腐殖酸对纳米零价铁修复污染物的抑制及抗抑制机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入21世纪,随着人口的增加和国民经济的快速发展,我国面临着水资源和水质危机,尤其是水质危机日趋严重。无论是地表水还是地下水,我国的水质污染非常严重。其中六价铬广泛应用于制革、纺织品生产、印染、颜料以及镀铬等行业中,是普遍存在的污染物。有机氯化合物在制造业、清洗业、有机溶剂、农药、除草剂、化工生产等行业大量使用,导致含氯有机物大量排放,使很多地表水和地下水都受到含氯有机物的污染。因此,对水中含氯有机物及重金属的治理具有十分重要的意义。
     自从有人提出金属铁屑可以用于地下水的原位修复以来,用Fe0还原修复地下水中的污染物就成为一个非常活跃的研究领域。零价铁(Fe0)具有廉价、高还原势和反应速度快的特点,已成为地下水原位修复中最有效的反应介质材料之一。目前零价铁已被广泛应用于含氯有机物、含氮有机物、重金属等污染物的净化和修复。但地下水中存在的各种物质,例如腐殖酸和硬度离子等将会对零价铁除铬和脱氯的应用产生影响,故本研究采用纳米级Fe0及纳米级Ni-Fe和Pd-Fe双金属为主要工具修复受污染水体中的六价铬和硝-二氯苯酚(2,4-DCP),并着重考察腐殖酸(HA)的存在对零价铁(ZVI)还原修复技术的抑制作用,初步探讨了腐殖酸(HA)对ZVI还原修复技术抑制作用的机理。通过实验室实验,探索了克服腐殖酸(HA)对ZVI还原修复技术抑制作用的方法及其抗抑制的机理。结果表明:
     (1)腐殖酸对纳米级Pd-Fe和纳米级Ni-Fe双金属催化还原脱氯具有明显的抑制作用,并且这种抑制作用在HA的浓度较低(5 mg L-1)时就明显的表现出来。HA对纳米级Pd-Fe和纳米级Ni-Fe双金属催化还原2,4-DCP脱氯的抑制作用随着HA投加量的增大而变得越来越明显。腐殖酸之所以会抑制纳米级金属颗粒催化还原脱氯的主要原因是腐殖酸会吸附在纳米级双金属的表面,占据双金属表面的活性反应场所,从而阻碍反应的进一步进行。HA存在时,影响纳米级Ni-Fe双金属对2,4-DCP催化还原脱氯效果的因素有:HA的投加量、pH值、镍化率、纳米级Ni-Fe投加量和反应温度。实验结果表明较大的镍化率、较低的pH值、较高的纳米级Ni-Fe投加量和较高的反应温度有利于脱氯反应;脱氯效率与2,4-DCP的初始浓度关系不大。HA存在时,纳米级Pd-Fe和纳米级Ni-Fe双金属颗粒催化还原脱氯的动力学模型均可以用准一级反应动力学描述。在计算纳米级Pd-Fe催化还原2,4-DCP脱氯的实验中发现,HA投加量的增加与反应速率常数的增大成线性关系,随着HA投加量的增加,反应速率常数线性减小。
     (2)HA对纳米级零价铁去除Cr(VI)的反应也有明显的抑制作用,并且这种趋势随着HA的浓度增大而增大,担当腐殖酸浓度增大到一定程度时,这种趋势变得不再明显。HA对纳米级零价铁去除Cr(VI)的作用机理是双重的,一方面,腐殖酸要吸附在纳米级零价铁的表面,占据纳米级零价铁表面的活性反应场所,抑制反应的进行;另一方面,溶液中的腐殖酸又可以作为电子穿梭体(电子转移媒介)促进反应的进行。
     (3)在制备纳米级Fe0过程中投加稳定剂CMC可以阻碍纳米级颗粒的团聚,使其保持高度分散状态,从而维持其高反应性。CMC稳定化纳米级Fe0在一定程度上可以促进修复反应的进行,消除HA带来的抑制作用。40mg/L的HA存在时,投加0.5g/L的CMC,纳米级Fe0对水中Cr(VI)的去除效率由不加CMC时的49.1%上升到78.6%,这个值非常接近不加HA的82.65%,表明在制备纳米级Fe0的过程中投加稳定剂CMC在一定程度上可以消除HA带来的抑制作用。CMC对HA抑制的抗抑制机理在于,由于CMC的存在,有效的克服了磁力的影响。在静电斥力和位阻效应的作用下,纳米级Fe0颗粒不易发生团聚,呈现高度分散的状态,能维持巨大的表面积。除了减弱物理间相互作用外,CMC包裹在纳米级Fe0颗粒表面,阻止了ZVI表面高活性位点与周围的介质(溶解氧和水)反应。虽然表面钝化作用可能会阻止其与目标污染物反应,但由于颗粒的粒径很小,比表面积巨大,因此,处理效果比未稳定的ZVI颗粒好数倍。
     (4)在制备纳米级Fe0过程中投加磁铁矿可以使纳米级零价铁附着在磁铁矿表面,从而阻碍铁颗粒的团聚,使其保持高度分散状态,维持其高反应性。结果表明,在本实验条件下,最适宜的Fe3O4:Fe0=10:1。Fe3O4稳定化纳米级Fe0在一定程度上也可以促进反应的进行,部分消除了HA带来的抑制作用。但Fe3O4稳定化纳米级Fe0抗抑制的机理与CMC稳定化纳米级Fe0是不同的。Fe3O4对HA抑制的抗抑制机理在于,一方面,纳米级Fe0附着在磁铁矿表面,从而使得纳米级Fe0颗粒不易发生团聚,呈现高度分散的状态,能维持巨大的表面积。另一方面,Fe3O4的加入解决了纳米级Fe0由于表面钝化而导致电子传递困难的问题,促进了Fe0表面的电子传递,从而使得Fe0的还原能力得到大幅度提高。
At the turn of the 21 century, through an increase of the world population and rapid economic development, China is facing considerable crisis in water sources and quality. Especially critical is the increased crisis of water quality.
     China has serious water pollution problems in both groundwater and surface water. Cr(VI) is largely used in tanneries, printing, dyeing, production of colorants, electroplating etc. It is a common pollutant which exists in nature. Organochlorine compounds in manufacturing industries, cleaning industries; organic solvents, pesticides, herbicides producing industries and some chemical productions are used in great quantities leading to a large discharge of products containing chlorine. Many surface waters and groundwaters face the problem of organochlorine compound pollutions. Therefore, treatments of water containing organochlorine compounds and heavy metals are of great interest.
     Since Scholars proposed the possibility of using metallic iron filings to remediate underground water, the use of Fe0 for underground water pollutants remediation became a very active domain of research. Since zero valent iron is characterized by cheap price, a high reductive and rapid speed reaction; it became one of the most effective materials in remediating underground water sources. So far, zero valent iron is largely used in the treatments and purification of chlorine containing organic matters, nitrogenous organic compounds, heavy metals and other pollutants. But due to the existence of different materials in underground water such as humic acid, hard ions etc, the removal and elimination of chlorine would be affected. Therefore, in this research nano-scale iron and nano-scale Ni-Fe and Pd-Fe bimetallic particles were the main tools for remediation of polluted water containing hexavalent chromium and 2,4 DCP. Besides, investigations were emphatically done on the inhibition due to the existence of humic acid (HA) against the reductive removal of zero valent iron (ZVI). Initially, we dealt with the mechanism of ZVI remediation inhibition by HA. Through our experiments, we investigated methods of overcoming the ZVI remediation inhibition by HA and those opposing to the inhibition mechanism. Results showed the following:
     (1) The effect of humic acid on the catalytic reductive dechlorination by nanoscale Pd-Fe and nanoscale Ni-Fe bimetallics inhibition was obvious and that inhibition was shown when one reached the low concentration 5 mg L"1 of Humic acid. The inhibition of the catalytic reductive dechlorination of 2,4-DCP follows the addition of HA. As quantities of HA were increasing, the results were getting better. The reason why humic acid can inhibite catalytic reductive dechlorination by nanoscale Pd-Fe and nanoscale Ni-Fe bimetallics is that it can be adsorbed on the surface area of particles of bimetallic Pd-Fe and Ni-Fe and then reduces the reactivities of particles preventing the evolution of the reaction. When HA exists, factors influencing the results of the catalytic reductive dechlorination by nanoscale Pd-Fe and nanoscale Ni-Fe bimetallics are:doses of HA, pH, nickel ration, nanoscale Ni-Fe dosage and the reaction temperature. The experimental results showed that larger nickel ratio, a lower pH, higher nanoscale Ni-Fe dosage and higher reaction temperature are favorable to dechlorination reaction. The dechlorination efficiency has only little to do with the initial concentration of 2,4-DCP. When HA exists, the nanoscale Pd-Fe and nanoscale Ni-Fe bimetallic catalystic reductive dechlorination kinetics model can be described as a first order reaction kinetics. When computing the catalystic dechloriantion of 2,4-DCP by nanoscale Pd-Fe in our experiments, we found that HA dosages have linear relationship with reaction rates. When HA dosages increased, the reaction rates also increased, and with the HA dosages increasing, the reaction rate constants decreased linearly.
     (2) HA's inhibiting effect on the nano-scale zero-valent iron to remove Cr(VI) reaction is obvious, and this trend became remarkable with the concentration of HA increasing. However when the concentration of HA reaches a certain extent, this trend is no longer obvious. The mechanism of HA on the nano-scale zero-valent iron to remove Cr(VI) is double:on one hand, humic acid would be adsorbed on the nano-scale zero-valent iron surfaces, occupying their active surfaces leading to the inhibition of the reaction. On the other hand, the humic acid in solution also can be used as electron transport bodies (Media of electrons transfer) to promote the reaction.
     (3) Adding stabilizer CMC in the preparation of nanoscale Fe0 could prevent from the agglomeration of nanoscale particles, and maintain them at a high degree of dispersion, and then maintain their high reactivity. CMC stabilized nanoscale Fe0 at a certain extent, can promote the remediation reaction, and eliminate the inhibitory effect brought by HA. When the HA is 40 mg L-1, add 0.5 g L-1 of CMC, the removal efficiency of Cr(VI) increased from 49.1% to 78.6%, the value is very close to 82.65% when there is no HA. This indicated that in the preparation of nanoscale Fe0, add stabilizer CMC can eliminate the inhibition due to the presence of HA to some extent. The anti-inhibition mechanism of CMC to HA's inhibition is that the existence of CMC overcomes the effects of magnetism. Under the effect of electrostatic repulsion and steric hindrance, nanoscale Fe0 particles cannot agglomerate easily, but maintain a highly decentralized state which can maintain biggest surface areas. Besides weakening the physical interaction, CMC can wrap the surface of nanoscale Fe0 particles, and that can inhibit the reaction between high active sites of ZVI's surface and surrounding media (dissolved oxygen and water). Although the surface passivation may prevent particles'reactions with the target pollutants, however, the particle sizes are very small and specific surface areas are huge, so the treatment efficiencies are several times better than unstabilized ZVI particles.
     (4) In the preparation process of nanoscale Fe0, adding some magnetite can provoke the adhesion of nano-scale zero-valent iron to the magnetite surfaces. Therefore, they would prevent iron particles from agglomerating, so it can hold them at a high degree of dispersed state in order to maintain their high reactivity. In our experimental conditions, results showed that the most appropriate efficiency of Fe3O4 and Fe0 was 10:1.Stabilized nanoscale Fe0 by Fe3O4 can also promote the reaction to some extent, and eliminate the inhibitory effect brought by HA. However, anti-inhibition mechanisms of Stabilized nanoscale Fe0 by Fe3O4 and Stabilized nanoscale Fe0 by CMC are different. The anti-inhibition mechanism of Fe3O4 to HA is, on the one hand, nanoscale Fe0 attached to magnetite surfaces make it difficult to agglomerate for Fe0 particles showing a high dispersion state. On the other hand, the addition of Fe3O4 solved problems of electron transfers due to the surface passivation of Fe0 promoting the electron transfer on the surface of Fe0, and allowing the increase of Fe0 reduction capacity.
引文
[1]吴德礼,马鲁铭.氯代烷烃在Fe/Cu二相金属体系中的催化还原脱氯研究[J].净水技术.2004,23(3):14-17.
    [2]肖华文.中国的水资源危机[J].城乡建设.2004,9:11-25.
    [3]王九思,陈学民,肖举强,伏小勇.水处理化学[M].北京:化学工业出版社.2002.1.
    [4]孙化江,钟帮权.黑龙江齐齐哈尔市地下水资源污染现状与防治措施[J].地下水.2004,26(3):196-199.
    [5]于洪存,李相力,王凤林,毕彤.沈阳市地下水现状及污染防治对策研究[J].辽宁城乡环境科技.2003,23(6):14-16.
    [6]谭西顺.危害人体健康的杀手——六价铬[J].劳动保护.2003,1:61-61.
    [7]史黎薇.铬化合物的健康效应[J].中国环境卫生.2003,6(3):125-129.
    [8]吴克明,潘留明,黄羽.反应柱充填活性炭法处理轧钢含铬废水的研究[J].环境污染与防治.2005,27(5):379-381.
    [9]胡凯,季永盛.含铬废水治理技术及应用现状[J].中国资源综合利用.2005,3:28-29.
    [10]王维岗,亚库甫江·吐尔逊.环境的重金属污染物来源和毒理作用[J].生态环境.2005,2:39-40.
    [11]张达政,陈鸿汉,李海明.浅层地下水卤代烃污染初步研究[J].中国地质,2002,29(3):327-330.
    [12]Eromosele, T.C., Bayero, S.S. Adsorption of chromium and zinc ions from aqueous solutions by cellulosic graft copolymers [J]. Bioresource Technology.2000,71(3):279-281.
    [13]黄韵,马晓燕,刘海林,袁莉.改性累托石对水溶液中Cr(VI)的吸附[J].硅酸盐学报.2005,33(2):197-201.
    [14]蓝磊,童张法,李仲民,魏光涛,韦藤幼.改性膨润土对废水中六价铬的吸附过程研究[J].环境污染与防治.2005,27(5):352-354.
    [15]李虎杰,田煦,易发成.活化沸石对Pb吸附性能研究[J].非金属矿.2001,24(2):49-51.
    [16]吴克明,石瑛,王俊,黄羽.离子交换树脂处理钢铁钝化含铬废水的研究[J].工业安全与环保.2005,31(4):22-23.
    [17]Ozaki, H., Sharma, K., Saktaywin, W. Performance of an ultra-low-pressure reverse osmosis membrane (UI PROM) for separatingheavy metal:effects of interference parameters [J]. Desalination.2002,144(1-3):287-294.
    [18]Yang, X.J., Fane, A.G., MacNaughton, S. Removal and recovery of heavy metal from wastewaters by supported liquid membranes [J]. Water Science and Technology.2001,43: 341-348.
    [19]朱权云.化学混凝法脱去气田废水中重金属的研究[J].石油与天然气化工.1989,18(4):1-9.
    [20]汪源,王爱平,齐明亮,郭琳.pH对混凝沉淀法处理含重金属工业污水效果的影响.甘肃环境研究与监测[J].1999,12(4):172-175.
    [21]高洪阁,李白英.应用高硫煤燃烧产生的二氧化硫还原电镀废水中的六价铬离子[J].煤矿环境保护.2002,16(4):16-17.
    [22]Ignaz, J.B., Stephan, J.H. Influence of mineral surfaces on chromium(VI) reduction by Iron(II) [J]. Environ. Sci. Technol.1999,33(23):4285-4291.
    [23]Scott, E.F., Li, G.C. Kinetics of chromate reduction by ferrous iron [J]. Environ. Sci. Technol. 1996,30(5):1614-1617.
    [24]Hua, B., Deng, B. Influences of water vapor on Cr(VI) reduction by gaseous hydrogen sulfide [J]. Environ. Sci. Technol.2003,37(20):4771-4777.
    [25]刘俊良,杨全利,刘明德.含铬废水处理技术综述[J].河北科技图苑.1997,37(3):13-15.
    [26]牛晓霞.含铬废水的处理方法综述[J].洛阳大学学报.1999,14(4):39-43.
    [27]Xu, X.H., Wei, J.J. and Wang, D.H. Studies on dechlorination of chlorophenols with Pd/Fe and nanoscale Pd/Fe [J]. China Environmental Science.2004,24:76-80.
    [28]Orth, W.S., Gillham, R.W. Dechlorination of trichloroethene in aqueous solution using Fe~0 [J]. Environ. Sci. Technol.1996,30(1):66-71.
    [29]Wei, J.J., Xu, X.H., Liu, Y. Kinetics and mechanism of dechlorination of o-chlorophenol by nanoscale Pd/Fe [J]. Chem. Res. Chinese U.2004,20(1):73-76.
    [30]Agrawal, A., Tratnyek, P.G. Reduction of nitroaromatic compounds by zero-valent iron metal [J]. Environ. Sci. Technol.1996,30(1):153-160.
    [31]Devlin, J.F., Klausen, J., Schwarzenbach, R.P. Kinetics of nitroaromatic reduction on granular iron in recirculating bath experiments [J]. Environ. Sci. Technol.1998,32(13):1941-1947.
    [32]Shokes, T.E., Moller, G. Removal of dissolved heavy metals from acid rock drainage using iron metal [J]. Environ. Sci. Technol.1999,33(2):282-287.
    [33]Lee, T., Lim, H., Lee, Y., Park J. Use of waste iron metal for removal of Cr(VI) from water [J]. Chemosphere.2003,53(5):479-485.
    [34]Powell, R.M., Puls, R.W., Hightower, S.K., Sabantini, D.A. Coupled iron corrosion and chromate reduction:mechanisms for subsurface remediation [J]. Environ. Sci. Technol.1995, 29(8):1913-1922.
    [35]Alowitz, M.J., Scherer, M.M. Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal [J]. Environ. Sci. Technol.2002,36(3):299-306.
    [36]Ponder, S.M., Darab, J.G., Mallouk, T.E. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron [J]. Environ. Sci. Technol.2000,34(12):2564-2569.
    [37]Powell, R.M., Puls, R.W. Proton generation by dissolution of intrinsic or augmented aluminosilicate ainerals for in situ contaminant remediation by zero-valence-state iron [J]. Environ. Sci. Technol.1997,31(8):2244-2251.
    [38]冯俊丽,马鲁铭.催化铁内电解法处理含铬废水[J].水处理技术.2005,31(7):42-45.
    [39]陈林,邱廷省,陈明.生物吸附剂去除水中六价铬的实验研究[J].皮革科学与工程.2003,13(4):48-51.
    [40]瞿建国,申如香,徐伯兴,李福德.微生物法处理含铬(VI)废水的研究[J].化工环保.2005,25(1):1-4.
    [41]俞勇梅,周渝生,夏曙演,白凌,张晓旗,李福德,李听.生物法治理宝钢2030mm冷轧混合含铬废水的条件选择[J].宝钢技术.2005,3:51-53.
    [42]柴立元,刘恢,闵小波,郑栗,王云燕.改性活性污泥处理含铬废水[J].中国有色金属学报.2005,15(9):1458-1464.
    [43]Getty E.E., Petrosius S.C, Drago R.S. The strong solid acid, (SG)_nAlCl_2, as a catalyst for the dehydrochlorination and hydrodechlorination of polychlorinated molecules [J]. J. Mol. Catal.,1991,67(1):127-136.
    [44]Hung L.S, Pfefferle L.D. Methyl chloride and methylene chloride incineration in a catalytically stabilized thermal combustor [J]. Environ. Sci.& Technol.,1989,23(9):1085-1091.
    [45]Kinner L.L, McGowin A, Manahan S.E. Reverse-burn gasification for treatment of hazardous wastes:contaminated soil, mixed wastes, and spent activated carbon regeneration [J]. Environ. Sci. Technol.,1993,27,482-488.
    [46]Glaze W.H., Kang J.W. Advanced oxidation processes for treating groundwater contaminated with TCE and PCE:laboratory studies [J]. Journal Am. Water Works Assoc.,1988,3:57-63.
    [47]Distefano T.D., Gossett J.M., Zinder S.H. Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis [J]. Appl. Environ. Microbiol.,1991,57 (8):2287-2292.
    [48]Criddle C.S, Dewitt J.T, McCarty P.L. Reductive dehalogenation of carbon tetrachloride by Escherichia coli K-12 [J]. Appl. Environ. Microbiol.,1990,56(11):3247-3254.
    [49]Semprini L, Hopkins G.D, McCarty P.L, Roberts P.V. In-situ transformation of carbon tetrachloride and other halogenated compounds resulting from biostimulation under anoxic conditions [J]. Environ. Sci. Technol.,1992,26(12):2454-2461.
    [50]Randall T.L, Knopp P.V. Detoxification of specific organic substances by wet oxidation [J]. J.Water Pollut. Control Fed.,1980,.52(8):2117-2130.
    [51]Thomas D.R, Carswell K.S, Georgiou G. Mineralization of biphenyl and PCBs by the white rot fungus phanerochaete chrysosporium [J]. Biotechnol. Bioeng.,1992,40:1395-1402.
    [52]Davies W.A, Prince R.G.H. Comparative feasibilities of processes for the destruction of organochlorines:base-catalyzed dechlorination, sodium metal, hydrogen and electrolytic reduction processes [J]. Process Saf. Environ. Prot.,1994,72(B2):113-115.
    [53]Sugimoto H., Matsumoto S., Sawyer D.T. Degradation and dehalogenation of polychlorobiphenyls and halogenated aromatic molecules by superoxide ion and by electrolytic reduction [J]. Environ. Sci. Technol.,1988,22(10):1182-1186.
    [54]Epling G.A., Florio E.M., Bourque A.J. Borohydride, micellar, and exciplex-enhanced dechlorination of chlorobiphenyls [J]. Environ. Sci. Technol.,1988,22(8):952-956.
    [55]Zhang S., Rusling J.E. Dechlorination of polychlorinated biphenyls by electrochemical catalysis in a bicontinuous microemulsion [J]. Environ. Sci. Technol.,1993,27(7):1375-1380.
    [56]赵毅,孙伟.化学法处理多氯联苯[J].环境科学进展,1997,5(1):43-48.
    [57]Sweeny K.H. The reductive treatment of industrial wastes. Ⅱ Process applications [J]. AIChE Symp Ser,1981,77(209),72-78.
    [58]Senzaki T., Kasuo Y. Removal of chlorinated organic compounds from wastewater by reduction process. Treatment of tetrachloroethane with iron powder [J]. Kogyo Yosui,1988, 357:2-7.
    [59]Senzaki T., Kasuo Y. Removal of chlorinated organic compounds from wastewater by reduction process. Ⅱ Treatment of trichloroethene with iron powder [J]. Kogyo Yosui,1989, 369:19-25.
    [60]Gillham R.W., O'Hannesin S.F. Modern trends in Hydrology [C]. International Association of Hydrologists Conference. IAH:Hamilton, ON, Canada,1992, p10.
    [61]Gillham R.W., O'Hannesin S.F. Enhanced degradation of halogenated aliphatics by zero-valent iron [J]. Ground Water,1994,32:958-967.
    [62]Powell, R.M., Puls, R.W. Proton generation by dissolution of intrinsic or augmented aluminosilicate ainerals for in situ contaminant remediation by zero-valence-state iron [J]. Environ. Sci. Technol.1997,31(8):2244-2251.
    [63]Pratt, A.R., Blowes, D.W., Ptacek, C.J. Products of chromate reduction on proposed subsurface remediation material [J]. Environ. Sci. Technol.1997,31(9):2492-2498.
    [64]Choe, S., Lee, S.H., Chang, Y.Y., Hwang, K.Y., Khim, J. Rapid reductive destruction of hazardous organic compounds by nanoscale Fe~0 [J]. Chemosphere.2001,42(1):367-372.
    [65]Wang, C.B., Zhang, W.X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs [J]. Environ. Sci. Technol.1997,31(7):2154-2156.
    [66]Lien, H.L., Zhang, W.X. Nanoscale iron particles for complete reduction of chlorinated ethenes [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2001,191: 97-105.
    [67]陈芳艳,陆敏,唐玉斌.纳米铁在水污染控制中的应用研究进展[J].工业安全与环保.2007,32(2):18-20.
    [68]童少平,胡丽华,魏红,马淳安.Ni/Fe二元金属脱氯降解对氯苯酚的研究[J].环境科学.2005,26(4):59-62.
    [69]魏红,李克斌,童少平.镍/铁二元金属对莠去津脱氯特性的影响[J].环境科学,2004,25(1):154-157.
    [70]贺婧,颜丽,杨凯,马明贺,刘晔,崔桂芳.不同来源腐殖酸的组成和性质的研究[J].土壤通报,2003,34(4):343-345.
    [71]李丽,冉勇,傅家谟.超滤分级研究腐殖酸的结构组成[J].地球化学,2004,22(4):387-394.
    [72]刘振中,宋刚福.水源水中腐殖酸的危害及去除方法[J].江西科学,2006,24(4):247-252
    [73]Johnson T.L., Fish W., Gorby Y.A. Degradation of carbon tetrachloride by iron metal: complexation effects on the oxide surface[J]. J Contam. Hydrol,1998,29:379-398.
    [74]Tratnyek P.G., Schere M.M., Hu S. Effects of natural organic matter anthropogenic surfactants, and model quinones on the reduction of contaminants by zerovalent iron [J]. Water Res.,2001, 35:4435.4443.
    [75]Doong R.A., Lai Y.J. Dechlorination of tetrachloroethylene by palladized iron in the presence of humic acid [J]. Water Res.,2005,39(11):2309-2318.
    [76]Doong R.A., Lai Y.L. Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zerovalent iron [J]. Chemosphere,2006,64(3):371-378.
    [77]Cho H.H., Park J.W. Effect of coexisting compounds on the sorption and reduction of trichloroethylene with iron [J]. Environ. Toxicol. Chem.,2005,24:11-16.
    [78]Clark Ⅱ C.J., Rao P.S.C., Annable M.D. Degradation of perchloroethylene in cosolvent solutions by zero-valent iron [J]. J. Hazard. Mater.,2003, B96:65-78.
    [79]Dombek T., Dolan E., Schultz J., Klarup D. Rapid reductive dechlorination of atrazine by zero-valent iron under acidic conditions [J]. Environmental Pollution,2001,111:21-27.
    [80]Scherer M.M., Balko B.A., Gallagher D.A., Tratnyek P.G. Correlation analysis of rate constants for dechlorination by zero-valent iron [J]. Environ. Sci. Technol.,1998,32:3026-3033.
    [81]Straub K.L., Benz M., Schink B. Iron metabolism in anoxic enviornments at near-neutral pH [J]. FEMS Microbiol. Ecol.,2001,34:181-186
    [82]Lovley D.R., Coates J.D., Blunt-Harris E.L., Phillips E.J.P., Woodward J.C. Humic substances as electron acceptors for microbial respiration [J]. Nature,1996,382:445-448.
    [83]Zhang Z., Cissoko N., Wo J.J., Xu X.H. Factors influencing the dechlorination of 2,4-dichlorophenol by Ni-Fe nanoparticles in the presence of humic acid [J]. J. Hazard. Mater. 2010,182 (1-3):252-258
    [84]Zhang Z., Wo J.J., Cissoko N.M., Xu X.H. Kinetics of 2,4-dichlorophenol dechlorination by Pd-Fe bimetallic nanoparticles in the presence of humic acid [J]. J Zhejiang Univ Sci A,2008, 9(1):118-124.
    [85]Jan, D., Leen, B., Dirk, S. Effect of humic acids on heavy metal removal by zero-valent iron in batch and continuous flow column systems [J]. Water Res.2005,39(15):3531-3540.
    [86]Davis, A.P., Bhatnagar, V. Adsorption of cadmium and humic acid onto hematite [J]. Chemosphere.1995,30(2):243-256.
    [87]王璋.食品化学[M].北京:中国轻工业出版社,1999.
    [88]高勃,汤烈贵.纤维素科学[M].北京:科学出版社,1996.
    [89]詹志萍.羧甲基纤维素钠的内在质量及其对酸性食品质量的影响[J].中国食品添加剂,1997(4):38-39.
    [90]Gomez-Diaz D., Navaza J.M. Navaza. Rheology of food stabilizers blends [J]. Journal of Food Engineering,2004,64:143-149.
    [91]Gomez-Diaz D., Navaza J.M. Rheology of aqueous solutions of food additives:Effect of concentration, temperature and blending [J]. Journal of Food Engineering,2003,56(4):387-392.
    [92]徐季亮.羧甲基纤维素钠在冰淇淋中的应用[J].冷饮与速冻食品工业,1999(4):22-24.
    [93]曾少葵,蒋志红,吴红棉.淮山提取液替代羧甲基纤维素钠作为酸奶稳定剂的效果研究[J].湛江海洋大学学报,2001(1):52-54.
    [94]李华,牛生洋,王华,等.羧甲基纤维素钠对葡萄酒酒石稳定的研究[J].中国食品添加剂,2003(6):35-38.
    [95]林乐明,张军,蔡莲婷.粘结剂羧甲基纤维素钠含量对自涂薄层板色谱性能的影响[J].色谱,1995(13):383-385.
    [96]黄进,丁训娴,钱厚海.不同浓度羧甲基纤维素钠对兔口服甘草锌药动学与生物利用度的影响[J].中国医院药学杂志,1995(6):62-64.
    [97]蒋学祥,杨德文,吕永兴,等.羧甲基纤维素钠应用于肝癌导管化疗的临床研究[J].中国肿瘤临床,1995(9):620-623.
    [98]刘国辉,李有柱,赵军.羧甲基纤维素钠在预防术后腹膜粘连中的作用[J].吉林大学学报:医学版,2002(2):163-165.
    [99]严少华,应太林,刘海鹰.再生丝心蛋白和羧甲基纤维素复合膜的特性及其在有机相葡萄糖生物传感器中的应用[J].上海大学学报:自然科学版,1998(5):506-508.
    [100]郭智,孟根,郑永义.养阴生肌膜的研究[J].中草药,1995(2):68-69.
    [101]汪小海,葛卫红,赵明.药物缓释物质CMC-Na和β-CD对丁哌卡因毒性的影响[J].镇江医学院学报,2000(3):428-430.
    [102]Crachereau, C.J. Gabasn. Tartaric stabilization of wine by carboxyemthy-cellulose (CMC) [J]. Bulletin de O I V,2001,74:841-842.
    [103]Hardeep, S.G., Monica, H., Cristina, M.R. Starch hydrolyzing enzymes for retarding the staling of rice bread [J]. Cereal Chemistry,2003,80:750-755.
    [104]Purificacion, C., Jose, E.P., Marcel, O. Arginase activity is a useful marker of nitrogen limitation during alcoholic fermentations [J]. Systematic and Applied Microbiolgy,2003,26: 471-473.
    [105]Chen R., Lochmann R., Goodwin A., Praveen K., Praveen K.,Dabrowski K., Lee K.J. Alternative complement activity and resistance to heat stress in golden shiners (Notemigonus Crysoleu-cas) are increased by dietary vitamin C levels in excess of requirements for prevention of deficiency signs [J]. The Journal of Nutrition,2003,133:2281-2286.
    [106]Wang, C.B., Zhang, W.X. Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs [J]. Environ. Sci.Technol.1997,31(7):2154-2156.
    [107]Gillham, R.W. Discussion of "Nano-scale Iron for Dehalogenation" by Evan K.N. and David B.V. [J]. Ground Water Monit. Remed.2003,23:6.
    [108]He, F., Zhao, D. Application of novel stabilizers for enhanced mobility and reactivity of iron-based nanoparticles for in situ destruction of chlorinated hydrocarbons in soils [C]. In: Abstracts of Papers,230th ACS National Meeting, Washington, DC, USA,28 August-1 September 2005, ENVR-077.
    [109]Li, F., Vipulanandan, C., Mohanty, K.K. Microemulsion and solution approaches to nanoparticle iron production of degradation of trichloroethylene [J]. Colloids Surf. A.2003, 223:103-112.
    [110]Wonterghem, J.V., Morup, S., Charles, S.W., Wells, S., Villadsen, J. Formation of a metallic glass by thermal decomposition of Fe(CO)5 [J]. Phys. ReV. Lett.1985,55(4):410-413.
    [111][112] Suslick, K.S., Fang, M., Hyeon, T. Sonochemical synthesis of iron colloids [J]. J. Am. Chem. Soc.1996,118(47):11960-11961.
    [112]Cushing, B.L., Kolesnichenko, V.L., O'Connor, C.J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles [J]. Chem. ReV.2004,104(9):3893-3946.
    [113]Sun, Y.P., Zhang, W.X. Dispersion of zero-valent iron nanoparticles [C]. In Abstracts of Papers IEC-090,229th ACS National Meeting, March 13-17,2005; American Chemical Society:San Diego, CA,2005.
    [114]Chen, S.S., Hsu, H.D., Li, C.W. A new method to produce nanoscale iron for nitrate removal [J]. Nanoparticle Res.2004,6(6):639-647.
    [115]Schrick, B., Blough, J.L., Jones, A.D., Mallouk, T.E. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles [J]. Chem. Mater. 2002,14(12):5140-5147.
    [116]Schrick, B., Hydutsky, B.W., Blough, J.L., Mallouk, T.E. Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater [J]. Chem. Mater.2004,16 (11):2187-2193.
    [117]He, F., Zhao, D. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water [J]. Environ. Sci. Technol.2005,39 (9):3314-3320.
    [118]He, F., Zhao, D., Liu, J., Roberts, C.B. Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater [J]. Ind. Eng. Chem. Res.2007,46 (1):29-34.
    [119]Xu, Y., Zhao, D. Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Research [J],2007,41:2101-2108.
    [120]Dos Santos C.F., Ardisson J.D., Moura F.C.C, Lago R.M., Murad E., Fabris J.D. Potential application of highly reactive Fe(0)/Fe3O4 composites for the reduction of Cr(VI) environmental contaminants [J]. Chemosphere,2008,71(1):90-6.
    [121]Young, G.K., Bungay, H.R., Brown, L.M., Parsons W.A. Chemical reduction of nitrate in water [J]. J. Wat. Poll. Control Fed.1964,36:395-398.
    [122]Siantar, D.P., Scheier, C.G., Chou, C.S. Treatment of 1,2-dibromo-3- chloropropane and nitrate-contaminated water with zero-valent iron or hydrogen/palladium catalysts [J]. Water Res.,1996,30(10):2315-2322.
    [123]Matheson, L.J., Tratnyek, P.G.. Reductive dehalogenation of chlorinated methanes by iron metal [J]. Environ. Sci.& Technol.,1994,28 (12):2045-2053.
    [124]Roberts, A.L., Totten, L.A., Arnold, W.A., Burris, D.R., Campbell, T.J. Reductive elimination of chlorinated ethylenes by zero-valent metals. Environ. Sci. Technol.,1996,30:2654-2659
    [125]Agrawal, A. and Tratnyek, P.G.1996. Reduction of Nitroaromatic Compounds by Zero-valent Iron Metal [J]. Environ. Sci. Technol.30:153-160
    [126]Cantrell, K.J., Kaplan, D.I., Wietsm, T.W. Zero-valent iron for the in situ remediation of selected metals in groundwater [J]. J. Hazard Mater.,1995,42:201-212.
    [127]Schlicker, O., Ebert, M., Fruth, M., Weidner, M., Wust, W., Dahmke, A. Degradation of TCE with iron:the role of competing chromate and nitrate reduction [J]. Gronnd Water,2000, 38(3):403-409
    [128]Huang, C.P., Wang, H.W., Chiu, P.C. Nitrate reduction by metallic iron [J]. Water Research, 1998,32(8):2257-2264
    [129]Zawaideh, L.L., Zhang, T.C. The effects of pH and addition of anorganic buffer (HEPE) on nitrate transformation in Fe~0-water system.[J]. Water Sci. Technol.,1998,38:107-115.
    [130]Chew, C.F., Zhang, T.C. Shan, J. Removal of nitrate/atrazine contamination with zero-valent iron promoted processes [C]. Proceeding of the 1998 Conference on Hazardous Waste Research,1998,335-346
    [131]Ahn, S.Y., Oh, J.H., Sohn, K.H. Mechanistic aspects of nitratereduction by Fe(0) in water [J]. Journal of the Korean Chemical Socitey,2001,45(4):395-397
    [132]Hu, H.Y., Goto, N.H., Fujie, K.C. Effect of pH on the reduction of nitrite in water by metallic iron [J]. Water Research,2001,35(11):2789-2793
    [133]Huang, Y.H., Zhang, T.C. Kinetics of nitrate reduction by iron at near neutral pH [J]. J. Environ. Eng.2002,128:604-611.
    [134]Westerhoff, P. Reduction of nitrate, bromate, and chlorate by Zero valent iron (Fe~0) [J]. J. Environmental Engineering,2003, Jan.:10-15
    [135]Westerhoff, P., James, J. Nitrate removal in zero-valent iron packed columns [J]. Water Research,2003,37:1818-1830
    [136]Choe, S.H., Liljestrand, H.M., Khim, J.H. Nitrate reduction by zero-valent iron under different pH regimes [J]. Applied Geochemistry,2004,19:235-242
    [137]Huang, Y.H., Zhang, T.C. Effects of low pH on nitrate reduction by iron powder [J]. Water Res.,2004,38:2631-2642.
    [138]Chen, Y.M., Li, C.W., Chen, S.S. Fluidized zero valent iron bed reactor for nitrate removal [J]. Chemosphere,2005,59:753-759.
    [139]Burris D.R., Campbell T.J., Manoranjan V.S. Sorption of trichloroethylene and tetrachloroethylene in a batch reactive metallic iron-water system [J]. Environ. Sci. Technol., 1995,29:2850-2855.
    [140]Xie L., Shang C. Role of humic acid and quinone model compounds in bromate reduction by zerovalent iron. Environ. Sci. Technol.,2005,39,1092-1100.
    [141]Lien, H.L., Zhang, W.X.,2001. Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids and Surfaces A:Physicochemical and Engineering Aspects,191:97-105.
    [142]Jovanovic G.N., Plazl P., Sakrittichai P., Al-Khald K. Dechlorination of p-chlorophenol in a microreactor with bimetallic Pb/Fe catalyst. Ind. Eng. Chem. Res.,2005,44,5099-5106.
    [143]Liu, T., Tsang, D.C.W. and Lo, I.M.C.,2008, Chromium(VI) reduction kinetics by zero-valent iron in moderately hard water with humic acid:iron dissolution and humic acid adsorption. Environ. Sci. Technol.,42(6):2092-2098.
    [144]Blowes, D.W., Placek, C.J. and Jambor, J.L.,1997, In-situ remediation of Cr(VI)-contaminated groundwater using permeable reactive walls:laboratory studies. Environ. Sci. Technol.,31(12):3348-3357.
    [145]唐克旺,侯杰,唐蕴.中国地下水质量评价-平原区地下水水化学特征[J].水资源保护.2006,22(2):1-5.
    [146]俞燮廷.超细金属颗粒,高技术新材料要览[M].北京:中国科学技术出版社,1993.
    [147]Li, X., Chii, S. Role of Humic Acid and Quinone Model Compounds in BromateReduction by Zerovalent Iron [J]. Environ. Sci. Technol.,2005,39(4):1092-1100.
    [148]Kim, S., Picardal, F.W. Enhanced anaerobic biotransformation of carbon tetrachloride in the presence of reduced iron oxides [J]. Environ. Toxicol. Chem.,1999,18:2142-2150.
    [149]Perlinger, J.A., Buschmann, J., Angst, W., Schwarzenbach, R.P. Iron porphyrin and mercaptojuglone mediated reduction of polyhalogenated methanes and ethanes in homogeneous aqueous solution [J]. Environ. Sci. Technol.,1998,32:2431-2437.
    [150]Perlinger, J.A., Kalluri, V.M., Venkayapathy, R., Angst, W.,2002. Addition of hydrogen sulfide to juglone [J]. Environ. Sci. Technol.,2002,36:2663-2669.
    [151]魏世强,李光林,Sterberg, R.,王定勇.腐殖酸-金属离子反应动力学特征与稳态指标的探讨.土壤学报.2003,40(4):554-561.
    [152]陈盈,颜丽,关连珠,王冲,董旭,张旭东.不同来源腐殖酸对铜吸附量和吸附机制的研究.土壤学报.2006,37(3):479-481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700