平板件电磁成形的质量保证技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁成形是金属在强脉冲磁场中受力而发生塑性变形的一种高能高速的成形方法。其优点如下:成形时没有物理接触,可以在成形或装配操作前进行工件的抛光或研磨;成形过程中没有静态力,可以采用相对较轻的结构支撑模具;电磁脉冲载荷时间可以达到微秒的精度,强度可以电力控制达到很高的精度;成形过程不产生摩擦,不需要润滑剂,操作之后不需清理工件;成形速率高导致材料成形性的提高,对铝合金等强度高、成形性差的材料成形变得非常有利。
    采用电磁成形工艺进行铝合金件的成形,由其代替钢材用于汽车车体结构和其他零件的成形,可使汽车减重达30%,进而减少燃油消耗和温室气体CO2及其他有害气体的排放。因而电磁成形工艺应用于汽车领域是其重要的发展前景。
    本文的主要研究工作有:在对国内外发展状况进行调研的基础上,将平板件的电磁成形作为研究对象,采用理论分析、实验研究、有限元仿真等方法,探索影响成形质量的主要工艺因素,如脉冲电流频率,成形电压,模具,板料厚度等对成形的影响,获得进行平板件电磁成形工艺设计所需的成形线圈、成形设备电路参数、成形电压、模具等的设计方法,对于保证成形件的质量,推动其工业化应用具有重要的意义。将其应用于复合成形工艺(普通冲压成形+电磁成形),将使汽车车身铝合金件的复合成形成为非常有前途的新的工艺方法。
    本文从密绕导线平板线圈的磁感应强度分布入手,分析了平板件上的电磁力分布特点,并在此基础上提出了在平板件电磁成形时存在一个线圈的最小尺寸的概念,此时工件边缘处所受磁压强恰好为0。若线圈尺寸小于该尺寸,则工件边缘处所受磁压强垂直向上,不利于工件的变形。并分别用二分法和复合形法进行圆形线圈和椭圆线圈最小尺寸的计算。采用盒形模具和小孔模具,分别用圆形线圈和椭圆线圈进行板料的成形,得出了两种线圈的适用情况:对于长形工件,采用椭圆线圈要优于圆形线圈;对中心部位变形要求较高的工件,应尽可能采用圆形线圈。这对于电磁成形工艺设计时选择线圈形状、确定线圈尺寸具有一定的指导意义。
    本文详细讨论和阐述了平板件电磁自由成形及有模成形实验,根据实验结果分析了成形电压、模具、板料厚度等对变形的影响,初步得出了电磁成形时平板件的变形响应规律:对于自由成形,加载时间内板料的变形很小,大部分
    
    变形发生在加载结束后的惯性阶段;对于有模成形,板料与模具底部高速撞击后将产生反向运动,其结果是工件的底部形状可能为平的,也可能为内凹的。
    通过对实验结果的统计分析,得出了工件最大变形高度与成形电压之间为线性关系的结论,并且提出可以用二次多项式曲线来逼近工件的变形曲线。因此可以实现根据所需的工件最大变形高度来确定成形电压,并预知工件的近似变形曲线。
    从趋肤效应的角度出发,分析了最大变形高度与板料厚度的关系,得出在其他条件相同的情况下,板料厚度等于趋肤深度时,设备能量利用率最高,工件变形高度最大的结论。并分析了可以通过改变线圈导线的材料、规格、线圈的匝数、匝间距等来获得最高的设备能量利用率。这对于电磁成形工艺设计时线圈的设计有一定的指导意义。
    本文在若干合理简化的基础上用ANSYS/LS-DANA对电磁成形过程进行了有限元仿真,利用仿真结果分析了板料自由成形、有模成形时的变形模式,分析了脉冲电流频率对平板件电磁成形的影响:自由成形时,随脉冲电流频率的减小,工件的最大变形高度先是增大,然后减小,当脉冲电流频率减小到一定程度时,工件的最终变形程度差别不大;有模成形时,在凹模深度相同的情况下,脉冲电流频率越大,工件的反向变形程度越大,随脉冲电流频率的减小,工件底部的贴模情况逐渐变好,直至没有反向变形,工件底部为平的,而且当脉冲电流频率减小到一定程度时,工件的变形曲线趋于相同。文中还分析了载荷幅值对平板件电磁成形的影响:载荷幅值对板料的变形过程没有影响,但是会影响工件的最终变形程度。在其他条件相同的情况下,对于自由成形,载荷幅值越大,工件的变形程度越大;对于有模成形,加载时间较短时,载荷越大,工件的反向变形程度越大;加载时间中等时,工件底部内凹,载荷幅值越小,内凹程度越大,载荷幅值越大,工件侧壁靠模程度越高;加载时间较长时,工件底部近似为平的,载荷幅值越大,工件侧壁靠模程度越高。这对于电磁成形工艺设计时选择最佳的脉冲电流频率、载荷幅值以获得所需的变形曲线具有重要的意义。
Electromagnetic forming is a new kind of forming method with high energy and high forming velocity, by which the metal is loaded under strong impulse magnetic field and deformed plastically. The advantages of the method are as follows. There is no physical contact during forming process, so the workpiece can be polished or grinded before forming or assembling. There is no static force exerted during forming, so relatively light frame structure can be used for die supporting. Magnetic impulse pressure time can be in the order of microsecond, and the intensity of electromagnetic impulse pressure can be controlled electrically to very high precision. There is no friction during forming, so lubricant is not necessary, and cleaning of workpiece after operation is also not necessary. Material with high strength and bad formability, such as aluminum alloy can be used since material's formability can be increased under high forming velocity.
    Forming sheet metal of aluminum alloy using electromagnetic forming method, and substituting it for steel to use for body structure and other parts of automobile, can decrease the weight of the automobile 30 percent. It, in turn, can decrease the oil assumption and exhausts. It will be more and more important for electromagnetic forming process to apply in automobile field.
    The main research of this dissertation is as follows. Based on investigation of the development status of the area in China and oversea countries, electromagnetic forming of sheet metal was selected as main research work. Theory analysis, experiment research and finite element simulation were carried out to study the process factors with strong affect to the forming quality, such as impulse current frequency, forming voltage, mould design, sheet thickness, and so on. Therefore the design methods of forming coil, circuit parameters of forming equipment, forming voltage and the mould, which are necessary for the electromagnetic forming process design, were acquired. It is important for the quality insurance of the workpiece and the promoting of its application in industry. And the application of sheet metal electromagnetic forming in combined forming process (conventional drawing + electromagnetic forming) can promote the application of combined forming of aluminum alloy parts of automobile body.
    
    
    In the dissertation, the distribution of magnetic induction intensity induced by intense winding conductor plane coil was deduced, and the distribution of the electromagnetic pressure on the sheet metal was analyzed. On this basis, minimum size of the coil was proposed so that electromagnetic pressure at the edge of the sheet was zero. If coil size is smaller than the minimum size, the direction of electromagnetic pressure at the edge of the sheet will be upward, and it is disadvantageous to the deformation of the sheet. The dichotomy method and complex method were used for the calculation of the minimum size of circular coil and elliptic coil. Using box die and hole die, the experimental research to sheet forming with circular coil and elliptic coil were carried out, and the suitable cases of the application of the two kinds of coil were acquired. For the long workpiece, elliptic coil is more suitable than circular coil. For the workpiece that has much demand for the deformation of its center area, circular coil should be selected. All of these are important for coil shape selection and coil size calculation during electromagnetic forming process design.
    In the dissertation, sheet metal electromagnetic free forming and die forming experiments were discussed in detail. And based on the experiments, the affect of forming voltage, die structure, and sheet thickness to deformation was analyzed, and the deformation process of sheet metal electromagnetic forming was preliminarily acquired. For free forming, deformation during loading time is small, and most of the deformation happens during the inertia stage. For die forming, the sheet moves toward the opposite direction after its impact with the bottom of the d
引文
1 K.f. Smith. Metal Forming by Electrical Energy Release - Trends and Applications. SAE pub. 650190, 1965
    2 G.K.Lal, M.J.Hillier. Electrodynamics of Electromagnetic Forming. Internat.J.Mech.Sci.1968,(10):491~500
    3 G.K.Lal, M.J.Hillier. Expansion of a Thin Free Tube in Electromagnetic Forming. Int.J.Prod.Res.1970,8(1):59~64
    4 C.Fluerasu. The Use of Transient Parameters in the Study of Electromagnetic Forming. Rev. Roum. Sci. Tech Ser Electrotech Energ. 1969,14(4):565~585
    5 C.Fluerasu. Electromagnetic Forming of a Tubular Conductor. Rev. Roum. Sci. Tech Ser Electrotech Energ. 1970,15(3):457~488
    6 V.P.Epechurin, V. Shalygin. Measuring Deformation Rate of Metal Blanks Under Magnetic Pulse Pressure Working. Meas. Tech. 1971,14(7):1016~1018
    7 Barbarovich, K.Yu. Calculation of Forces in Magnetic Forming. Electrotekh.1971,(7):45~49
    8 A.Dehoff. Determination of Magnetic Pressure During Electromagnetic Forming. Electric. 1971,25(7): 275~277
    9 O.B.Bron, A.M. Segal. Multiwinding Inductors of Various Shapes for the Magnetic Forming of Components. Electrotekh.1971, (3): 22~25
    10 J.V.Belyi, F.Gorkiv. Electromechanical Process During Magnetic Impulse Forming of Metals. Khoorost, Electrotekh.1974, (4): 442~447
    11 J.D.Harrell. Magnetic Pulse Metal Forming Moves into Production Applications. Western Machinery and Steel World.1968: 27~31
    12 L.Seyler. Electromagnetic Metal Forming Offers Options for Automating. Automation. 1970,17(5): 69~72
    13 M.M.Plum. Electromagnetic Forming. Metals Handbook. 9th edition. ASM. 1989,14: 645~654
    
    
    14 D.F.Brower. Electromagnetic Forming. Metals Handbook Vol.4~ Forming. Metals Park, Ohio: American Society for Metals. 1969: 256~264
    15 P.Wildi. Up to Date Look at Magnetic Forming. Metalwork. Prod. 1969,113(9): 64~66
    16 P.Wildi. Some New Developments in Magnetic Pulse Forming. Paper MF. SME Collect. Vol.70, Book 7. 1970: 70~152
    17 J. Jablonski, R. Winkler. Analysis of the Electromagnetic Forming Process. Int. J. Mech. Sci. Pergamon Press. 1978,20:315~325
    18 G.K.Lal, M.J.Hillier. The Electrodynamics of Electromagnetic Forming. Int. J. Mech. Sci. 1968,10:491~500
    19 K. LAL. Govind. Electromagnetic Metal Forming. IEEE Transactions on Industry Application.1972, July/August: 425~429
    20 J.S.Robert, J.D.Bennight, Huntsville. Method and Apparatus for Precision Sizing and Joining of Larging Diameters Tubes. United States Patent: 3540250. Patented Nov.17, 1970
    21 M.Blanc, D. Dekerlegand. Electromagnetic Forming Techniques Used to Correct Contour Distortoins on Saturn S-1C Bulkheads. The Second International Conference of the Center for High Energy Forming, Estes Park, 1969:6.2.1~6.2.24
    22 K.Kiyota, M. Fujita, T. Izuma, M. Hamasaki. New Methods in High Energy Rate Forming. The Second International Conference of the Center for High Energy Forming, Estes Park, 1969:5.6.1~5.6.27
    23 A.C.George. Method of Manufacturing A Concentric Tube Heat Exchanger. United States Patent,4096616, 1978
    24 H.Suzuki, M.Murata,Hideaki. The Effect of A Field Shaper in Electromagneitc Tube Bulging. Journal of Mechanical Working Technology. 1987,(15):229~240
    G.Regazzoni, F.Montheillet. In Mechanical Properties at High Rates of Strain. J.Harding. Institute of Physics Conf. Ser.70, London,
    
    25 1984:63~70
    26 L.E.Murr.in Sock Waves For Industrial Applications. L.E.Murr. Park Ridge, NJ, Noyes Publications, 1988:60~65
    27 V.S.Balanethiram,G.S.Daehn, Enhanced Formability of Interstitial Free Iron at High Strain Rates. Scripta Metallurgica et Materialia. 1992,27(12):1783~1788
    28 V.S.Balanethiram, G.S.Daehn. Hyperplasticity: Increased Forming Limits at High Workpiece Velocity. Scripta Metallurgica et Materialia.1994, 30(4): 515~520
    29 V.S.Balanethiram, X.Hu, M.Altynova, G.S.Daehn. Hyperplasticity: Enhanced Formability at High Rates. J. Mater. Process. Technolo.1994, 45: 595~600
    30 G.S.Daehn, X.Hu, V.S.Balanethiram, M.Altynova, M.Padmanabhan. Hyperplasticity — A Competitor to Superplastic Sheet Forming. A.K.Ghosh, T.R.Bieler. Superplasticity and Superplastic Sheet Forming, 11, TMS, 1995
    31 L.W.Meyer, H.D.Kunze, S.Scifert. Shock Waves and high Strain Rate Phenomeoa in Metals. M.A. Meyers, L.E.Men. New York, NY ,Plenum Press,1980:51~64
    32 G.Regazzoni, F.Montheillet. 3rd Int. Conf. On the Mechanical Properties of Materials at High Rate of Strain. J.Harding. Conf.Ser.No.70, London , 1984. The Institute of Physics,1984:63~70
    33 S.Clyens, J.D.Campbell. Mechanical Properties at High Rates of Strain. J.Harding. Conf.Ser.No.21,London, 1974. The Institute of Physics, 1974:62~71
    34 N.Takeda, A.Kobayshi.Shock Wave and High Strain Rate Phenomena in Materials.M.A.Mayre, L.e.Murr, K.P.Staudhammer. New York, NY, Marcel Dekker Inc., 1990:97~106
    35 J.W.Taylor, F.H.Harlow, A.A.Amselen. J.Appl.Mech.1978, 45 :105~110
    36 C.Fressengeas, A.Molinari. Acta Metall.1985,33: 387~396
    
    
    37 C.Fressengeas, A.Molinari. J.Mech.Phys.Solids.1987, 35:185~211
    38 G.Regazzoni, J.N.Johnson, P.S.Follansbee. J.Appl.Mech. 1986, 53 : 519~528
    39 C.Dumont, C.Levaillant, M.Ariminjon, J.L.Chenot. Mechanical and Physical Behavior of Materials under Dynamic Loading. DYMAT 88, Tome 49,1988. J.Phys., 1988:C3-505~512
    40 X.Hu, R.H. Wagoner, G.S. Daehn, S.Ghosh. The Effect of Inertia on Tensile Ductility. Metallurgical and Materials Transaction A. 1994,25A(12):2723~35
    41 X. Hu, G.S. Daehn. Effect of Velocity on Flow Localization in Tension. Acta mater.1996,44(3):1021~1033
    42 W.W.Wood. Sheet Metal Forming Technology. Chance-Vought Corp., Dallas, TX, Aeronautical Systems Division Contract Report No. ASD-TDR-63-7-871, 1963, 1
    43 T.V.Karman, P.Duwez. J.Appl.Phys. 1950,21:987~992
    44 M.M.Plum. Electromagnetic Forming. Metals Handbook. 9th edition. ASM. 1989,14: 645~654
    45 A.A. Tamhane, M. M. Altynova, G.S.Daehn. Effect of Sample Size on Ductility in Electromagnetic Ring Expansion. Scripta Materialia. 1996,34(8): 1345~1350
    46 W.F.Hosford, R.M.Cadell. Metal Forming Mechanics and Metallurgy. 2nd edition. Prentice Hall, NJ,1993
    47 H. Suzuki, Y. Yokouchi, M. Murata. Finite Element Analysis of Tube Deformation under Impulsive Internal Pressure.The Organizing Committee of The First International Conference on Technology of Plasticity,Tokyo,1984
    48 M.D.Kyun,K.D.Won. A Finite Element Analysis of the Electromagnetic Tube Compression Process. Journal of Materials Processing Technology. 1993, 38(1): 29~40
    M. Murata, H. Zhang, Y.Yokouchi. Tube Bulging by Electromagnetic
    
    49 Pressure Using Direct Electrode Contact. Proc.of Int. Conf. on Advanced Technology and Machinery in Metal forming, Wuhan,1992
    50 S.H.Lee,D.N.Lee. Estimation of the Magnetic Pressure in Tube Expansion by Electromagnetic Forming. Journal of Materials Processing Technology. 1996, 57: 311~315
    51 C. Beerwald, M. Kleiner. Electromagnetic Forming. Contribution to the Light Metal Conference in Fredericia, Denmark, 1999
    52 C.Beerwald, A.Brosius, W. Homberg, M.Kleiner, A.Wellendorf. New Aspects of Electromagnetic Forming. Proceedings of the 6th ICTP,German, 1999,III: 2471~2476
    53 V.J. Vohnout. A hybrid quasi-static/dynamic process for forming large sheet metal parts from aluminum alloys. The Ohio State University PhD. Dissertation.1998: 1~26
    54 张守彬,李硕本. 圆管在脉冲电磁力作用下的动力响应. 锻压技术. 1997,22(3):30~33
    55 张守彬,李硕本. 电磁成形加工管坯时放电回路参数及放电电流的计算方法. 锻压技术.1997,22(5):22~25
    56 张守彬. 电磁成形胀管过程的研究及工程计算方法. 哈尔滨工业大学博士学位论文. 1990: 1~100
    57 于连仲,宋福民,熊海芝,陈亦伟. 电磁成形螺线管线圈的受力分析及防破结构. 锻压技术. 1992,17(6): 25~29
    58 于连仲,朱炳钦,宋福民,熊海芝,陈亦伟. 框架零件电磁成型的研究. 锻压技术.1993,18(2):33~37
    59 黄尚宇,常志华,田贞武,杨梅,王仲仁. 管坯电磁成形电磁力解析. 中国机械工程. 2000,11(10):1169~1172
    60 周六如. 管件电磁胀形电参数优化配置的理论与实验研究. 武汉汽车工业大学硕士学位论文. 1997
    61 杨梅. 管坯磁脉冲翻边过程数值模拟及工艺参数优化研究: 武汉汽车工业大学硕士学位论文.1999
    张弛,汤劲松. 弹箭装配的电磁成型技术. 兵器材料科学与工程. 1992,
    
    62 15(9):33~37
    63 熊海芝,陈亦伟,宋福民,于连仲. 磁脉冲压力连接管件的研究. 锻压技术.1994, 19(6): 31~34
    64 邱春城.电磁成形管连结及瓶封装工艺研究. 哈尔滨工业大学博士学位论文. 1997:1~20
    65 邱春城,李洪涛. 塑料瓶的电磁成形封口研究.金属成形工艺.2000,18(5)
    66 张守彬,程刚,于连仲,李硕本.电磁成形几个影响因素的研究.锻压技术.1988,13(1):26~29
    67 于连仲,郭斌,宋福民,熊海芝,陈亦伟,王玉燕,刘子仲. 带有弹性介质电磁成型落料的研究.材料科学与工艺.1993,1(3):75~79
    68 张士宏,尚彦凌,于连仲,刘彩萍,熊海芝.爆破片电磁成形工艺的研究.锻压技术.2000,25(1):28~32
    69 伍智濂.薄板磁脉冲成型过程理论研究.武汉汽车工业大学硕士学位论文.1996:1~60
    70 王立峰.强脉冲磁场力作用下板坯自由胀形过程数值模拟的研究.武汉汽车工业大学硕士学位论文.1997:1~64
    71 黄尚宇,常志华,王立峰.板坯电磁成形载荷计算方法及分布特性.中国有色金属学报.1998,8(3):441~445
    72 黄尚宇,常志华,陈堰波.板坯磁脉冲成形磁压力计算.林志平编.塑性加工理论及其新进展.江西高校出版社.1997:277~280
    73 黄尚宇,常志华,王立锋等.板坯磁脉冲自由胀形数值模拟研究.机械月刊,1998,(4):318~324
    74 黄尚宇,常志华,吴妮花.板坯磁脉冲成形系统几何参数对终态变形影响的有限元分析. 中国机械工程.1998,9(9):72~74
    75 X.Lu, J.T.Hai, K.B.Chen, Zh.R.Wang, R.Y.Fei. Research and Deformation Simulation on Electric-Magnetic Forming Process of Metal Plate. Proceedings of the 6th ICTP, German,1999,III:2483~2488
    76 陆辛,费仁元,初红艳.高应变速率下铝、铜合金弹、塑性本构关系的试验研究.塑性工程学报.2001,8(4):44~46
    陆辛.电液成形技术研究及成形过程数值模拟.哈尔滨工业大学博士学位论
    
    77 文.1997:12~19 38~42
    78 陆辛.铜合金在高速变形下的细观分析.航空工艺技术.1997,(5)
    79 陆辛.铝铜合金动态变形变形机理的比较.先进制造技术会议论文集.1996
    80 X.Lu, Zh.R. Wang, J.T. Hai. A Comparison of Mesomechanism of Dynamic Deformation between Copper and Aluminum. Journal of Materials Processing Technology.1997
    81 陆辛,费仁元,初红艳.复合冲压技术发展前景.锻压技术. 2001,26(6):23~25
    82 陆辛.惯性力在高速变形中的行为.塑性工程学报.2002,9(2)
    83 李洪涛,吕玉岩,邱春城.电磁成型新型放电间隙试验研究.电加工.1997,(4):24~27
    84 陆辛,费仁元,初红艳.柔性电磁成形机.锻压机械.2001,36(5):34~35
    85 贺锡纯,胡其平,张益谨.脉冲磁场用于金属成形的几个问题的探讨.锻压机械.1990,25(6):8~12
    86 李春峰,赵志衡,李建辉,李忠.电磁成形磁场力的研究.塑性工程学报,2001,8(2):70~72
    87 匡永中.一种新兴的加工方法——电磁成型加工.机械设计与制造.1992,(6):48~49
    88 艾贵三译. 高速变形方法的理论基础和工业应用. 热加工工艺通讯.1977,(3):13~28
    89 陆辛.板材高速成型性能及脉冲大电流技术应用研究.北京工业大学博士后研究工作报告.2001:36
    90 牛中奇,朱满座,卢智远等.电磁场理论基础.电子工业出版社,2001:70~73 137~139
    91 曹伟,徐立勤.电磁场与电磁波理论.北京邮电大学出版社,1999:46~48
    92 易大义,沈云宝,李有法.计算方法.浙江大学出版社,1989:133~168 217~230
    93 孙国正.优化设计及应用.人民交通出版社,2000:85~116
    94 杨桂通,熊祝华.塑性动力学.清华大学出版社,1984:1~11
    初红艳,费仁元,潘风文. 影响电磁成形质量因素的实验分析. 锻压技术.
    
    95 2001,26(2):28~31
    96 G.S.Daehn, M.Altynova, V.S.Balanethiram. High-Velocity Metal Forming - An Old Technology Addresses New Poblems. JOM.1995,7(7):42~45
    97 赵经文,王宏钰. 结构有限元分析. 哈尔滨工业大学出版社,1988:1~3
    98 吕丽萍. 有限元法及其在锻压工程中的应用. 西北工业大学出版社,1989:1~14
    99 殷有泉. 固体力学非线性有限元引论. 北京大学出版社,清华大学出版社,1987:65~202
    100 嘉木工作室. ANSYS5.7有限元实例分析教程. 机械工业出版社,2002:1
    101 钟志华,李光耀. 薄板冲压成型过程的计算机仿真与应用. 北京理工大学出版社,1998:18~24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700