新疆哈尔里克东段牛毛泉杂岩体地球化学特征及岩石成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新疆北部发育一套时代相近、空间相邻、跨构造单元分布并且彼此之间在演化程度上可出现过渡类型的基性一超基性杂岩体。此类岩体因含有铜镍硫化物(Cu-Ni-PGE)矿床(如黄山、黄山东等)和(钒)钛磁铁矿(V-Ti-Fe)矿床(如尾亚、香山西,牛毛泉等)而倍受地质学家关注。牛毛泉基性杂岩体位于准噶尔古陆块北天山弧盆带博格达—哈尔里克晚古生代岛弧东段,岩体赋存磁铁矿体。本文选择牛毛泉基性杂岩体作为研究对象,通过野外地质调查、岩石学、矿物学、岩石地球化学等方法,对杂岩体的岩石组合类型、岩浆源区及原生岩浆性质、岩浆演化过程进行系统的研究,取得以下研究成果:
     1、牛毛泉基性杂岩体具有明显成层性和韵律构造特征;岩石主要类型有橄榄辉长岩、含橄榄辉长岩、辉长岩和角闪辉长岩,岩石多见蚀变,球状风化现象显著;主要造岩矿物为橄榄石、辉石、斜长石和角闪石,其中低品位磁铁矿产于中粗粒辉长岩中。
     2、主量元素地球化学特征表明岩石属拉斑玄武岩系列,主要经历了橄榄石、单斜辉石和斜长石的分离结晶作用,岩石的m/f值(m/f=(Mg2++Ni2+)/(Fe2++Fe3++Mn2+)原子数比值)介于0.65-1.44之间,为铁质基性—超基性岩;稀土元素总含量相对较低,轻重稀土元素之间分馏程度较强,轻稀土元素之间分馏弱。大多样品具不同程度的正铕异常;样品普遍富集大离子亲石元素(Rb、Ba、Sr、U),相对亏损高场强元素,大部分样品有明显的Nb、Ta负异常和弱的Ti正异常。
     3、利用橄榄石中最高Fo值(76)计算得出岩体原生岩浆中Mg0=7.3%;Fo=76的橄榄石不能代表与原生岩浆平衡的最初的液相线,所以,MgO=7.3%的岩浆只能约束原生岩浆MgO含量的下限。
     4、Nd-Sr同位素组成特征表明岩浆源区具有OIB型源区特征,受消减板片影响,具有向EM I演化的趋势,因此,推断源区为受俯冲流体交代改造的富集岩石圈地幔。
     5、新疆北部地区在早二叠世(290Ma-270Ma)出现大规模的后碰撞幔源岩浆活动,表现为众多镁铁质—超镁铁质岩体成带分布,如喀拉通克岩带、东天山黄山岩带,形成了—系列铜镍硫化物矿床和钒(钛)磁铁矿床。牛毛泉岩体可能是在后碰撞伸展背景下,拆沉的富集岩石圈地幔被软流圈加热后发生部分熔融并上侵的产物。
There are series of basic-ultrabasic complex which were formed in similar era,adjacent in space and cross-tectonic units in the northen of Xinjiang province with transitional types exist among them.For they contains Cu-Ni-PGE deposits(such as Huangshan, Huangshandong) and V-Ti-Fe deposits(such as Weiya,Xiangshanxi and Niumaoquan),they have got much attentions from geologists who come from domestic and abroad. Niumaoquan complexs located in the eastern of late paleozoic Harlik arc in Junggar plate, open-pit mining has been carried out in it, therefore, we select Niumaoquan complex as theobject of research in this paper.Based on field investigation, petrography,mineralogy,geochemistry and other manners,we analyze the hybrid combination, source of magma and nature of primary magma,prosess of magmatic evolution.Based on these researches we get some achievements as follows:
     1.Niumaoquan complex have obviously layered property and rhythmical tectonic characteristics, the main rock types include olivine gabbro,olivine-bearing gabbro,gabbro and hornblende gabbro. Alteration are common in complex and the phenomenons of spherical weathering are significant.The main rock-forming minerals are olivine,chrome spinel, pyroxene and amphibole,low-grade magnet occurs in coarse-grained gabbro.
     2. Major elements indicate that Niumaoquan complex belong to tholeiite series which have experienced the fractional crystallization of olivine clinopyroxene and plagioclase. The m/f values (m/f=(Mg2++Ni2+)/(Fe2++Fe3++Mn2+) of most rocks range from 0.65 to 1.44,so Niumaoquan complex belong to ferruginous rocks.The concentrations of rare earth elements is relatively low,heavy rare earth elements and the whole rare earth elements'fractionation are slightly stronger,light rare earth elements' fractionation are weak,positive Eu anomalies are showed in most rocks.The diagram of trace element which normalized by primitive mantle demonstrate that rocks are enriched large ion lithophile elements(Rb,Ba,Sr,U).The loss of Nb,Ta and high field strength elements(Zr,Hf) are displayed in most rocks with weak enrichment of Ti.
     3. It can be obtained the MgO content of primitive magma through the Fo molecular of olivine in Niumaoquan complex is 7.3%,but Fo value(76) is not high enough to represent the balance of the original magma liguidus initial phase,so 7.3% of MgO content can only bound it's lower limit.
     4.Nd-Sr isotopic characteristics indicate that magma derived from the OIB-type source region which was affected by reduction plate,with the evolutionary trend to EMI,therefore,it is inferred that the magmatic source are enriched lithospheric mantle with transformation by subduction fluid.
     5.Large-scale post-collisional mantle-derived magmatism occurs in the northern of Xinjiang in early Permian(290Ma-270Ma),the symbol of it is a number of mafic-ultramafic rocks array as belts,such as Kalatongke belt,Huangshandong belt in the east of Tianshan,which formed a series of Cu-Ni-PGE and V-Ti-Fe deposits;Niumaoquan complex formed in the postcollisional extension setting background. Delamination of lithospheric mantle is partial melting due to be heated by asthenospheric material.At the same time,the material of enriched lithospheric mantle moved upward though the space which formed by delamination of the lithosphere.
引文
[1]Barnes S J,Boyd R,Komeliusson A,et al.The use of mantle normalization and metal ratios in discriminating between the effects of partial melting,crystal fractionation and sulphide segregation on platinum-group elements,gold,nickel and cop-per:examples from Norway. In:Prichard H M,Potts P J,Bowles J F W,Cribb S J,eds.Geo-Platinum 87.London:Elsevier,1988,113~14
    [2]Bonin B,Azzouni-Sekkal A,Bussy F and Ferrag F. Alkali-calcic and alkaline post-orogenic(PO)granite magmatism:petrologic constraints and geodynamic settings.Lithos, 1998,45:45-70
    [3]Carlson R W.Isotopic inferences on the chemical structure of the Mantle[J].Journal of Geodynamics,1995,20:365-386
    [4]Charlier B,Duchesne JC and Sakoma E.Magma chamber processes in the Tellnes ilmenite deposit(Rogaland Anorthosite Province,SW Norway)and formation of Fe-Ti ores in massif-type anorthosites.Chemical Geology,2006,234(3-4):264-290
    [5]Crocket JH. Platinum-group elements in mafic and ultramafic rocks:a summary. Canadian Mineralogist,1979,17:391-402
    [6]Chen W,Zhao TP,Wei QG and Xu YH.Genesis of nelsonite from the Damiao Fe-Ti P deposit,Heibei Province,China:Evidence from apatite.Acta Petrologica,2008,24(10):2301-2312(in Chinese)
    [7]Dong XY, Li X, Ye LH et al. Ultramafic rocks in China. Beijing:Geological Publishing House,1992,1-188(in Chinese)
    [8]Gibson SA, Thompson RN and Dickin AP. Ferropicrites:geochemical evidence for Fe-rich streaks in upwelling mantle plumes. Earth and Planetary Science Letters,2000, 174:355-374
    [9]Hart SR,Gerlach DC,White WM.A possible new Sr-Nd-Pb mantle array and consequences for mantle mixing[J].Geochemica et Cosmochimica Acta,1986,50:1551-1557
    [10]Herzberg C,O'Hara M J.Plume-associated ultramafic magmas of Phanerozoic ageJournal of Petrology,2002,43:1857~1883
    [11]Han BF,He GQ and Wang SG. Post-collisional mantle-derived magmatism, underplating and implications for basement of the Junggar Basin. Science in China(series D),1999,42(2):113-119.
    [12]Hatton CJ. Mantle plume origin for the Bushveld and Ventersdorp magmatic provinces. Journal of African Earth Sciences,1995,21:571-577
    [13]Kolker A. Mineralogy and geochemistry of Fe-Ti oxide and apatite (nelsonite) deposits and evaluation of the liquid immiscibility hypothesis. Economic Geology,1982.,77:1146-148
    [14]Myers RE and Breitkopf JH. Basalt geochemistry and tectonic settings; a new approach to relate tectonic and magmatic processes.In:Gorbatschev R.(editor). Proterozoic geochemistry; proceedings of the 1987 international meeting of IGCP-217.Lithos. 1989,23(1-2):53-62.
    [15]Neal CR, Mahoney JJ, Chazey WJ.Mantle sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen Plateau and Broken Ridge LIP:results from ODP Leg 183[J].Journal of petrology,2002,43:1177-1205
    [16]Pang KN, Li CS, Zhou MF and Ripley EM. Abundant Fe-Ti oxide inclusion in olivine from the Panzhihua and Hongge layered intrusions, SW China:evidence for early saturation of Fe-Ti oxides in ferrobasaltic magma. Contributions to Mineralogy and Petrology,2008.,156:307-321
    [17]Qin KZ,Zhang LC,Xiao WJ,et al. Overview of major Au,Cu,Ni and Fe deposits and metallogenic evolution of the eastern Tianshan Mountains,Northwestern China. In:Mao J,Goldfarb R J,Seltmann R,et al.eds.Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan. London:IAGOD Guidebook Series 10,2003,227-248.
    [18]Rudnick RL, McDonough WF,Chappell BW.Carbonatite metasomatism in the northern Tanzanian mantle:petrographic and geochemical characteristics[J].Earth Planet.Sci.Lett.,1993,114:463-475
    [19]Ripley EM,Park YR,Li C and Naldrett AJ. Sulfur and oxygen isotopic evidence of country rock contamination in the Voisey's Bay Ni-Cu-Co deposits,Labrador, Canada.Lithos,1999,47:53-68.
    [20]Ripley EM, Severson MJ and Hauck SA. Evidence for sulfide and Fe-Ti-P-rich liquid immiscibility in the Duluth complex, Minnesota. Economic Geology, 1998,93:1052-1062
    [21]Sharpe MR and Hulbert LJ. Ultramafic sills beneath the Eastern Bushveld Complex: mobilized suspensions of early lower zone cumulates in a parental magma with boninitic affinities. Economic Geology,1985,80:849-871
    [22]Shellnutt JG, Zhou MF and Zellmer GF. The role of Fe-Ti oxide crystallization in the formation of A-type granitoids with implications for the Daly gap:An example from the Permian Baima igneous complex, SW China. Chemical Geology,2009,259:204-217
    [23]Tao Y, Hu RZ, Qi L and Luo TY. Geochemical characteristics and metallogenesis of the Limahe mafic-ultramafic intrusion, Sichuan. Acta Petrologica Sinica,2007,23(11): 2785-2800(in Chinese)
    [24]Weaver BL.The origin of ocean island basalt end-member composition:trace element andisotopic constraints[J].Earth planet.Sci.Lett.,1991,104:381-397
    [25]Wood DA. A variably veined suboceanic upper mantle-genetic significance for mid-ocean ridge basalts from geochemical evidence.Geology.1979,7 (10):499-503.
    [26]Wyllie PJ. Ultramafic and related rocks. New York:Wiley,1967,1-238
    [27]Wilemes J. The geology of the Bushveld Igneous Complex,the largest repository of magmatic ore deposits in the world.Economic Geology,1989,84(4):966.
    [28]Wang YW, Wang JB and Wang LJ. Comparison of host rocks between two vanadic titianomagnetite deposit types from the Eastern Tianshan Mountains. Acta Petrologica Scinica,2006a,22(5):1425-1436 (in Chinese with English abstract)
    [29]Zhang ZZ,Gu LX,Wu CZ,et al.2005.Zircon SHRIMP dating for the Weiya pluton,eastern Tianshan:Its geological implications.Acta Geologica Sinica(English edition),79(4):481-490.
    [30]艾羽,张招崇,王福生,等.攀枝花层状辉长质岩体的微量元素和锶钕铅氧同位素系统:地幔源区和矿床成因的证据.地质学报,2006,80(7):995-1004
    [31]成守德,张湘江.新疆大地构造基本框架[J].新疆地质,2000,18(4):53-62
    [32]邓晋福,罗照华,苏尚国,等.岩石成因、构造环境与成矿作用.北京:地质出版社,2004
    [33]董显扬,李行,叶良和,等.中国超镁铁质岩.北京:地质出版社,1992,1-188
    [34]杜维河,李兴国.河北承德市大庙斜长岩杂岩体超大型钒钛磁铁矿床研究.河北地质,2007,4:14-17
    [35]胡素芳,钟宏,刘秉光,等.攀西地区红格层状岩体的地球化学特征.地球化学,2001,30(2):131-139
    [36]韩宝福,何国琦,王式洗.后碰撞幔源岩浆活动、地垫作用及准噶尔盆地基底的性质.中国科学(D辑)[J],1999,29(1):16-21
    [37]韩宝福,何国琦,王式洗,等.新疆北部后碰撞幔源岩浆活动与陆壳纵向生长.地质论评[J],1998,44(4):396-406
    [38]韩宝福,季建请,宋彪,等.新疆准噶尔晚古生代陆壳垂向 (I)—后碰撞深成岩浆活动的时限.岩石学报,2006,22(5):1077-1086
    [39]姜常义,贾承造,李良辰,等.新疆麻扎尔塔格地区铁富集型高镁岩浆的源区.地质学报,2004b,78(6):770-780
    [40]罗小军.攀枝花钒钛磁铁矿矿床韵律层特征及其研究意义.成都理工大学硕士学位论文,2003
    [41]李昌年.火成岩微量元素岩石学.武汉:中国地质大学出版社,1992
    [42]李曙光,聂永红等.大别山俯冲陆壳的再循环—地球化学证据[J].中国科学(D辑)1997,27(5)
    [43]李厚民,王瑞江,肖克炎,等.立足国内保障国家铁矿资源需求的可行性分析.地质通报,2010,29(1):1-7
    [44]李锦轶,徐新.新疆北部地质构造和成矿作用的主要问题.新疆地质,2004,22(2):119-124
    [45]李存帅,徐盛林.四川攀西地区新街岩体的岩浆分异作用与金属矿物的成因.岩石矿物及测试,1983,2(3):161-174
    [46]卢纪仁,张承信,张光第,等.攀西地区钒钛磁铁矿矿床的成因类型.矿床地质,1988a,7(1):1-13
    [47]路凤香,桑隆康.岩石学.北京:地质出版社,2004
    [48]马桂萍.试析哈密牛毛泉基性杂岩体特征.新疆有色金属,2008, (5):5-6,10
    [49]马瑞士,舒良树,孙家齐.东天山构造演化与成矿.北京:地质出版社,1997
    [50]秦克章,方同辉,王书来,等.东天山板块构造分区、演化与成矿地质背景研究.新疆地质,2002,20(4):302-308
    [51]秦全新.香山西段钛铁矿矿床地质特征及成因探讨.矿产与地质,2003,17(4):533-535
    [52]苏尚国,邓晋福,汤中立,等.镁铁质—超镁铁质岩浆作用与成矿作用的新进展.现代地质,2004,18(4):454-459
    [53]孙桂华.新疆哈尔里克古生代以来构造变形及构造演化.中国地质科学院博士学位论文,2007
    [54]孙桂华,李锦轶,高立明,等.新疆东部哈尔里克山闪长岩锆石SHRIMP U-Pb定年及其地质意义.地质论评,2005,51(4):463-469
    [55]汤中立.中国的小岩体岩浆矿床.中国工程科学,2002,4(6):9-12
    [56]汤中立.中国镁铁、超镁铁岩浆矿床成矿系列的聚集与演化.地学前缘,2004,11(1)113-119
    [57]滕瑞,李建军.牛毛泉铁异常地质特征及成因探讨.新疆有色金属,2008,(2):23-31
    [58]吴利仁.论中国基性岩、超基性岩的成矿专属性.地质科学,1963, (1):31-42
    [59]王玉往,王京彬,王莉娟,等.CuNi-VTiFe复合型矿化镁铁—超镁铁杂岩体岩相学及岩石地球化学特征:以新疆北部为例.岩石学报,2010,26(2):401-412
    [60]王玉往,王京彬,王莉娟.东天山地区两类钒钛磁铁矿型矿床含矿岩石对比.岩石学报,2006a,22(5):1425-1436
    [61]王玉往,王京彬,王莉娟,等.岩浆铜镍矿与钒钛磁铁矿的过渡类型—新疆哈密香山西矿床.地质学报,2006b,80(1):61-73
    [62]王玉往,王京彬,王莉娟,等.新疆香山铜镍钛铁矿两个镁铁—超镁铁岩系列及特征.岩石学报,2009,25(4):888-900
    [63]王玉往,王京彬,王莉娟,等.新疆尾亚含矿岩体锆石U-Pb年龄、Sr-Nd同位素组成及其地质意义.岩石学报,2008,24(4):781-792
    [64]王玉往,王京彬,王莉娟,等.新疆尾亚钒钛磁铁矿—一个岩浆分异~贯入~热液型复成因矿床.矿床地质,2005,24(4):349-359
    [65]王京彬,徐新.新疆北部后碰撞与幔源岩浆有关的成矿谱系.岩石学报,2008,24(4):743-752
    [66]王京彬,王玉往,周涛发.新疆北部后碰撞与幔源岩浆有关的成矿谱系.岩石学报,2008,24(4):743-752
    [67]王正允.四川攀枝花含钒钛磁铁矿层状辉长岩体的岩石学特征及其成因初探.矿物岩石,1982, (1):49-64
    [68]王赐银,舒良树,赵明,等.东天山北部哈尔里克晚古生代推覆构造与岩浆作用研究.高校地质学报,1996,2(2):198-206
    [69]肖庆华,秦克章,唐冬梅,等.新疆哈密香山西铜镍—钛铁矿床系同源岩浆分异演化产物——矿相学、锆石U-Pb年代学及岩石地球化学证据.岩石学报,2010,26(2):503-522
    [70]夏昭德.新疆北山地区漩涡岭镁铁质—超镁铁质层状岩体的地球化学特征与岩石成因.长安大学硕士学位论文,2010
    [71]新疆维吾尔族自治区有色地质勘察局七○四队.2009年新疆哈密市牛毛泉中段低品位磁铁矿普查报告(修改后).2009
    [72]杨学明,杨晓勇,陈双喜.岩石地球化学(译著).合肥:中国科学技术大学出版社,2000
    [73]仲勇.二红洼镁铁—超镁铁杂岩体特征及成因.新疆地质,1991,9(2):151-170
    [74]仲勇.新疆二红洼基性—超基性杂岩体矿物、岩石化学及岩石学意义.中国地质科学院院报,1993, (27-28):43-54
    [75]张招崇,王福生.一种判别原始岩浆的方法—以苦橄岩和碱性玄武岩为例.吉林大学学报(地球科学版)[J],2003,22(2),130-135
    [76]赵莉,张招崇,王福生,等.一个开放的岩浆房系统:攀西新街镁铁—超镁铁质层状岩体.岩石学报,2006,22(6):1565—1578

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700