型荧光标记方法及其在细胞识别中的应用.科学通报,2001,46(16):1353-1356
    [72]He X X, Duan J H, Wang K M, et al. A novel fluorescent label based on organic dye-doped silica nanoparticles for HepG liver cancer cell recognition. J Nanosci Nanotechnol,2004,4(6):585-589
    [73]李朝辉,王柯敏,谭蔚泓,等.硅壳包被的核壳型量子点荧光纳米颗粒的制备及其在细胞识别中的应用.科学通报,2005,50(13):1318-1322
    [74]Peng J F, Wang K M, Tan W H, et al. Identification of live liver cancer cells in a mixed cell system using galactose-conjugated fluorescent nanoparticles. Talanta, 2007,71(2):833-840
    [75]Choi J, Burns AA, Williams RM, et al. Core-shell silica nanoparticles as fluorescent labels for nanomedicine. J Biomed Opt.2007,12(6):064007
    [76]Wu P, He X X, Wang K M, et al. Imaging breast cancer cells and tissues using peptide-labeled fluorescent silica nanoparticles. J Nanosci Nanotechnol,2008, 8(5):2483-2487
    [77]He X X, Ge J, Wang K M, et al. FSiNPs mediated improved double immunofluorescence staining for gastric cancer cells imaging. Talanta,2008, 76(5):1199-1206
    [78]Quarta A, Di Corato R, Manna L, et al. Fluorescent-magnetic hybrid nanostructures:preparation, properties, and applications in biology. IEEE Trans Nanobioscience,2007,6(4):298-308
    [79]Palmer G D, Steinert A, Pascher A, et al. Gene-induced chondrogenesis of primary mesenchymal stem cells in vitro. Mol Ther,2005,12(2):219-228
    [80]Incani V, Tunis E, Clements B A, et al. Palmitic acid substitution on cationic polymers for effective delivery of plasmid DNA to bone marrow stromal cells. J Biomed Mater Res A,2007,81(2):493-504
    [81]Montier T, Benvegnu T, Jaffres P A, et al. Progress in cationic lipid-mediated gene transfection:a series of bio-inspired lipids as an example. Curr Gene Ther, 2008,8(5):296-312
    [82]何晓晓,王柯敏,谭蔚泓,等.基于氨基化SiO2纳米颗粒的新型基因载体.科学通报,2002,47(18):1365-1369
    [83]Scadden D T. The stem-cell niche as an entity of action. Nature,2006,441 (7097):1075-1079.
    [84]Sniadecki N J, Desai R A, Ruiz S A, et al. Nanotechnology for cell-substrate interactions. Ann Biomed Eng,2006,34(1):59-74
    [85]Bagwe R P, Hilliard L R, Tan W. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir,2006,22(9):4357-4362
    [86]何晓晓,刘芳,王柯敏,等.不同功能化基团修饰的硅纳米颗粒与人皮肤角质形成细胞系(HaCaT)的生物效应.科学通报,2006,51(10):1156-1162
    [87]何晓晓,王柯敏,谭蔚泓,等.静电相互作用对微乳液法制备核壳纳米颗粒的影响.科学通报,2005,50(20):2185-2190
    [88]杨儒壮,孙宏晨,欧阳.纳米级高分子支架材料在组织工程中的研究进展.口腔医学,2004,31(2):126-128
    [89]焦国豪.组织工程支架材料研究进展.化工中间体,2007,4:26-29
    [90]Ferreira L, Karp J M, Nobre L, et al. New opportunities:the use of nanotechnologies to manipulate and track stem cells. Cell Stem Cell,2008,3(2): 136-146
    [91]He XX, Nie HL, Wang KM, et al.Xiaoxiao He, Hailong Nie, Kemin Wang*, Weihong Tan, Xu Wu and Pengfei Zhang.In Vivo Study of Biodistribution and Urinary Excretion of Surface-Modified Silica Nanoparticles. Anal Chem,2008, 80(24):9597-9603.
    [92]He X, Wang K, Tan W, Li J, et al. Photostable luminescent nanoparticles as biological label for cell recognition of system lupus erythematosus patients. J Nanosci Nanotechnol,2002,2(3-4):317-320.
    [93]U.S.Pharniacopeia/National Formulary (USP/NF). Edited by The United States Pharmacopeial Convention, USP29,2005
    [94]Heng BC, Haider HKh, Sim EK, Cao T, Ng SC. Strategies for directing the differentiation of stem cells into the cardiomyogenic lineage in vitro. Cardiovasc Res,2004,62(1):34-42
    [95]Yavuz H, Denizli A. Immunoadsorption of cholesterol on Protein A oriented beads. Macromol Biosci,2005,5(1):39-48
    [96]Li LY, Wang J, Sun PC, Liu XH, Ding DT, et al. Microporous Silica Hollow Nanospheres Templated by Anionic Polypeptide. Acta Physico-Chimica Sinica, 2008,24(3):359-363

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700