铁矿石催化过氧化氢—过硫酸钠去除地下水中三氯乙烯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三氯乙烯(TCE)在衣物干洗,电子元件和金属部件的去油污,制药提纯的溶剂萃取等领域有着大量的应用。TCE有潜在的致癌、致畸、致突变毒性。它从地表迁移到含水层,通常以粘稠非水溶液相(DNAPL)存在,缓慢持续地溶解于地下水中,威胁着地下水的饮水安全。
     原位化学氧化(In situ chemical oxidation, ISCO)是一项通过向被污染的土壤和地下水注入氧化剂去除污染物的技术。过氧化氢与二价铁离子组成的芬顿试剂生成羟基自由基(HO·),其有着非常强的氧化能力,是常用于ISCO的试剂。但芬顿反应迅速,过氧化氢分解过快,放出巨大的热量和气体,对地下水土层结构的稳定和土著生物的安全有威胁。过硫酸钠是另一种常用于ISCO的氧化剂。它在环境中比较稳定,需要热量、过渡金属、UV等活化才能生成强氧化性的硫酸根自由基(S042-·),方可去除难降解的污染物。如果把这两种氧化剂组合使用,可能取得更好的效果。本文用3种天然铁矿石:菱铁矿、磁铁矿、赤铁矿与过氧化氢、过硫酸钠分别组合成3个铁矿石单氧化体系和3个铁矿石双氧化体系,以TCE作为目标污染物,研究TCE在这些单氧化体系和双氧化体系的去除效率及机理,氧化剂的分解动力学。取得的主要成果,如下:
     这些氧化体系对TCE的去除效率排序是:菱铁矿双氧化体系(9.65mmol/L/87%)>磁铁矿双氧化体系(6.66 mmol/L或60%)>菱铁矿单氧化体系(4.2mmol/L/38%)>赤铁矿单氧化体系(4.10 mmol/L/37%)>磁铁矿单氧化体系(3.85 mmol/L/34%)>赤铁矿单氧化体系(3.19mmol/L/29%)。菱铁矿、磁铁矿、赤铁矿单氧化体系中TCE释放氯离子的量分别是7.65、6.33、3.98 mmol/L,菱铁矿、磁铁矿、赤铁矿双氧化体系释放的氯离子的量分别是20.35、11.45、8.75mmol/L。
     3种铁矿石对过氧化氢分解催化作用最强的是菱铁矿,然后是磁铁矿,最弱的是赤铁矿。这与铁矿石中二价铁含量、比表面积有一定关系,但更重要的是,与铁矿石在溶液中的二价铁溶出的量有关。二价铁溶出的量越高,催化过氧化氢分解的能力越强。
     这些氧化体系对TCE去除的机理可概括为:过氧化氢在二价铁的催化下产生羟基自由基,在三价铁的催化下产生过氧化氢自由基(H02·)、超氧自由基阴离子(02·)和单氧自由基阴离子(O·-)。强氧化性的羟基自由基对TCE双键进行加成反应,还原性的超氧自由基和单氧自由基对TCE分子的氯进行亲核取代反应,使TCE最终转化成二氧化碳和水,并释放出氯离子。
     应用过氧化氢、过硫酸钠对含有微量铁的天然含水介质中的TCE去除,发现介质中的微量铁催化过氧化氢或过硫酸钠或它们的混合物降解TCE的量有限。当外加菱铁矿后,显著提高了双氧化剂降解TCE的能力。在这个体系中,提高过硫酸钠的浓度,对提高TCE的去除没有作用,但提高过氧化氢的浓度,可以显著提高TCE的去除量。当过氧化氢的浓度由1%提高到10%,体系的TCE下降到0.62 mmol/L(初始浓度是11.15 mmol/L),去除率达到94%。在此,虽然过氧化氢的浓度提高了一个数量级,但是体系中温度增加不超过2度,pH值的变化较小,表明了该体系的温度、pH变化对地下水中生物的影响比较温和。因此,菱铁矿双氧化体系对于原位修复被TCE污染的土壤或地下水表现出了很大的潜力。
Trichloroethylene (TCE) has a large number of applications in the dry cleaning of clothing, off oil for electronic components and metal parts, solvent extraction for purifing pharmaceutical and other fields. TCE has the potential carcinogenic, teratogenic, mutagenic toxicity. It migrated to the aquifer from the surface, usually exists as dense non-aqueous phase liquid (DNAPL), slow continuously dissolves in the groundwater, threatening the safety of drinking water of groundwater.
     In situ chemical oxidation (In situ chemical oxidation, ISCO) is a technology that removing pollutants by pouring oxidants into the contaminated soil and groundwater. Hydrogen peroxide mixed with ferrous ion constructing of Fenton's reagent generates hydroxyl radicals (HO) with very strong oxidation, is one oxidantion reagent commonly used in ISCO remediation. But the Fenton reaction proceeds rapidly, of which hydrogen peroxide decompose fastly, releasing a lot of heat and gas, threatening the stability of soil structure and the safety of indigenous biology in groundwater. Sodium persulfate is another commonly used oxidant in ISCO remediation. It is relatively stable in the environment, but need heat, transition metals, UV and etc to activate and produce sulfate radicals (SO42-) with strong oxidation, and then can remove the refractory pollutants. If combine these two oxidants, they are expected to possiblely have better oxidation effects. In this paper, three kinds of naturally occurring iron minerals:siderite, magnetite, hematite were used to catalyze hydrogen peroxide, sodium persulfate, forming single- and double-oxidation systems to removing the TCE target pollutants. Research the removal efficiency and mechanism of degradation for TCE in the single-oxidant systems and the double-oxidant systems and decomposition kinetics of the oxidants in these systems. Main achievements were obtained as follows:
     The removal efficiency of TCE in these oxidation system were in the order: siderite-double-oxidant system (9.65 mmol/L/87%)> magnetite-double-oxidant system (6.66 mmol/L or 60%)> siderite-single-oxidant system (4.2 mmol/L/38%)> hematite-single-oxidant system (4.10 mmol/L/37%)> magnetite-single-oxidant system (3.85 mmol/L/34%)> hematite-single-oxidant system (3.19 mmol/L/29%). The amount of chloride ions released from TCE in the three siderite-, magnetite-, hematite-single-oxidant systems were 7.65,6.33,3.98 mmol/L, respectively; the amount of chloride ions released in the siderite-, magnetite-, hematite-double oxidation system were 20.35,11.45,8.75 mmol/L.
     The strongest catalytic role on the decomposition of hydrogen peroxide in the three kinds of iron mineral was paid by using siderite, and then the magnetite, hematite the weakest. This is result of bivalent iron content in the iron minerals and the specific surface area, but more important, is the amount of dissolved ferrous irons in solution. The higher amount of divalent iron ions of iron minerals dissove, the stronger catalytic abilities pay on the decompositon of hydrogen peroxide.
     The mechanism of degradating TCE in these systems can be summarized as follows: hydrogen peroxide catalyzed by ferrous iron. When hydrogen peroxide catalyzed by trivalent iron produces hydroxyl radicals (HO2·), perhydroxyl radicals, superoxide radical anion (O2·) and single oxygen radicals anion (O·). The Hydroxyl radicals having strong oxidation addition reacted with the double bond of TCE. Superoxide radicals and single oxygen free radicals with reduction replaced chlorine of TCE molecule nucleophilic by substitution reaction. Finally, TCE changed into carbon dioxide and water, and releasing chloride ions.
     Applications of hydrogen peroxide, sodium persulfate to remove TCE in natural aqueous medium contained trace iron. It was found that the trace iron in the medium catalyzed hydrogen peroxide or sodium persulfate or mixture of them degradated limited TCE. When extra siderite added, degradation of TCE was significantly improved by using the siderite-double-oxidant system. In this system, increased the concentration of sodium persulfate, had no effect on increasing removal TCE, but increased the concentration of hydrogen peroxide, could significantly increase the amount of removal TCE. When the concentration of hydrogen peroxide increased from 1%to 10%, TCE in the system decreased to 0.62 mmol/L (initiate concentration 11.15 mmol/L), obtained the removal rate of 94%for TCE. Here, although the concentration of hydrogen peroxide was enhanced by an order of magnitude, the temperature of the system did not exceed 2 degrees higher than the compared sample, pH values changed little, indicating that change of temperature and pH value in the system has relatively mild impact on biotechnology in groundwater. Therefore, siderite-double-oxidation system has shown a great potential for in-situ remediation of TCE contamination in groundwater.
引文
Ahmad, M., Teel, A. L., Watts, R. J.,2010. Persulfate activation by subsurface minerals. Journal of Contaminant Hydrology.115,34-45.
    ASTDR, Biannual Report to Congress:October 17,1986-September 30. Agency for Toxic Substances and Disease Registry, US public Health Service, Atlanta. GA.,,1988
    Barb W. G., B. J. H., George P. & Hargrave K. R.,1949. Reactions of ferrous and ferric Ions with hydrogen peroxide. Nature.163,692-694
    Barreiro, J. C., Capelato, M. D., Martin-Neto, L., Hansen, H. C. B.,2007. Oxidative decomposition of atrazine by a Fenton-like reaction in a H2O2/ferrihydrite system. Water Research.41,55-62.
    Bissey, L. L., Smith, J. L., Watts, R. J.,2006. Soil organic matter-hydrogen peroxide dynamics in the treatment of contaminated soils and groundwater using catalyzed H2O2 propagations (modified Fenton's reagent). Water Research.40,2477-2484.
    Block P.A., Brown R.A., Robinson D., Novel activation technologies for sodium persulfate in situ chemical oxidation. Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds,2004.
    Bruning, T., Bolt, H. M.,2000. Renal toxicity and carcinogenicity of trichloroethylene:Key results, mechanisms, and controversies. Critical Reviews in Toxicology.30,253-285.
    Buxton G. V., Clive L., Greenstock, W., Helman P., Ross A. B.,1988. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (.OH/O.) in aqueous solution. J. Phys. Chem. Ref.17.
    Castro C. S., Oliveira L. A., Guerreiro M.C.,2009. Effect of hydrogen treatment on the catalytic activity of iron oxide based materials dispersed over activated carbon:investigations toward hydrogen peroxide decomposition. Catal.Lett.133,41-48.
    Charles D., Hunt, J. R., Ground-Water Quality and its Relation to Land Use on Oahu, Hawaii,2000-01. In: Department of the Interior U.S. Geological Survey Water-Resources Investigations Report 03-4305., (Ed.),2000, pp.67.
    Chawla, O. P., Fessenden, R. W.,1975. Electron spin resonance and pulse radiolysis studies of some reactions of peroxysulfate (SO4.1,2). The Journal of Physical Chemistry.79,2693-2700.
    Chou, S., Huang, C.,1999. Application of a supported iron oxyhydroxide catalyst in oxidation of benzoic acid by hydrogen peroxide. Chemosphere.38,2719-2731.
    Chowdhury, P., Viraraghavan, T.,2009. Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes-A review. Science of the Total Environment.407, 2474-2492.
    Ciotti, C., Baciocchi, R., Tuhkanen, T.,2009. Influence of the operating conditions on highly oxidative radicals generation in Fenton's systems. Journal of Hazardous Materials.161,402-408.
    Costa, R. C. C., Lelis, M. F. F., Oliveira, L. C. A., Fabris, J. D., Ardisson, J. D., Rios, R., Silva, C. N., Lago, R. M.,2006. Novel active heterogeneous Fenton system based on Fe3-xMxO4 (Fe, Co, Mn, Ni): The role of M2+ species on the reactivity towards H2O2 reactions. Journal of Hazardous Materials. 129,171-178.
    Couttenye R A, Huang K C, Hoag G E, L., S. S., Evidence of sulfate free radical (SO4-)formation under heat-assisted persulfate. Proceedings of the 19th Petroleum Hydrocarbons and Organic Chemicals in Ground Water:Prevention, Assessment, and Remediation, Atlanta, GA,2002, pp.345-350.
    Crimi, M. L., Siegrist, R. L.,2005. Factors affecting effectiveness and efficiency of DNAPL destruction using potassium permanganate and catalyzed hydrogen peroxide. Journal of Environmental Engineering-Asce.131,1724-1732.
    Dalla Villa, R., Nogueira, R. F. P.,2006. Oxidation of p,p'-DDT and p,p'-DDE in highly and long-term contaminated soil using Fenton reaction in a slurry system. Science of the Total Environment.371, 11-18.
    Dieckmann, R.,1982. Defects and Cation Diffusion in Magnetite (Iv)-Nonstoichiometry and Point-Defect Structure of Magnetite Fe-3-Delta-O-4. Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics.86,112-118.
    Ferrari M.J.,2002. Occurrence and distribution of selected contaminants in public drinking-water supplies in the surficial aquifer in Delaware. U.S. GEOLOGICAL SURVEY Open-File Report 01-327.70.
    Furman, O. S., Teel, A. L., Watts, R. J.,2010. Mechanism of Base Activation of Persulfate. Environmental Science & Technology.44,6423-6428.
    Gou, X. L., Wang, G. X., Park, J., Liu, H., Yang, J.,2008. Monodisperse hematite porous nanospheres: synthesis, characterization, and applications for gas sensors. Nanotechnology.19.
    Gregor, C., Hermanek, M., Jancik, D., Pechousek, J., Filip, J., Hrbac, J., Zboril, R.,2010. The Effect of Surface Area and Crystal Structure on the Catalytic Efficiency of Iron(III) Oxide Nanoparticles in Hydrogen Peroxide Decomposition. European Journal of Inorganic Chemistry.2343-2351.
    Gupta, S. S., Gupta, Y. K.,1981. Hydrogen ion dependence of the oxidation of iron(II) with peroxydisulfate in acid perchlorate solutions. Inorganic Chemistry.20,454-457.
    Haber F., Weiss J., The Catalytic Decomposition of Hydrogen Peroxide by Iron Salts
    In:Pope W., (Ed.), Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences London 1934.
    Hardin, B. D., Kelman, B. J., Brent, R. L.,2005. Trichloroethylene and dichloroethylene:A critical review of teratogenicity. Birth Defects Research Part a-Clinical and Molecular Teratology.73,931-955.
    Hermanek, M., Hermankova, P., Pechousek, J.,2010. Quasi-isothermal decomposition:a way to nanocrystalline mesoporous-like Fe2O3 catalyst for rapid heterogeneous decomposition of hydrogen peroxide. Journal of Materials Chemistry.20,3709-3715.
    Hermanek, M., Zboril, R., Medrik, N., Pechousek, J., Gregor, C.,2007. Catalytic efficiency of iron(III) oxides in decomposition of hydrogen peroxide:Competition between the surface area and crystallinity of nanoparticles. Journal of the American Chemical Society.129,10929-10936.
    Hirata, T., Nakasugi, O., Yoshioka, M., Sumi, K.,1992. Groundwater Pollution by Volatile Organochlorines in Japan and Related Phenomena in the Subsurface Environment. Water Science and Technology.25, 9-16.
    Huang, K. C., Couttenye, R. A., Hoag, G. E.,2002. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere.49,413-420.
    Huling, S. G., Arnold, R. G., Sierka, R. A., Miller, M. R.,1998. Measurement of Hydroxyl Radical Activity in a Soil Slurry Using the Spin Trap a-(4-Pyridyl-1-oxide)-N-tert-butylnitrone. Environmental Science & Technology.32,3436-3441.
    Jack Riggenbach P E, Brown R. A, J., H., Catalyzzed persulfate remediation of chlorinated and recalcitrant compounds in soil.2009.
    Jho, E. H., Singhal, N., Turner, S.,2008. Degradation of hexachloroethane by Fenton's reagents. Water Science and Technology.58,2211-2214.
    Johnes, P. J., Heathwaite, A. L.,1992. A Procedure for the Simultaneous Determination of Total Nitrogen and Total Phosphorus in Fresh-Water Samples Using Persulfate Microwave Digestion. Water Research. 26,1281-1287.
    Jordan, A., Scholz, R., Wust, P., Schirra, H., Schiestel, T., Schmidt, H., Felix, R.,1999. Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. Journal of Magnetism and Magnetic Materials.194, 185-196.
    Jung, Y. S., Lim, W. T., Park, J. Y., Kim, Y. H.,2009. Effect of pH on Fenton and Fenton-like oxidation. Environmental Technology.30,183-190.
    Khan, E., Huang, C. P., Reed, B. E.,2004. Hazardous waste treatment technologies. Water Environment Research.76,1872-1966.
    Kone, T., Hanna, K., Abdelmoula, M., Ruby, C., Carteret, C.,2009. Reductive transformation and mineralization of an azo dye by hydroxysulphate green rust preceding oxidation using H2O2 at neutral pH. Chemosphere.75,212-219.
    Kong H K., Watts R J., Choi J H.,1998. Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide. Chemosphere.37(8),1473-1482.
    Kurniawan, T. A., Lo, W. H., Chan, G. Y. S.,2006. Radicals-catalyzed oxidation reactions for degradation of recalcitrant compounds from landfill leachate. Chemical Engineering Journal.125,35-57.
    Kwan W.P., Voelker B.M.,2003. Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environ. Sci. Technol.37,1150-1158.
    Kwan, W. P., Voelker, B. M.,2003. Rates of hydroxyl radical generation and organic compound oxidation in mineral catalyzed Fenton-like systems. Environmental Science & Technology.37,1150-1158.
    Lewis, T. E., Wolfinger, T. F., Barta, M. L.,2004. The ecological effects of trichloroacetic acid in the environment. Environment International.30,1119-1150.
    Liang C.J., Chemical oxidation of chlorinated solvents by sodium persulfate in aqueous and soil slurry systems Mechanical Engineering Interdisciplinary Program Vol. Doctor. Civil and Environmental Engineering University of Massachusetts Lowell, Tai Wan,2002, pp.117.
    Liang C.J., Su H. W.,2009. Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Industrial & Engineering Chemistry Research.48,5558-5562.
    Liang, C. J., Bruell, C. J., Marley, M. C, Sperry, K. L.,2003. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil & Sediment Contamination.12,207-228.
    Liang, C. J., Bruell, C. J., Marley, M. C., Sperry, K. L.,2004a. Persulfate oxidation for in situ remediation of TCE. Ⅰ. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere.55,1213-1223.
    Liang, C. J., Bruell, C. J., Marley, M. C., Sperry, K. L.,2004b. Persulfate oxidation for in situ remediation of TCE. Ⅱ. Activated by chelated ferrous ion. Chemosphere.55,1225-1233.
    Liang, C. J., Chen, Y. J.,2010. Evaluation of activated carbon for remediating benzene contamination: Adsorption and oxidative regeneration. Journal of Hazardous Materials.182,544-551.
    Liang, C. J., Huang, C. F., Chen, Y. J.,2008. Potential for activated persulfate degradation of BTEX contamination. Water Research.42,4091-4100.
    Liang, C. J., Lai, M. C.,2008. Trichloroethylene degradation by zero valent iron activated persulfate oxidation. Environmental Engineering Science.25,1071-1077.
    Liang, C. J., Lee, I. L.,2008. In situ iron activated persulfate oxidative fluid sparging treatment of TCE contamination-A proof of concept study. Journal of Contaminant Hydrology.100,91-100.
    Liang, C. J., Liang, C. P., Chen, C. C.,2009. pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene. Journal of Contaminant Hydrology.106,173-182.
    Liang, C. J., Wang, Z. S., Bruell, C. J.,2007a. Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere.66,106-113.
    Liang, C. J., Wang, Z. S., Bruell, C. J.,2007b. Influence of pH on persulfate oxidation of TCE at ambient temperatures Chemosphere 66,106-113.
    Liang, C. J., Wang, Z. S., Mohanty, N.,2006. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 degrees C. Science of the Total Environment.370,271-277.
    Lin S.S., Gurol M.D.,1998. Catalytic decomposition of hydrogen peroxide on iron oxide:kinetics, mechanism, and implications. Environ. Sci.Technol.32,1417-1423.
    Lindsey M E, Tarr M A.,2000. Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide. Chemosphere.41,491-417.
    Lindsey Michele E, Tarr Matthew A,2000. Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide. Chemosphere.41,491-417.
    Lipczynska-Kochany, E., Kochany, J.,2008. Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH. Chemosphere.73,745-750.
    Liu, Q., Guo, H. M., Shan, Y.,2010. Adsorption of fluoride on synthetic siderite from aqueous solution. Journal of Fluorine Chemistry.131,635-641.
    Lock, E. A., Reed, C. J.,2006. Trichloroethylene:Mechanisms of renal toxicity and renal cancer and relevance to risk assessment. Toxicological Sciences.91,313-331.
    Matta, R., Hanna, K., Chiron, S.,2007. Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals. Science of the Total Environment.385,242-251.
    Matta, R., Hanna, K., Kone, T., Chiron, S.,2008. Oxidation of 2,4,6-trinitrotoluene in the presence of different iron-bearing minerals at neutral pH. Chemical Engineering Journal.144,453-458.
    Matthiesen, H., Hilbert, L. R., Gregory, D. J.,2003. Siderite as a corrosion product on archaeological iron from a waterlogged environment. Studies in Conservation.48,183-194.
    Mecozzi, R., Di Palma, L., De Filippis, P.,2008. Effect of modified Fenton treatment on the thermal behavior of contaminated harbor sediments. Chemosphere.71,843-852.
    Mecozzi, R., Di Palma, L., Merli, C.,2006. Experimental in situ chemical peroxidation of atrazine in contaminated soil. Chemosphere.62,1481-1489.
    Merz, J. H., Waters, W. A.,1949. The oxidation of aromatic compounds by means of the free hydroxyl radical. Journal of the Chemical Society (Resumed).511,2427-2433.
    Michael O. Rivett., Stanley Feenstra., Cherry., J. A.,2001. A controlled field experiment on groundwater contamination by a multicomponent DNAPL:creation of the emplaced-source and overview of dissolved plume development. Journal of Contaminant Hydrology 49,111-149.
    Miller, C. M., Valentine, R. L.,1999. Mechanistic studies of surface catalyzed H2O2 decomposition and contaminant degradation in the presence of sand. Water Research.33,2805-2816.
    Mohamed M., Cohen H., Meyerstein D., Hickmand L., BAKAC A., Espenson J. H.,1988. Reactions of low-valent transition-metal complexes with hydrogen peroxide. Are they Fenton-like or not? I:The case of Cuaq+ and Craq2+. Journal of the American Chemical Society 110,4293-4297
    Morales R. J., Carrillo C. M, Jayanthi N, Cruz J, Pandiyan T,2009. Theoretical and experimental interpretations of phenol oxidation by the hydroxyl radical. Journal of Molecular Structure-Theochem.910,74-79.
    Moran, M. J., Lapham, W. W., Rowe, B. L., Zogorski, J. S.,2004. Volatile organic compounds in ground water from rural private wells,1986 to 1999. Journal of the American Water Resources Association. 40,1141-1157.
    Moura, F. C. C., Araujo, M. H., Costa, R. C. C., Fabris, J. D., Ardisson, J. D., Macedo, W. A. A., Lago, R. M., 2005. Efficient use of Fe metal as an electron transfer agent in a heterogeneous Fenton system based on FeO/Fe3O4 composites. Chemosphere.60,1118-1123.
    Moura, F. C. C., Araujo, M. H., Dalmazio, I., Alves, T. M. A., Santos, L. S., Eberlin, M. N., Augusti, R., Lago, R. M.,2006. Investigation of reaction mechanisms by electrospray ionization mass spectrometry: characterization of intermediates in the degradation of phenol by a novel iron/magnetite/hydrogen peroxide heterogeneous oxidation system. Rapid Communications in Mass Spectrometry.20, 1859-1863.
    Pankow J.F., Cherry J.A.,1996. Dense chlorinated solvents & other DNAPLs in groundwater:history, behavior and remediation. Waterloo Press.
    Pennington, D. E., Haim, A.,1968. Stoichiometry and mechanism of the chromium(II)-peroxydisulfate reaction. Journal of the American Chemical Society.90,3700-3704.
    Prucek, R., Hermanek, M., Zboril, R.,2009. An effect of iron(III) oxides crystallinity on their catalytic efficiency and applicability in phenol degradation-A competition between homogeneous and heterogeneous catalysis. Applied Catalysis a-General.366,325-332.
    Rakshit, S., Matocha, C. J., Coyne, M. S.,2008. Nitrite reduction by siderite. Soil Science Society of America Journal.72,1070-1077.
    Rivett, M. O., Lerner, D. N., Lloyd, J. W., Clark, L.,1990. Organic Contamination of the Birmingham Aquifer, Uk. Journal of Hydrology.113,307-323.
    Romero, A., Santos, A., Vicente, F., Rodriguez, S., Lafuente, A. L.,2009. In situ oxidation remediation technologies:Kinetic of hydrogen peroxide decomposition on soil organic matter. Journal of Hazardous Materials.170,627-632.
    Salah Jellali., Hocine Benremita., Paul Muntzer., Olivier Razakarisoa., Schafer, G., 2003. A large-scale experiment on mass transfer of trichloroethylene from the unsaturated zone of a sandy aquifer to its interfaces. Journal of Contaminant Hydrology 60,31-53.
    Sanchez-Sanchez, C. M., Exposito, E., Casado, J., Montiel, V,2007. Goethite as a more effective iron dosage source for mineralization of organic pollutants by electro-Fenton process. Electrochemistry Communications.9,19-24.
    Seng, J. E., Agrawal, N., Horsley, E. T. M., Leakey, T. I., Scherer, E. M., Xia, S., Allaben, W. T., Leakey, J. E. A.,2003. Toxicokinetics of chloral hydrate in ad libitum-fed, dietary-controlled, and calorically restricted male B6C3F1 mice following short-term exposure. Toxicology and Applied Pharmacology. 193,281-292.
    Seol, Y., Zhang, H., Schwartz, F. W.,2003. A review of in situ chemical oxidation and heterogeneity. Environmental & Engineering Geoscience.9,37-49.
    Shelton J.L., Low-level volatile organic compounds in active public wells as ground water tracers in the Los Angeles Physiographic Basin, California,2000.,. In:Department of the Interior U.S. Geological Survey Water-Resources Investigations Report 01-4188., (Ed.),2001, pp.35.
    Siegrist, R. L., Urynowicz, M. A., Crimi, M. L., Lowe, K. S.,2002. Genesis and effects of particles produced during in situ chemical oxidation using permanganate. Journal of Environmental Engineering-Asce. 128,1068-1079.
    Smith, B. A., Teel, A. L., Watts, R. J.,2006. Mechanism for the destruction of carbon tetrachloride and chloroform DNAPLs by modified Fenton's reagent. Journal of Contaminant Hydrology.85, 229-246.
    Smith, B. A., Teel, A. L., Watts, R. J.,2009. Destruction of trichloroethylene and perchloroethylene DNAPLs by catalyzed H2O2 propagations. Journal of Environmental Engineering-Asce.135,535-543.
    Tabrez, S., Ahmad, M.,2009. Toxicity, Biomarkers, Genotoxicity, and Carcinogenicity of Trichloroethylene and Its Metabolites:A Review. Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews.27,178-196.
    Teel, A. L., Finn, D. D., Schmidt, J. T., Cutler, L. M., Watts, R. J.,2007. Rates of trace mineral-catalysed decomposition of hydrogen peroxide. Journal of Environmental Engineering-Asce.133,853-858.
    Teel, A. L., Warberg, C. R., Atkinson, D. A., Watts, R. J.,2001. Comparison of mineral and soluble iron Fenton's catalysts for the treatment of trichloroethylene. Water Research.35,977-984.
    Trapido, M., Kulik, N., Goi, A., Veressinina, Y., Munter, R.,2009. Fenton treatment efficacy for the purification of different kinds of wastewater. Water Science and Technology.60,1795-1801.
    Tsai T. T., Kao C. M., Surampalli R Y., Weng C. H., Liang S. H.,2010. Treatment of TCE-contaminated groundwater using Fenton-Like oxidation activated with basic oxygen furnace slag. Journal of Environmental Engineering-Asce.136,288-294.
    Tsitonaki, A., Smets, B. F., Bjerg, P. L.,2008. Effects of heat-activated persulfate oxidation on soil microorganisms. Water Research.42,1013-1022.
    txtdoc2000,2010a. http://baike.baidu.com/view/23079.htm.
    txtdoc2000, http://baike.baidu.com/view/23118.htm.2010b.
    txtdoc2000, http://baike.baidu.com/view/23142.htm.2010c.
    Tyre, B. W., Watts, R. J., Miller, G. C.,1991. Treatment of 4 Biorefractory Contaminants in Soils Using Catalyzed Hydrogen-Peroxide. Journal of Environmental Quality.20,832-838.
    Walling C.,1975. Fenton's reagent revisited. Accounts of Chemical Research 8,125-131.
    Watson, R. E., Jacobson, C. F., Williams, A. L., Howard, W. B., DeSesso, J. M.,2006. Trichloroethylene-contarninated drinking water and congenital heart defects:A critical analysis of the literature. Reproductive Toxicology.21,117-147.
    Watts R J., Dilly S.E.,1996. Evaluation of iron catalysts for the Fenton-like remediation of diesel-contaminated soils. Journal of Hazardous Materials.51,209-224.
    Watts, R. J., Finn, D. D., Cutler, L. M., Schmidt, J. T., Teel, A. L.,2007. Enhanced stability of hydrogen peroxide in the presence of subsurface solids. Journal of Contaminant Hydrology.91,312-326.
    Watts, R. J., Foget, M. K., Kong, S. H., Teel, A. L.,1999. Hydrogen peroxide decomposition in model subsurface systems. Journal of Hazardous Materials.69(2),229-243.
    Watts, R. J., Howsawkeng, J., Tee, A. L.,2005a. Destruction of a carbon tetrachloride dense nonaqueous phase liquid by modified Fenton's reagent. J. Environ. Eng.-ASCE.131,1114-1119.
    Watts, R. J., Howsawkeng, J., Tee, A. L.,2005b. Destruction of a carbon tetrachloride dense nonaqueous phase liquid by modified Fenton's reagent. Journal of Environmental Engineering-Asce.131, 1114-1119.
    Watts, R. J., Jones, A. P., Chen, P. H., Kenny, A.,1997. Mineral-catalyzed Fenton-like oxidation of sorbed chlorobenzenes. Water Environment Research.69,269-275.
    Watts, R. J., Sarasa, J., Loge, F. J., Teel, A. L.,2005c. Oxidative and reductive pathways in manganese-catalyzed Fenton's reactions. Journal of Environmental Engineering-Asce.131,158-164.
    Watts, R. J., Teel, A. L.,2005. Chemistry of modified Fenton's reagent (catalyzed H2O2 propagations-CHP) for in situ soil and groundwater remediation. Journal of Environmental Engineering-Asce.131, 612-622.
    Watts, R. J., Udell, M. D., Monsen, R. M.,1993. Use of Iron Minerals in Optimizing the Peroxide Treatment of Contaminated Soils. Water Environment Research.65,839-844.
    Watts, R. J., Udell, M. D., Rauch, P. A., Leung, S. W.,1990. Treatment of Pentachlorophenol-Contaminated Soils Using Fentons Reagent. Hazardous Waste & Hazardous Materials.7,335-345.
    Watts, R. J., Washington, D., Howsawkeng, J., Loge, F. J., Teel, A. L.,2003. Comparative toxicity of hydrogen peroxide, hydroxyl radicals, and superoxide anion to Escherichia coli. Advances in Environmental Research.7,961-968.
    Weiying Huang, Fei Liu, Honghan Chen, Erping Bi, Tingting Li,2010. Removal of trichloroethylene in groundwater using heterogeneous modified Fenton chemical oxidation technology. Disaster Advances.3,293-296.
    Xue, X. F., Hanna, K., Deng, N. S.,2009a. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (Ⅱ, Ⅲ) oxide. Journal of Hazardous Materials.166,407-414.
    Xue, X. F., Hanna, K., Despas, C., Wu, F., Deng, N. S.,2009b. Effect of chelating agent on the oxidation rate of PCP in the magnetite/H2O2 system at neutral pH. Journal of Molecular Catalysis a-Chemical. 311,29-35.
    Yeh, C. K. J., Hsu, C. Y., Chiu, C. H., Huang, K. L.,2008. Reaction efficiencies and rate constants for the goethite-catalyzed Fenton-like reaction of NAPL-form aromatic hydrocarbons and chloroethylenes. Journal of Hazardous Materials.151,562-569.
    Yeh, C. K. J., Wu, H. M., Chen, T. C.,2003. Chemical oxidation of chlorinated non-aqueous phase liquid by hydrogen peroxide in natural sand systems. Journal of Hazardous Materials.96,29-51.
    Zhang, Y, Kohler, N., Zhang, M. Q.,2002. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials.23,1553-1561.
    大连理工大学无机化学教研室,2000.无机化学(下册).高等教育出版社.
    王晓玲,王好礼.,1998.耻骨上前列腺摘除手术中应用3%过氧化氢止血86例.河泽医专学报.10(4),125-126.
    史敬华,刘菲,李烨,崔学慧,2006.不同基质共代谢降解地下水中四氯乙烯的研究.地学前缘.1(3),7-10.
    何江涛,李烨,刘石,陈鸿汉,2005.浅层地下水氯代烃污染的天然生物降解.环境科学.26(2),121-125.
    宋雷明,大庆齐家水源地井管腐蚀机理与防治方法研究.Vol.硕十.西安理工大学,西安,2002,pp.92.
    周承藩,丁锐,沈彤,涂登云,朱启星.,2005.三种氯代烃对人角质形成细胞的细胞毒性作用.中国工业医学杂志.18,76-79.
    周烑秀,赵西西,郑重,藩永信,菱铁矿的磁性研究与应用.中国地球物理学会第十七届年会,中国云 南昆明,2001.
    胡存丽,三氯乙烯对HepG2细胞的遗传毒性及氧化应激机制的研究.劳动卫生与环境卫生,Vol.硕十.大连医科大学,大连,2008,pp.41.
    胡长诚,2005.过氧化氢在环境保护方面的应用.无机盐工业.34(25),50-55.
    徐寿昌,2001.有机化学.高等教育出版社,北京.
    高霏,刘菲,陈鸿汉.,2008.三氯乙烯污染土壤和地下水污染源区的修复研究进展.地球科学进展.23(8),821-829.
    崔英杰,杨世迎,王萍,贾永刚.,2008. Fenton原位化学氧化法修复有机污染土壤和地下水研究.化工进展.20(7/8),1196-1201.
    曹雪莲,惠泉,刘均洪,2008.转基因植物修复有机污染物的进展.环境保护科学.34(3),71-74.
    潘勇军,谢洪泉,谭晓明,等,2003.碘量滴定法测定过氧化氢溶液浓度的改进.理化检验-化学分册.39(7)204-205.
    穆光照,1985.自由基反应.高等教育出版社,北京.
    刘明柱,陈鸿汉,胡丽琴,孙伟,2006.生物降解作用下地下水中TCE, PCE迁移转化的数值模拟研究.地学前缘.13,155-159.
    刘菲,钟佐燊.,2001.地下水中氯代烃的格栅水处理技术.地学前缘.8(2),309-314.
    吴少林,谢四才,杨莉,戴玉芬,钟玉凤,2006.几种光催化反应体系中羟基自由基表观生成率的实验研究.感光科学与光化学.02,102-109.
    国家环境保护总局,2002.水和废水监测分析方法.中国环境科学出版社,北京.
    张令戈,2008. Fenton法处理难降解有机废水的应用与研究进展.矿治.17,96-101.
    张昊,任发政.,2009.羟基和超氧自由基的检测研究进展.光潜学与光谱分析.29,1093-1099.
    张达政,陈鸿汉,李海明,邹胜章,刘立才.,2002.浅层地下水卤代烃污染初步研究.中国地质.29,326-329.
    赵立谦,似芬顿试剂处理TCE污染源区的方法研究.水资源与环境学院,Vol.硕士.中国地质大学(北京),北京,2009,pp.56.
    钟逸菲,熊俊。,2008.东莞市2002-2007三氯乙烯职业损害分析.中国职业医学.35,271-274.
    陈四海,龙祺,张坤林,蔡志伟,凌太平.,2003.高纯过氧化氢的生产及应用.化工进展.22(10),1122-1125.
    陈翠柏,杨琦,沈照理,2003.地下水三氯乙烯(TCE)生物修复进展.华东地质学院学报.26(1),10-37.
    鲁安怀,2005.矿物法——环境污染治理的第四类方法.地学前缘.12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700