弱吸波物料的微波煅烧新工艺及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煅烧是冶金过程关键工序之一。煅烧工艺的好坏不仅直接影响产品的优劣,而且也决定企业的经济效益。目前常规煅烧方法均存在生产周期长、能耗高等问题;微波煅烧尽管具有加热均匀,效率高,煅烧时间短等优点,但多集中于强吸波物料的煅烧,而目前在冶金工业和核能工业中存在大量的难处理弱吸波物料,将微波应用于弱吸波物料的煅烧则研究甚少。因此,探寻煅烧的新工艺和新技术,扩大微波冶金的应用领域,对促进节能降耗、加快我国冶金和铀核燃料生产能力和技术水平的提高,实现冶金和核能工业的可持续发展具有重要的意义。
     本论文针对我国冶金和核能工业中急需煅烧的弱吸波物料碱式碳酸钴、偏钒酸铵和铀化学浓缩物的煅烧现状,提出了配加强导电相物质实现弱吸波物料的微波煅烧新途径;探索了异质材料在微波场中的吸波特性变化规律;通过将响应曲面设计优化方法引入煅烧工艺,获得了弱吸波物料碱式碳酸钴、偏钒酸铵和铀化学浓缩物的微波煅烧新工艺和关键控制参数。
     1.颗粒物料的热分解机理研究
     利用TG/DTG分析技术研究了碱式碳酸钴和偏钒酸铵颗粒物料的热分解过程,分析了物料的热分解特性;针对碱式碳酸钴和偏钒酸铵的热分解属于多步分解反应,若采用模型法来计算该种复杂反应体系的动力学,则难以揭示中间过程的反应机理;本论文采用非模型法详细研究了碱式碳酸钴和偏钒酸铵的热分解反应动力学,获得了随转化率变化的反应活化能,揭示了反应机理。结果表明,在493-625K范围内,碱式碳酸钴无水盐分解过程的平均活化能为109.63kJ/mol,在0.1≤α≤0.3范围内,活化能随转化率变化显著,而在0.4≤α≤0.9范围内,活化能变化很小。偏钒酸铵热分解过程为三步分解,在0.1≤α≤0.9范围内,第二分解阶段反应活化能随转化率变化较小,而第三、四分解阶段活化能均变化显著,各分解阶段对应的反应活化能平均值分别为E1=96.39kJ/mol, E2=139.24kJ/mol,E3=121.04kJ/mol.
     2.弱吸波物料的微波煅烧关键技术研究
     针对弱吸波物料的微波煅烧难题,基于异质材料等效媒介理论,利用微波谐振腔法探讨了异质材料在微波场中的吸波特性变化规律,提出了配加强导电相物质实现弱吸波物料的微波煅烧,开辟了弱吸波物料的微波煅烧新途径。研究表明,碱式碳酸钴、偏钒酸铵、三碳酸铀酰铵和重铀酸铵对微波的吸收性能都很差,属于弱吸波物质,而四氧化三钴、五氧化二钒和八氧化三铀对微波的吸收性能较强;碱式碳酸钴异质材料和偏钒酸铵异质材料随配加材料四氧化三钴和五氧化二钒配比的增大微波吸收峰出现明显的蓝移,通过配加少量四氧化三钴和五氧化二钒以及八氧化三铀强导电相微波煅烧碱式碳酸钴、偏钒酸铵和铀化学浓缩物是可行的;物料在微波场中的升温速率与微波输出功率成正比例增大,而与物料量成反比关系。
     3.颗粒物料常规煅烧工艺参数优化研究
     采用基于中心组合设计的响应曲面法,建立了具有多个交叉项的超空间响应曲面方程,系统考察了煅烧温度、煅烧时间和物料量各影响因子及其交互作用对碱式碳酸钴和偏钒酸铵煅烧分解率以及对铀化学浓缩物煅烧产物八氧化三铀中总铀和U4+含量的影响规律。获得了常规煅烧碱式碳酸钴、偏钒酸铵、三碳酸铀酰铵和重铀酸铵的优化工艺参数。研究表明,响应曲面法建立的碱式碳酸钴、偏钒酸铵和铀化学浓缩物常规煅烧回归数学模型高度显著,拟合度良好;煅烧温度、煅烧时间以及物料量对碱式碳酸钴和偏钒酸铵的分解率影响显著;煅烧温度和煅烧时间以及二者的交互作用对铀化学浓缩物煅烧产物八氧化三铀中总铀和U4+含量影响显著。响应曲面法优化得到的碱式碳酸钻和偏钒酸铵常规煅烧最佳工艺条件分别为煅烧温度666.00K和669.71K,煅烧时间32.00min和35.09min,物料量3.32g和4.25 g。在此条件下,碱式碳酸钴和偏钒酸铵的分解率分别为99.99%和99.71%,与实测值接近。响应曲面法优化得到的三碳酸铀酰铵和重铀酸铵常规煅烧最佳工艺条件分别为煅烧温度962K和932K,煅烧时间28min和24min,物料量37.86g和43.9g。在此条件下,三碳酸铀酰铵和重铀酸铵煅烧产物中总铀和U4+含量分别为84.17%,29.06%和84.46%,28.36%,与实测值接近。
     4.弱吸波物料微波煅烧工艺参数优化研究
     针对常规煅烧存在煅烧时间长、生产成本高等弊端,论文基于中心组合设计的响应曲面法,在可控温度条件下选取分别配加20%四氧化三钴的碱式碳酸钴、,配加15%的五氧化二钒的偏钒酸铵和配加20%八氧化三铀的铀化学浓缩异质材料开展微波煅烧研究。探讨了各影响因子及其交互作用对响应值的影响规律,在方差分析、多元回归和模型拟合的基础上,优化得到碱式碳酸钴、,偏钒酸铵和铀化学浓缩物异质材料的微波煅烧工艺参数。结果表明,响应曲面法建立的碱式碳酸钴、偏钒酸铵和铀化学浓缩物异质材料微波煅烧回归数学模型高度显著,拟合度良好,煅烧温度和煅烧时间对碱式碳酸钴和偏钒酸铵分解率以及对铀化学浓缩物煅烧产物中总铀和U4+含量有显著影响;响应曲面法优化得到的碱式碳酸钴和偏钒酸铵异质材料微波煅烧最佳工艺条件分别为煅烧温度643.00K和645K,煅烧时间9.00min和9.5min,物料量4.34g和4.3g。在此条件下,碱式碳酸钴和偏钒酸铵的分解率分别为99.62%和99.33%;响应曲面法优化得到的三碳酸铀酰铵和重铀酸铵异质材料微波煅烧最佳工艺条件分别为煅烧温度942.75K和911.020K,煅烧时间9min和8min,物料量44g和39g。在此条件下,三碳酸铀酰铵和重铀酸铵异质材料煅烧产物中总铀和U4+含量分别为82.07%,31.33%和84.42%,32.74%,与实测值接近
     与常规煅烧方法相比,在产品满足质量要求的前提下,微波煅烧碱式碳酸钴、偏钒酸铵和铀化学浓缩物的优化工艺参数中煅烧温度降低约20K,煅烧时间缩短约2/3。
     综上,论文依据TG/DTG分析技术,采用非模型法探讨了颗粒物料的热分解特性,通过研究随转化率变化的活化能变化,揭示了其热分解机理;基于异质材料等效媒介理论,依据异质材料在微波场中的吸波特性变化规律,提出通过在弱吸波物料中添加强导电相物质解决了弱吸波物料的微波煅烧这一难题;在可控温度条件下,采用响应曲面优化设计系统研究了各影响因素及其交互作用对响应值的影响规律,获得了弱吸波物料微波煅烧新工艺和关键工艺参数。本论文研究成果为弱吸波物料的微波煅烧开辟了新途径,对促进我国紧缺战略资源钴、钒的提取和铀核燃料生产及技术水平的提高具有较高的实际应用价值和重要的现实意义。
The calcination is one of the key metallurgy processes. The technique quality not only influences product quality, but also it also decides enterprise's economic efficiency. However, the present conventional calcination method has questions such as long production cycle and high energy consumption. The microwave calcination has the advantages of even heating, high efficiency, short calcination time short and so on, but the present microwave calcination usually concentrates in calcination of well microwave adsorption materials, less on the weak microwave adsorption materials. However in the metallurgical industry and the nuclear power industry, there are massively weak microwave adsorption materials waiting for treatment urgently. Therefore, to discover new technique and technologies of calcination, especially to the materials with week microwave adsorption ability, has great meaning to promote energy conservation, speed up our country metallurgy and uranium nucleus fuel productivity and the technical level enhancement in order to realize the sustainable development of metallurgy and the nuclear power industry.
     In this paper, aiming at the materials with weak microwave adsorption which are needed in the calcinations of metallurgy and nuclear power industry, for example:basic carbonate cobalt, ammonium metavanadat and ammonium uranyl carbonate and ammonium diurante, the microwave calcinations by the addition of electric conduction material is realized, the pellet material thermal decomposition process is analyzed, which promulgated the thermal decomposition mechanism. The changing rules of the materials with weak microwave adsorption in microwave field are explored; the calcinations techniques are designed for optimization by the utilization of RSM. The new techniques and key parameters of microwave calcinations of basic carbonate cobalt, ammonium metavanadat and ammonium uranyl carbonate and ammonium diurante are obtained.
     1. Study on mechanism of thermal decomposition of granule
     The thermal decomposition processes of basic carbonate cobalt and ammonium metavanadat are analyzed by using TG/DTG. It is difficult to investigate the complex reaction system kinetics parameter using fitting-model method because pilot process. The decomposition reaction kinetics of basic carbonate cobalt and ammonium metavanadat was studied using the free-model method. The material thermal decomposition characteristic is analyzed, the decomposition mechanism is discussed, and the response activation energy of basic carbonate cobalt and ammonium metavanadat is obtained basing on free-model method. The result indicated that in the range of 493-625K, the average activation energy of basic carbonate cobalt decomposition process is 109.63kJ/mol, in the range of 0.1≤α≤0.3, the activation energy changes apparently with the conversion rate, however, in the range of 0.4≤a≤0.9, the activation energy changes little; The thermal decomposition process of ammonium metavanadat is by three steps. In the range of 0.1≤α≤0.9, the activation energy in the second decomposition step changes little with the change conversion rate, but it changes apparently in the third and the fourth step, the average energy are E1=96.39kJ/mol, E2=139.24kJ/mol, E3=121.04kJ/mol in each step respectively.
     2. Key technology of microwave calcination for weak microwave adsorption materials
     Basing on the neterogeny material equivalent medium theory, the microwave adsorption changing rules of neterogeny materials is discussed using the microwave resonant cavity small perturbance theory. The microwave calcinations for weak microwave adsorption materials are solved by adding electric conduction inside, and the elevation of temperature in the microwave field is studied. The result indicated that basic carbonate cobalt, ammonium metavanadat, ammonium uranyl carbonate and ammonium diurante could not absorb the microwave well, however CO3O4, V2O5 and U3O8 are just on the opposite, they could absorb the microwave well. With the increasing proportion of Co3O4, and V2O5 inside, the microwave absorption peak of neterogeny material appears an obvious blue shift. The property of microwave adsorption of basic carbonate cobalt, ammonium metavanadat neterogeny materials increase with the increasing proportion of Co3O4 and V2O5 add inside the materials. The calcinations of basic carbonate cobalt, ammonium metavanadat and ammonium uranyl carbonate and ammonium diurante are available by adding little Co3O4, V2O5 and U3O8 inside, the temperature in the microwave field increases with the increasing of microwave power output in proportion, but in reverse proportion with materials quantity.
     3. Optimization of conventional calcination parameter for granule
     The CCD design of RSM is used in the study, the influences of calcination time, calcination temperature, mass of sample and interaction between each factor on the decomposition rate of basic carbonate cobalt, and ammonium metavanadat, as well as on the content of U and U4+ of U3O8 by calcination from ammonium uranyl carbonate, and ammonium diurante. The parameters were optimized for the calcination of basic carbonate cobalt, ammonium metavanadat, ammonium uranyl carbonate, and ammonium diurante by conventional heating. The result indicated that the return mathematical model obtained by RSM fits well, the calcination time, calcination temperature, mass of sample has great influences on the decomposition of basic carbonate cobalt, ammonium metavanadat; the calcination time, calcination temperature and the correlations between has great influences on the content of U and U4+of U3O8.The optimum technique parameters to prepare for Co3O4 and V2O5 by calcination from basic carbonate cobalt, and ammonium metavanadat are calcination time of 32.00min and 35.09min, calcination temperatures of 666.00K and 669.71K, mass of sample of 3.32g and 4.25g, the decompositions rate of the two materials are 99.99% and 99.71% respectively. The optimum technique parameters to prepare for U3O8 by calcination from ammonium uranyl carbonate and ammonium diurante are calcination time of 28min and 24min, calcination temperatures of 962K and 932K, mass of sample of 37.86g and 43.9g, and the content of U and U4+ of U3O8 by calcination from the ammonium uranyl carbonate and ammonium diurante are 84.17%,29.06% and 84.46%,28.36% respectively, which are close to the actual experimental value.
     4. Optimization of microwave calcination parameter for weak microwave adsorption materials
     Aiming at the problems of long calcination time and high production cost in conventional calcinations, basic carbonate cobalt-Co3O4 mixture of composition 20%, ammonium metavanadat-V2O5 mixture of composition 15%, and the ammonium uranyl carbonate and ammonium diurante-U3O8 mixture of composition 20% are taken as raw materials for the study of microwave calcination in the paper. The influences rules of the factors are discussed, on the base of variance analysis, multiple regression and model fitting, the microwave calcination parameters are obtained. The result indicated that the return mathematical model obtained by RSM fits well. The calcination time, calcination temperature have great influences on the decomposition rate of basic carbonate cobalt, ammonium metavanadat, as well as on the content of U and U4+ of U3O8 by calcination from ammonium uranyl carbonate, and ammonium diurante. The optimum technique parameters for microwave calcination of basic carbonate cobalt and ammonium metavanadat are calcination time of 9min and 9.5min, calcination temperature of 643K and 645K, and mass of sample of 4.34g and 4.3g, the decomposition rate of the two materials are 99.62% and99.33% respectively. The optimum technique parameters for the microwave calcination of ammonium uranyl carbonate and ammonium diurante are calcination time of 9min and 8min, calcination temperature of 942.75K and 911.020K, mass of sample of 44 and 39g, and the content of U and U4+ of U3O8 by calcination from the ammonium uranyl carbonate and ammonium diurante are 84.17%,29.06% and 84.46%,28.36% respectively, which are in good agreement with the actual experimental value.
     Comparing with conventional methods, under the conditions of good quality of the products, the temperatures of microwave calcinations of basic carbonate cobalt, ammonium metavanadat and ammonium uranyl carbonate and ammonium diurante more low, the calcination time is reduced for 2/3.
     Above all, according to TG/DTG analysis, the materials with weak microwave adsorption thermal decomposition characteristic is analyzed, the decomposition mechanism is discussed, the response activation energy is obtained basing on free-model method; According to the effective medium theory of heterogeneous materials and the microwave adsorption changing rules of neterogeny materials, the microwave calcinations for weak microwave adsorption materials is solved by adding electric conduction inside; under the condition of controllable temperature, RSM is used for the study the influence rules of different factors and the correlations between, new technique and methods are obtained for the calcinations of weak microwave adsorption materials. This paper discovers a new way for the calcinations of weak microwave adsorption materials, which has great meaning and application value for the extraction of cobalt and vanadium resources and the nuclear fuel productivity and technical level enhancement.
引文
[1]王银叶,高富,丁艳梅,等.煅烧高岭土制备系列纳米材料及表征[J].云南大学学报,2005,27(3A):200-205.
    [2]刘真真,王勤燕,周汉文,等.茂名高岭石低温煅烧物化性能变化激励[J].矿产与地质,2005,(4):436-439.
    [3]诸华军,姚晓,张祖华.高岭土煅烧活化温度的初选[J].建筑材料科学,2008,11(5):621-625
    [4]邵亚平,唐建明.超细煅烧高岭土制备新工艺[J].非金属矿,2005,28(Issue):67-68.
    [5]古映莹,刘雪颖,秦利平,等.制备方法和条件ITO粉体吸波性能的影响[J].中南大学学报,2007,38(3):486-490.
    [6]刘述忠,李晓阳,朱心昆,等.煅烧温度对掺锑氧化锡粉体性能的影响[J].Power Metallurgy Technology,2009,27 (3):212-215.
    [7]王宝茹,马玉翔,范应菊.由卤片制备活性氧化镁的研究[J].山东化工,2005,34:3-4.
    [8]李峥,戈桦.氢氧化镁煅烧氧化镁活性研究[J].盐业与化工,2006,35(6):1-6.
    [9]王宝和,范方荣,张文博,等.煅烧工艺对纳米氧化镁粉体活性的影响[J].无机盐工业,2005,37(12):15-16.
    [10]胡鹏,黎少华,袁方利,等.针状α-Al2O3的制备[J].2004,4(增刊):275-278.
    [11]于岩,阮玉忠,黄清明,等.铝厂污泥在不同煅烧温度的晶体结构研究[J].结构化学,2003,22(5):607-612.
    [12]阮文彪,郭瑞松,吕振刚,等.纳米介孔α-Al2O3制备工艺及性能[J].兵器材料科学与工程,2005,28(1):44-46.
    [13]王燕鸿,王军,沈美庆.煅烧温度对铁泥干制备氧化铁颜料性能的影响[J].化学工业与工程,2005,22(1):14-16.
    [14]曹丽云,黄剑锋,杨军顺.超声共沉淀法制备硅铁红[J].硅铝化合物,2004,(3):24-26.
    [15]李晓池,王涛,聂丽华.煅烧条件对BaTiO3纳米粉体结构的影响[J].西 安建筑科技大学学报,2006,26(2):215-218.
    [16]廖梓君,晏华,陈国需,等.煅烧温度对钛酸钡晶相的影响[J].后勤工程学院学报,2008,24(2):60-63.
    [17]王斌,瞿美臻,林浩强,等.煅烧温度对Li4Ti5O12的电化学性能的影响.[J].合成化学,2006,14(6):631-633.
    [18]石迪辉.四氧化三钴的制备对钴酸锂性能的影响[D].中南大学,3-7.
    [19]Wang G X, Chen Y, Konstantinov K, et al. Investigation of cobalt oxides as anode materials for Li-ion batteries[J]. Journal of Power Sources,2002,109 (1):142-147.
    [20]Li Weiyang, Xu Lina, Chen Jun. CO3O4 nano-materials in lithium-ion batteries and gas sensors[J]. Advanced Functional Materials,2005, 15 (5):851-857.
    [21]Wang Chenbin, Tang Chihwei, Gau Shiue-jiun, et al. Effect of the surface area of cobaltic oxide on carbon monoxide oxidation[J]. Catalysis Letters,2005,101(1/2):59-63.
    [22]Y Ichiyanagi, Y Kimishima Yamada S. Magnetic study on Co3O4 nanoparticles[J]. Journal of Magnetism and Magnetic Materials,2004, 272-276(Suppl 1):E1245-E1246.
    [23]赵永祥,王永利,侯晓东.CO3O4催化剂的制备、表征及其CO低温氧化性能[J].山西大学学报,2007,30(2):205-209.
    [24]Co3O4的制备及电容性能的研究[J].电池,2007,37(2):141-142.
    [25]电池级Co3O4的制备[J].稀有金属,2006,30(3):282-286.
    [26]王胜,吉鸿安.电池级氧化钴制备新工艺[J].有色金属,2008,60(2):29-32.
    [27]黄银霞.五氧二化钒与氧氯化锆的湿法提取研究[D].郑州大学,2006.
    [28]王新文,雷兆敏,段铭有,等.从废催化剂中回收精致五氧二化钒的实验研究[J].硫酸工业,1998, (2):47-51.
    [29]曾志勇.多钒酸铵静态热分解制备粉状五氧二化钒[J].无机盐工业,2005,37(8):20-22.
    [30]任金菊,崔恩静,马晶,等.低品位钒钛磁铁矿综合回收钒、钴、硫、磷选矿工艺研究[J].矿冶工程,2004,24(8):4-6.
    [31]边悟.高硅低钒钒渣提取五氧化二钒的研究[J].铁合金,2008,3:5-8.
    [32]喻旗,龙明礼.含钒石煤生产五氧化二钒污染治理[J].环境工程,2007,25(6):96-97.
    [33]郝喜才,胡斌杰,邱永宽.离子交换法回收废钒催化剂中钒的研究[J].无机盐工业,2007,39(2):52-54.
    [34]钱强.从废弃钒渣中提取五氧化二钒[J].湿法冶金,2008,27(12):101-102.
    [35]邴桔,龚胜,龚竹青.从石煤中提取氧化二钒的工艺研究[J].2007,31(5):670-675.
    [36]宾智勇.钒矿石无盐焙烧提取五氧化二钒试验[J].钢铁钒钛,2006,27(1):21-26.
    [37]K D Raner, C R Stress. Influence of mivrowaves on the rare of esterifiction of 2,4,6-trimethylberizoic acid with 2-propel[J]. The Journal Organic chemistry,1992,57:6231-6232.
    [38]Chang Yuicha, Charlie T Carlsle. Microwave process for removal and destruction of volatile organic compounds[J]. Emrironmental Progress,2001.20(3):145-150.
    [39]谷晋川,刘亚川.难选冶金矿微波顶处理研究[J].有色金属,2003,55(2):54-57.
    [40]Kingman S W, Vorster W, Rowson N A. The influence of mineralogy on microwave assisted grinding[J]. Minerals Engineering,2000,13(3): 313-327.
    [41]Tao Dongping, Liu Chunpeng. Kinetics of oxidative dearsenication of nicotine ore with microwave radiation[J]. Chinese Journals Metal Science Technology,1992,8(2):115-118.
    [42]Yu A B. Reduction of stannic oxide with carbon by microwave heating [A].6th Aus IMM Extractive Metallurgy Conference Metal[C].1994, 225-232.
    [43]Hassine M A. Synthesis of refractory metal carbide powders via microwave carbothermal reduction[J]. International Journal Refractory Metal Hard Materials,1995, (6):353-358.
    [44]Xia D K, Pickles C A. Microwave caustic leaching of electric arc furnace dust[J]. Minerals Engineering,2000,13(1):79-94.
    [45]Peng Jin-hui, Liu Chun-peng. Kinetics of leaching sphalerite with pyrolusite simultaneously by microwave irradiation[J]. Transaction Nonferrous Metals Society of China,1997,7(3):152-154.
    [46]黄孟阳,彭金辉,张世敏,等.微波加热还原钛精矿制取富钛料新工艺[J].钢铁钒钛,2005,26(3):25-28.
    [47]Haque K Z. Microwave energy for mineral treatment process a brief review[J]. Intternational Journal Mineal Processing,1999,57:1-24.
    [48]彭金辉,杨显万.微波能技术新应用[M].昆明:云南科技出版社1997.
    [49]佟志芳,毕诗文.微波加热在冶金领域中应用研究现状[J].材料与冶金学报,2004,3(2):117-120.
    [50]华一新,彭金辉,刘纯鹏.微波化学[M].(金钦汉主编,第十四章微波化学在冶金中的应用).北京:科学技术出版社,2001.
    [51]S. W. Kingman, N. A. Rowson. Microwave treatment of minerals-A Review[J]. Minerals Engineering,1998,11(11):1081-1087.
    [52]K. E. Haque. Microwave energy for mineral treatment processes-A Brief Review[J]. International Journal of Mineral Processing,1999,57(1): 1-24.
    [53]杨卜,彭金辉,范兴祥,等.微波辐射煅烧碱式碳酸镁制备轻质活性氧化镁[J].无机盐工业,2005,37(1):26-28.
    [54]郭胜惠,彭金辉,范兴祥,等.微波煅烧碱式碳酸锌制取氧化锌[J].有色金属,2002,54(4):53-55.
    [55]杨卜,彭金辉,汪云华,等.微波辐射煅烧法制取氧化镁新工艺[J].新技术新工艺,2005,12:47-48.
    [56]周益民,忻新泉.低温固相合成化学[J].无机化学学报,1999,15(3): 273-292.
    [57]曹俊,周继承,吴建懿.微波煅烧制备纳米氧化锌[J].无机盐工业2004,36(5):31-33.
    [58]石晓波,李春根,汪德先.纳米氧化锌的制备与表征[J].江西师范大学学报,2002,26(1):53-55.
    [59]秦文峰,彭金辉,樊希安,等.微波煅烧钼酸铵制取高纯三氧化钼新工艺[J].新技术新工艺,2004,(4):42-44.
    [60]华一新,刘纯鹏,乐莉.微波促进MnO2分解的动力学[J].中国有色金属学报,1998,8(3):497-501.
    [61]陶东平,刘纯鹏.碱式碳酸镍在微波辐射下的热分解动力学[J].有色金属,1992,44(4):49-51.
    [62]Mayutes-Aquino J, Garcia-Casillas P, Ayala-Valenzuela O, et al. Study of iron oxides obtained by decomposition of an organic precursor [J]. Materials Letters,1999,38:173-177.
    [63]Kyoungja W, J angwon H, Sungmoon C, et al. Easy synthesis and magnetic properties of iron oxide nanoparticles[J]. Chemistry Materials,2004,16(14):2814-2818.
    [64]Narasimhan B R V, Prabhakar S, Manohar P, et al. Synthesis of gamma ferric oxide by direct thermal decomposition of ferrous carbonate[J]. Materials Letters,2002,425(52):295-302.
    [65]吴东辉,华平,张海军,等.Fe(OH)2微波快速热解制备γ-Fe2O3[J].材料导报,2007,21(2):157-158.
    [66]Zhang X H, Huo X X, Ma B X. A phosphate-based antioxidation coating for carbon/carbon composites[J]. New Carbon Materials,1999,14(3): 1-6.
    [67]Golecki I. Rapid vapor-phase densification of refractory composites [J]. Material science engineering,1997,20 (2):37-124.
    [68]Delhaes P. Chemical vapor deposition and infiltration processes of carbon materials[J]. Carbon,2002,40(5):641-657.
    [69]Zhang W G, Huttinger K J. Densification of a 2D carbon fiber preform by isothermal, isobaric CVI:Kinetics and carbon microstructure[J]. Carbon,2003,41 (12):2325-2337.
    [70]邹继兆,曾燮榕,熊信柏,等.气体滞留时间对微波热解CVI工艺制备C/C复合材料性能的影响[J].无机材料学报,2007,22(4):677-680.
    [71]邹继兆,曾燮榕,熊信柏,等.沉积温度对对微波热解CVI工艺制备炭/炭复合材料密度及组织结构的影响[J].硅酸盐学报,2007,35(8):1063-1065.
    [72]孙德坤,郑福萍,娄维鸿,等.微波热法煅烧硫酸工业钒催化剂[J].江苏化工,2003,31(3):38-40.
    [73]那娟娟.纳米铁粉脱氯降解四氯化碳和四氯乙烯的研究[D].四川大学,2006.
    [74]Houillon, G., Jolliet, O. J. Life cycle assessment of processes for the treatment of wastewater urban sludge:energy and global warming analysis[J]. Journal Cleaner Production.2005, (13):287-299.
    [75]A. Domi'nguez, Y. Ferna'ndez, B. Fidalgo. Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge[J]. Chemosphere,2007,75 (6):1-7.
    [76]A. Domi'nguez, J. A. Mene'ndez, M. Inguanzo. Investigations into the characteristics of oils produced from microwave pyrolysis of sewage sludge[J]. Fuel Processing Technology,2005,86:1007-1020.
    [77]J. A. Menendez, M. Inguanzo, J. J. Pis. Microwave-induced pyrolysis of sewage sludge[J]. Water Research,2002,36,3261-3264.
    [78]万立国.添加剂辅助微波高温热解污水污泥反应条件的优化研究[D].哈尔滨工业大学,2006.
    [79]谭瑞淀,王同华,檀素霞,等.微波辐照热解废印刷电路板产物的分析研究[J].环境污染与防治,2007,29(8):599-601.
    [80]张宁,胡佳山,刘飚,等.微波煅烧硅酸盐水泥的研究[J].硅酸盐通报,2000,5:14-18.
    [81]A. Domi'nguez, J. A. Mene'ndez, Y. Ferna'ndez. Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas[J]. Journal Analyticall Applied Pyrolysis,2007, 79 (1-2):128-135.
    [82]Masakatsu Miura, Harumi Kagaa, Akihiko Sakurai. Rapid pyrolysis of wood block by microwave heating[J]. Journal Analyticall Applied Pyrolysis,2004, (71):187-199.
    [83]钟声亮,张迈生,苏铿.微波热法煅烧高岭土的机理研究[J].中山大学学报,2005,44(3):71-74.
    [84]汪仁官.试验设计与分析[M].北京:中国统计出版社,1998.
    [85]Raymond H Myers. Response surface methodology-current statlls and future directions[J]. Journal of Quality Technology,1999,31(1): 152-158.
    [86]张润楚,郑海涛,兰燕.试验设计与分析及参数优化[M].北京:中国统计出版社,2003.
    [87]王永菲,王成国.响应面法的理论与应用[J].中央民族大学学报,2005,14:237-230.
    [88]杨静.玉米秸秆纤维素酶水解研究及响应曲面法优化[D].天津大学硕士论文,2007.
    [89]Hill W J, Hunter W G. A review of response surface methodology[M]:A Literature Review. Tecimometrics,1966,8:571-590.
    [90]R Mead, D J Pike. A review of response surface methodobgy from a biometrics viewpoint[J]. Biometrics,1975,31(12):.803-851.
    [91]Raymond H Myers, Andre I Khuti, Walter H Carter. Response surface methodology[M]: 1966-1988, Tecimometrics,1989,31(2):432-438.
    [92]Carte R W H, Wampler G L, Stablein D M. Review of the application of response surface methodobgy in the combination therapy of cancer[J]. Cancer TreatmentReports, 1983,70:133-140.
    [93]柳松,古国榜.微细氧化钴粉的研制[J].矿冶工程,2007,27(3):69-71
    [94]赵中友,黄敏,杨锋等.锂离子电池用四氧化三钴的制备工艺[P].CN101066781,2007.
    [95]IEA, World energy outlook, Paris:OECD:2006.
    [96]IEA, Nuclear power and sustainable development, Vienna:IAEA:2006.
    [97]刘学刚,徐景明.我国核电发展与核燃料循环情景研究[J].科技导报2006,24(6):22-25.
    [98]黄伦光,庄海兴,左建伟,等.国内外铀纯化工艺状况[J].铀矿冶,1998,17(1):31-42.
    [99]D.A.Jones, T.P.Lelyved, S.D.Mavrofidis, S.W.Kingman, N.J.Mile. Microwave heating applications in environmental engineering[J]. Resource, Conservation and Recycling.2002,34:75-99.
    [100]杨毅涌,孙聚堂,袁良杰,等.碱式碳酸钴热分解产物的微量粉末X射线衍射分析[J].武汉大学学报,2001,47(6):660-662.
    [101]张梅,林勤,徐爱菊,等.热分析在偏钒酸铵热分解机构研究中的应用[J].现代科技设备,2007, (3):98-100.
    [102]伍志明.二氧化铀核燃料的粉末冶金技术[J].粉末冶金技术,1996,14(1):63-68.
    [103]Ammar Khawam, Douglas R, Flanagan. Role of isoconversional methods in vartying activation energies of soiled-state kinetica, Ⅱ. Nonisoth-ermal kinetic studies[J]. Thermochimica Acta,2005,436(1-2): 101-112.
    [104]M.R.Caira, R.Mohamed. Supramol.Chem.,1993, (2):201.
    [105]J.H.Flynn, L.A.Wall. Thermal analysis of polymer by thermograve-metric analysis[J]. Journal.Research National.Bureau of. Standards Section A,1966,70(6):487-523.
    [106]S Vyazovkin, D. Dollimor. Linear and nonlinear procedures in solides: A view froma historical perspective[J]. Journal Chemistry Information Computer Science,1996,36(1):42-45.
    [107]F. Rodante, S, Vecchio, M, Tomassetti. Multi-step decomposition processes for some antibitics a kinetic study [J]. Thermochimica Acta, 2002,394:7-18.
    [108]Nicolas Sbirrazzuoli, Alice Mititelu-Mija, Luc-Vincent, et al. Isoconversional kinetic analysis of stoichiometric and off-stoichiometric epoxy-amine cures [J]. Thermochimica Acta,2006,447: 167-177.
    [109]F. rodante, S.Vecchio, M.Toma'ssetti. Kinetic analysis of thermal decomposition for penicillin model-fitting and model-free methods[J]. Journal of Pharmaceutical and biomedical Analysis,2002, 29(6):1031-1043.
    [110]孙秋香,王丽娜,李鹏,等.水杨酸钴非等温热分解动力学研究[J].分析科学学报,2007,23(4):373-377.
    [111]Yi Jianhua, Zhao Fengqi, Xu Siyu, et al. Nonisthermal thermal decomposition reaction kinetics of double-base propellant catalyzed with Lanthanum citrzta[J]. Acta Physico-Chimica Sinica,2007,23(9): 1316-1320.
    [112]A. Ortega. Isoconversional method in CRTA[J]. Thermochimica Acta, 1997,298:161-164.
    [113]杨幼平,刘人生,黄可龙等.碱式碳酸钴热分解制备四氧化三钻及其表征[J].中南大学学报(自然科学版),2008,39(1):108-111.
    [114]Danita de Waal, Anton M. Heyns, Klaus-Jurgen. A Raman spectroscopic determination of the decomposition kinetics of ammonium metavanadate[J]. Materials research bulletin,1990, 25 (1):43-50.
    [115]G. A. El-Shobaky, K. A. El-Barawy, F. H. A. Abdalla. Thermal decomposition of ammonium metavanadate supported on Al2O3[J]. Thermochimica Acta,1982,96(1):129-137.
    [116]廖艳芬,王树荣,骆仲泱,等.纤维素热解过程动力学的试验分析研究[J].浙江大学学报,2002,36(2):172-176.
    [117]曹新生,马学忠,王发品,等.三碳酸铀酰铵的热分解研究[M].中国核情报中心,北京,1988.
    [118]胡正杰.ADU转化为U02粉末过程中的除氟问题[J].原子能科学技术,1998,32(4):352-357.
    [119]Brown, M. E, Dollimore, D, Galwey, et al. Reactions in the solid state in comprehensive chemical kinetics[J]. Bamford, H. Tipper, C. F. H, Eds, Elsevier:Amsterdam,1980,22:41-113.
    [120]Galwey, A. K, own, M. E. Thermal decomposition of Ionic solids[M]. Elsevier:Amsterdam,1999.
    [121]Vyazovkin.S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature[J]. Journal Compuert Chemistry,1997,18 (3):393-402.
    [122]Vyazovkin.S, Wight.C.A. Model-free and model-fitting approaches To kinetic analysis of isothermal and non-isothermal data[J]. Thermochim Acta,1999,340-341:53-68.
    [123]Ozawa T. A new method of analyzing thermogravimatric data[J]. Bulletion Chemistry Society Japan,1965,38(11):1881-1886.
    [124]Flynn J H, Wall L A. J. polym. Sci. Part B[J].1966,4(3):323-328.
    [125]张建军,王瑞芬.邻甲机基苯酸铕与邻啡咯啉络合物的热分解动力学及寿命.分析化学[J].2001,29(10):1209-1212.
    [126]Zhang Yu-dong, Li Bin jie, Xu Xiang min. Thermal decomposition kinetics of ZnSn(OH)6[J]. Acta Physico-Chimica Sinica,2007,23(7): 1095-1098.
    [127]Boris V. Lvow. Kinetics and mechanism of thermal decomposition of nickel, manganese, silver, mercury and lead oxalates [J]. Thermochim. Acta,2000,364(1-2):99-109.
    [128]D.E Clark, D.C.Folz, J.K.West. Processing materials with microwave energy[J]. Materials Science and Engineering A,2000,287(2): 153-158.
    [129]T.J.Appleton, R.I.Colder, S.W.Kingman, et al. Microwave technolo GY for energy-efficient processing of waste[J]. Applied energy,2005, 81(1):85-113.
    [130]D. E. Clark, D. C. Folz, J. K. West. Processing materials with microwave energy[J]. Materials science and engineering A,2000, 287(2):153-158.
    [131]C.A.Pickles. Microwave heating behaviour of nickeliferous limonitic laterite ores[J]. Minerals engineering,2004,17(4):775-784.
    [132]Metaxas A C, Meredith R J. Industrial microwave heating[M]. Lundon :Peter Peregrinus Ltd.,1983:32-38.
    [133]Alberty K A. Physical Chemistry[M].7th ed, New York:Wiley,1987, 326.
    [134]Mingos D M P, Baghuest D R. Applications of microwave dielectric heating effects to synthetic problems in chemisty[J]. Chemical Soceity Reviews,1991,20:1-47.
    [135]Hua Yi-xin and Liu Chun-peng. Microwave-assisted carbothermic reduction of ilmenite[J]. Acta Metallurgica Sinica,1996,9(3): 164-170.
    [136]刘文举,姚俊婷,王向宇,等.微波场下非贵金属氧化物的升温行为和烹饪油烟的催化净化性能研究[J].分子催化,2006,20(3):221-225.
    [137]Huang Ming, Peng Jin-hui, Yang Jing-jing. Microwave cavity perturbation technique for measuring the moisture content of sulphide minerals concentrates[J]. Minerals engineering,2007,20(1):92-94.
    [138]Bao Wei-ming, Chang Bao-xiang, Guo Ze-hong. The research for applying microwave denitration on the conversion of high-enriched uranium[J]. Atomic Energy Science and Technology,1995,29 (3): 268-274.
    [139]Maxwell-Garnett J C. Colours in metal glasses and in metallic films[J]. Philosophical Transaction of the Royal Society.1904,203: 385-420.
    [140]Maxwell-Garnett J C. Colours in metal glasses in metallic films and in metallic solutions-II[J]. Philosophical Transaction of the Royal Society.1906,205:237-288.
    [141]黄铭,彭金辉,张世敏,等.沥青石墨粉混合物吸波特性及应用[C]//12届全国微波应用学术会议论文集.2005,10:79-81.
    [142]Carter R G. Accuracy of microwave cavity perturbation measurements[J]. Microwave Theory and Techniques, IEEE Trans, 2001,49(5):918-923.
    [143]黄铭,彭金辉,王威廉,等.微波快速测定硫化镍精矿水分新方法研究[J].金属矿山,2006,(5):39-41.
    [144]邱晔,彭金辉,黄铭,等.微波谐振腔微扰法快速检测烟丝含水率[J].烟草科技,2008,(6):38-40.
    [145]Huang Ming, Peng Jin-hui, Yang Jing-jing. Microwave cavity perturbation technique for measuring the moisture content of sulphide minerals concentrates[J]. Minerals engineering,2007,20(1):92-94.
    [146]Peng Jin-hui, Huang meng-yang, Zhang zheng-yong, et al. Non-isothermal kinetics and absorption property of leaching primary titanium-rich materials by microwave heating[J]. The Chinese Journal of Nonferrous Metals,2008,18(special 1):s207-s214.
    [147]Maxwell-Garnett J C. Colours in metal glasses and in metallic films[J]. Philosophical Transaction of the Royal Society.1904,203: 385-420.
    [148]Maxwell-Garnett J C. Colours in metal glasses in metallic films and in metallic solutions-Ⅱ[J]. Philosophical Transaction of the Royal Society.1906,205:237-288.
    [149]Shweta Sharma, Anushree Malik, Santosh Satya. Application of response surface methodology (RSM) for optimization of nutrient supplementation for Cr (Ⅵ) removal by Aspergillus lentulus AML05 [J]. Journal of hazardous materials,2009,164(2-3):1198-1204.
    [150]徐颖,李明利,赵选民,卢凤纪.响应曲面回归分析法—一种新的回归分析法在材料研究中的应用[J].稀有金属材料与工程,2001,30(6): 428-432.
    [151]A.Zabaniotou, G.Stavropoulos, V.Skoulou. Activated carbon from olive kernels in a two-stage process [J]. Industrial improvement Bioresour Technoogyl,2007:320-326.
    [152]J.H.Ahn, Y.P.Kim, Y.M.Lee, et al. Optimization of microenc-apsulation of seed oil by response surface methodology[J]. Food Chemistry,2008,107 (1):98-105.
    [153]Bezerra M A, Santelli, RE, Oliverira E P, et al. Response surface methodolody as a tool for optimization in analytical chemistry [J]. Talanta,2008,76(5):965-977.
    [154]Rodriguze-Nogales, J M Ortega, N Perez-Mateos, et al. Experimental design and response surface modeling applied for the optimization of pectin hydrolysis by enzymes from A niger CECT 2088[J]. Food chemistry,2007,101(12):634-642.
    [155]R.Myers, G.Vining. Variance dispersion of response surface designs[J]. Journal of Quality Technology,1192, (24):1-11.
    [156]Garg U K, Kaur M P, Garg. V K, et al. Removal of nickel from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach[J]. Bioresour Technoogyl,2008, 99(5):1325-1331.
    [157]曹新生,马学忠,王发品,等.三碳酸铀酰铵的热分解研究[M].中国核情报中心,北京,1988.
    [158]赵君,邱履福,钟兴,等.三碳酸铀酰铵流化床分解-还原制备二氧化铀的研究[M].原子能出版社,北京,1989,1-11.
    [159]伍志明.二氧化铀核燃料的粉末冶金技术[J].粉末冶金技术,1996,14(1):63-68.
    [160]胡正杰.ADU转化为UO2粉末过程中的除氟问题[J].原子能科学技术,1998,32(4):352-357.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700