直驱永磁同步风电机组并网变换器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风力发电已经成为解决世界能源短缺的重要途径,越来越受到世界各国的重视。在当今两种主流的风力发电机型中,直驱永磁同步风力发电机组具有结构较简单,发电效率较高,以及运行可靠性好等优点,已成为现代大型变速恒频风电机组主要的发展方向之一。本论文主要针对直驱永磁同步风电机组并网变换器的若干关键技术进行了深入地研究。论文所取得的主要成果如下:
     ①从系统的角度对直驱永磁同步风电机组进行了数学建模。比较了几种最大风能跟踪控制的典型算法,结合永磁同步风电机组的功率—转速特性,基于功率信号反馈控制,给出了一种适用于该型机组的最大风能跟踪控制算法。建立了一台2MW直驱永磁同步风电机组的系统仿真模型,仿真验证了所建系统仿真模型的合理性和最大风能跟踪控制算法的正确性。
     ②详细分析了采用传统控制策略时全功率并网变换器直流侧电压波动机理,提出了电网侧变换器和电机侧变换器的协调控制策略实现电网电压正常情况下直流侧电压的稳定。该控制策略将永磁同步发电机输出有功功率信息纳入电网侧变换器的控制当中,在发电机运行状态发生改变的时候及时调整网侧有功电流分量,从而保证输入至电网的有功功率能够及时跟踪永磁同步发电机输出有功功率的变化。通过仿真及实验,证明了所提控制策略的正确性和有效性。
     ③为优化额定风速以上直驱永磁同步风电机组的功率输出,提出利用机组巨大的转动惯量,同时协调永磁同步发电机的功率控制和变桨距控制,平抑直驱风电机组的功率输出波动。结合低于额定风速时基于转速反馈的最大风能跟踪控制,进一步提出了全风况下直驱永磁同步风电机组的双模功率控制策略。仿真对比结果表明,采用提出的双模功率控制策略,直驱永磁同步风电机组的有功功率输出更为平稳。
     ④分析了电机参数误差对矢量控制系统的影响。为有利工程实际应用,提出一种简单有效的永磁同步电机参数在线辨识算法。该算法利用因参数误差导致的补偿电压项—电流环PI调节器的输出,迅速、准确地确定出待辨识参数值。仿真和实验研究结果表明,控制系统稳定后,电流环PI调节器输出为零,大大减轻了电流环PI调节器的负担,有利于提高兆瓦级永磁同步发电机的控制性能。
     ⑤建立了不平衡电网电压条件下的电网侧变换器模型,分析了并网电抗器上功率波动对电网侧变换器不对称控制策略的影响。提出了一种增强的直流侧电压控制策略,抑制小值电网电压不平衡时直流侧电压的2倍频波动。网侧电流指令的求解避免了复杂的矩阵变换,计算相对简单。仿真结果表明:相对于采用传统平衡控制策略的方案而言,增强的直流侧电压控制策略能够有效的抑制直流侧电压的2倍频波动,网侧有功功率波动幅度也相对减小;同时降低了注入至电网的电流总谐波含量。
     ⑥以电网不对称故障为研究重点,计及并网电抗器上的功率波动,并考虑电网电流的限制,按照网侧有功功率无2倍频波动为控制目标,提出了采用直流侧电压弱控制的电网侧变换器的改进控制策略。在此基础上,进一步提出了适用于直驱永磁同步风电机组的故障穿越运行控制策略。该故障穿越控制策略无需借助额外的硬件保护电路,根据电网故障导致的电网电压跌落深度,同步降低永磁同步发电机输出的有功功率,实现并网变换器两侧功率的基本平衡。所提故障穿越运行控制策略,能够适应不同的电网故障类型,并且在故障中均能对电网提供一定的无功支持。仿真结果表明,该控制策略显著增强了直驱永磁同步风电机组的故障穿越运行能力。
Wind power has become an important way to solve the world's energy shortage.Many countries pay more and more attentions to wind power generation. In the twomainstream wind turbine generation systems,the direct-driven permanent magnetsynchronous generator(PMSG) system has features of simpler structure, highergeneration efficiency and good operation reliability. The direct-driven PMSG systemhas become one primary technology direction of modern large variable-speedconstant-frequency(VSCF) wind turbine generation systems. Therefore, several keytechnologies of grid-connected converter for direct-driven PMSG system were deeplystudied in this dissertation. The main achievements of the research include:
     ①From the point of view of system, mathematical model of the direct-drivenPMSG system is established. Several typical algorithms of maximum power pointtracking(MPPT) are compared. Considering the power-speed characteristics, a MPPTcontrol strategy based on the power signal feedback control is proposed in thisdissertation. The simulation model of a2MW direct-driven PMSG system is established.The rationality of the model and the validity of the proposed MPPT control strategy areverified through simulation studies.
     ②Based on detailed analysis of the fluctuation mechanism for the dc-link voltageof full rated grid-connected converter, the coordinated control strategy of grid sideconverter and generator side converter is proposed to stabilize the dc-link voltage undernormal grid voltage conditions. The generator's output active power information isintegrated into the control of grid side converter. According to the change of operationstate of generator, the active component of grid current is adjusted immediately, andtherefore, the active power delivered to the grid can timely track the generator's outputactive power. Simulation and experimental results confirm the validity and effectivenessof the proposed control strategy.
     ③In order to optimize the direct-driven PMSG system's output power above therated wind speed, large inertia of this wind generator system, combined with generatorpower control and pitch control, are used to suppress the power fluctuation. When windspeed is under the rating value, rotating speed feedback control was adopted to achievethe maximum power point tracking. A dual-mode power control strategy is proposed forall the wind conditions based on the control modes mentioned above. Simulation results demonstrate that the output active power of the direct-driven PMSG system adopted theproposed dual-mode power control strategy is steadier compared to traditional controlscheme.
     ④The influence of parameter errors on vector control system is analyzed. Asimple and effective online parameter identification algorithm is proposed to suitablefor engineering application. The algorithm based on compensating voltages-the currentPI regulator outputs, estimates the parameters to be identified quickly and accurately.Simulation and experimental results demonstrate that the current PI regulator outputsbecome to zero after the system is stable. Burden of current PI regulators are greatlyreduced that it can improve the control performance of the PMSG system.
     ⑤A mathematical model of the grid side converter is established underunbalanced grid voltage conditions. Based on the model, the influence ofgrid-connected impedance on control strategy of grid side converter is analyzed. Anenhanced dc-link voltage control strategy is proposed to suppress the double supplyfrequency fluctuations in dc-link voltage. The calculation of current references for gridconverter is relatively simple and a solution to complicated matrix is avoided.Simulation results demonstrate that the double supply frequency fluctuations in thedc-link voltage can be effectively suppressed. The fluctuation amplitude of active powerand the current harmonics injected into the grid are also reduced by adopted theproposed strategy.
     ⑥Taking unbalanced grid faults as research focus, an improved control strategyfor grid side converter with dc-link voltage soft control is proposed. The improvedcontrol strategy considering grid-connected impedance and grid current restrictions,takes no double supply frequency fluctuations in the active power delivered to the gridas the object. Based on this, a fault ride through control strategy is proposed for thedirect-driven PMSG system. In the grid fault process, the generator's output activepower is reduced in proportion to retained grid voltage ensuring the roughly balance onboth ends of grid-connected converter. The proposed fault ride through control strategyis applicable to different grid fault types. A certain amount of reactive power can beinjected into the grid to support the power system. Simulation results are used tovalidate the proposed control strategy and demonstrate that fault ride through operationcapability of the direct-driven PMSG system is significantly enhanced.
引文
[1] UNEP. Renewables2011global status report[R]. Paris: United nations environmentprogramme,2011.
    [2]国家发展和改革委员会.可再生能源发展“十一五”规划[R].北京:国家发展和改革委员会,2008.
    [3]刘其辉.变速恒频风力发电系统运行与控制研究[D].杭州:浙江大学,2005.
    [4] GWEC.global wind statistics2011[R].Brussels:Global wind energy council,2012.
    [5]叶杭冶.风力发电机组的控制技术[M].第2版.北京:机械工业出版社,2007.
    [6]向大为.双馈感应风力发电机特殊运行工况下励磁控制策略的研究[D].重庆:重庆大学,2006.
    [7]姚骏.交流励磁发电机及其励磁电源的控制策略研究[D].重庆:重庆大学,2007.
    [8]胡家兵,贺益康,刘其辉.基于最佳功率给定的最大风能追踪控制策略[J].电力系统自动化,2005,29(24):32-38.
    [9] Muller S,Deicke M,De Doncker R W.Doubly fed induction generator systems for windturbines[J].Industry Applications Magazine,2002,8(3):26-33.
    [10] Jiabing Hu,Yikang He.Dynamic modeling and robust current control of wind-turbine drivenDFIG during external AC voltage dip[J].Journal of Zhejiang University:Science,2006,7(10):1757-1764.
    [11] Hee-Sang Ko,Gi-Gab Yoon,Nam-Ho Kyung,et al.Modeling and control DFIG-basedvariable-speed wind-turbine[J].Electric Power Systems Research,2008,78(11):1841-1849.
    [12] Lie Xu,Cartwright P.Direct active and reactive power control of DFIG for wind energygeneration[J].IEEE Trans. on Energy Conversion,2006,21(3):750-758.
    [13] Yazhou Lei,Mullane A,Lightbody G,et al.Modeling of the turbine with a doubly fedinduction generator for grid integration studies[J].IEEE Trans. on Energy Conversion,2006,21(1):257-264.
    [14]苑国锋,柴建云,李永东.变速恒频风力发电机组励磁变频器的研究[J].中国电机工程学报,2005,25(8):90-94.
    [15]刘其辉,贺益康,张建华.并网型交流励磁变速恒频风力发电系统控制研究[J].中国电机工程学报,2006,26(23):109-114.
    [16]张俊峰,毛承雄,陆继明,等.双馈感应发电机的直接功率控制策略[J].电力自动化设备,2006,26(4):31-35.
    [17]舒进,张保会,李鹏,等.变速恒频风电机组运行控制[J].电力系统自动化,2008,32(16):89-93.
    [18]吴胜,周理兵,黄声华,等.双馈电机交/直/交控制[J].中国电机工程学报,2005,25(19):146-151.
    [19]苑国锋,李永东,柴建云,等.1.5MW变速恒频双馈风力发电机组励磁控制系统试验研究[J].电工技术学报,2009,24(2):42-47.
    [21]邹旭东.变速恒频交流励磁双馈风力发电系统及其控制技术研究[D].武汉,华中科技大学,2005.
    [22]赵仁德.变速恒频双馈风力发电机交流励磁电源研究[D].杭州:浙江大学,2005.
    [23] Johan Ribrant,Lina Margareta Bertling.Survey of failures in wind power systems with focuson Swedish wind power plants during1997-2005[J].IEEE Trans. on Energy Conversion,2007,22(1):167-173.
    [24] E.ON Netz GmbH.Grid code regulations for high and extra high voltage[EB/OL].http:www.eon-netz.com/Ressources/downloads/ENENARHS2006eng.pdf,2006.
    [25] EIRGRID.EirGrid Grid Code Version3.3(Wind Grid Code only)[EB/OL].http://www.eirgrid.com/media/2009%2009%2014%20EirGrid%20Gird%20Code%20v3.3%20Wind%20Grid%20Code%20Only.pdf,2009.
    [26] ELKRAFT SYSTEM and ELTRA.Wind turbines connected to grids with voltages above100kV-technical regulation for the properties and regulation of wind turbines[EB/OL].http://www.energinet.dk/SiteCollectionDocuments/Engelske%20dokumenter/El/Grid%20Code%203.2.5%20Wind%20Turbines%20connected%20above%20100%20kV.pdf,2009.
    [27]国家电网公司.风电场接入电网技术规定(修订版)[Z],2009.
    [28]杨淑英.双馈型风力发电变流器及其控制[D].合肥:合肥工业大学,2007.
    [29]赵栋利,胡书举,赵斌,等.风力发电机、变流器及其低电压穿越概述[J].变频器世界,2009,(2):35-40.
    [30]王伟,孙明东,朱晓东.双馈式风力发电机低电压穿越技术分析[J].电力系统自动化,2007,31(23):84-89.
    [31] Morren J,Sjoerd W H,de Haan.Ridethrough of wind turbines with doubly-fed inductiongenerator during a voltage dip[J].IEEE Trans. on Energy Conversion,2005,20(2):435-441.
    [32] Petersson A,Lundberg S,Thiringer T.A DFIG wind-turbine ride-through system influenceon energy production[J].Wind Energy,2005,8(3):251-263.
    [33] Tan K,Islam S.Optimum control strategies in energy conversion of PMSG wind turbinesystem without mechanical sensors[J].IEEE Trans. on Energy Conversion,2004,19(2):392-399.
    [34] Spooner E,Gordon P,Bumby J R,et al.Lightweight ironless-stator PM generators fordirect-drive wind turbines[J].IEE Proc. Electric Power Applications,2005,152(1):17-26.
    [35] Polinder H,van der Pijl F F A,de Vilder G J,et al.Comparison of direct-drive and gearedgenerator concepts for wind turbines[J].IEEE Trans. on Energy Conversion,2006,21(3):725-733.
    [36] Chan T F, Lai L L. An axial-flux permanent-magnet synchronous generator for adirect-coupled wind-turbine system[J].IEEE Trans. on Energy Conversion,2007,22(1):86-94.
    [37] Brisset S,Vizireanu D,Brochet P.Design and optimization of a nine-phase axial-flux PMsynchronous generator with concentrated winding for direct-drive wind turbine[J].IEEETrans. on Industry Applications,2008,44(3):707-715.
    [38] Grabic S,Celanovic N,Katic V A.Permanent magnet synchronous generator cascade forwind turbine application[J].IEEE Trans. on Power Electronics,2008,23(3):1136-1142.
    [39] Hui Li,Zhe Chen,Polinder H.Optimization of multibrid permanent-magnet wind generatorsystems[J].IEEE Trans. on Energy Conversion,2009,24(1):82-92.
    [40] Haque M E,Negnevitsky M,Muttaqi K M.A novel control strategy for a variable-speed windturbine with a permanent-magnet synchronous generator[J]. IEEE Trans. on IndustryApplications,2010,46(1):331-339.
    [41]徐科,胡敏强,郑建勇,等.风力发电机无速度传感器网侧功率直接控制[J].电力系统自动化,2006,30(23):43-47.
    [42]徐锋,王辉,杨韬仪.兆瓦级永磁直驱风力发电机组变流技术[J].电力自动化设备,2007,27(7):57-61.
    [43]尹明,李庚银,张建成,等.直驱式永磁同步风力发电机组建模及其控制策略[J].电网技术,2007,31(15):61-65.
    [44]瞿兴鸿,廖勇,姚骏,等.永磁同步直驱风力发电系统的并网变流器设计[J].电力电子技术,2008,42(3):22-23.
    [45]姚兴佳,鲍洁秋,厉伟,等.直驱风电机组变速恒频的控制策略[J].沈阳工业大学学报,2008,30(4):399-403.
    [46]吴迪,张建文.变速直驱永磁风力发电机控制系统的研究[J].大电机技术,2006,(6):51-55.
    [47] Polinder H,Bang D,van Rooij R P J O M,et al.10MW wind turbine direct-drive generatordesign with pitch or active speed stall control[C]//Electric Machines and DrivesConference.Antalya,Turkey:IEEE,2007:1390-1395.
    [48] Ki-Chan Kim,Seung-Bin Lim,Ki-bong Jang,et al.Analysis on the direct-driven high powerpermanent magnet generator for wind turbine[C]//Proceedings of the Eighth InternationalConference on Electrical Machines and Systems.Nanjing,China:International Academicpublishers,2005:243-247.
    [49]薛玉石,韩力,李辉.直驱永磁同步风力发电机组研究现状与发展前景[J].电机与控制应用,2008,35(4):1-5.
    [50]姚卫江.欧洲风力发电的启示[J].电网技术,2008,32(增刊2):276-278.
    [51] Baroudi J A,Dinavahi V,Knight A M.A review of power converter topologies for windgenerators[C]//Electric Machines and Drives.San Antonio,USA:IEEE,2005:458-465.
    [52] Wei Li,Abbey C,Joos G.Control and performance of wind turbine generators based onpermanent magnet synchronous machines feeding a diode rectifier[C]//Power ElectronicsSpecialists Conference.Jeju,Korea:IEEE,2006:1-6.
    [53]李建林,周谦,刘剑,等.直驱式变速恒频风力发电系统变流器拓扑结构对比分析[J].电源技术应用,2007,10(6):12-15.
    [54]李杰.直驱式风力发电变流系统拓扑及控制策略研究[D].上海:上海大学,2009.
    [55]汪令祥.永磁同步直驱型全功率风机变流器及其控制[D].合肥:合肥工业大学,2011.
    [56]王硕,金新民,赵新.1.5MW永磁直驱风电并网变流器矢量控制的研究[J].电力电子技术,2011,45(11):41-43.
    [57]南永辉,罗仁俊,彭勃,等.基于矢量控制的兆瓦级永磁同步电机能量回馈系统[J].大功率变流技术,2012,(1):54-58.
    [58]黄科元,佘峰,黄守道,等.基于磁场定向的永磁同步发电机功率控制.电力科学与技术学报,2008,23(2):9-12.
    [59]陈瑶.直驱型风力发电系统全功率并网变流技术的研究[D].北京:北京交通大学,2008.
    [60] Schiemenz I,Stiebler M.Control of a permanent magnet synchronous generator used in avariable speed wind energy system[C]//Electric Machines and Drives Conference.Boston,USA:IEEE,2001:872-877.
    [61]姚骏,廖勇,李辉,等.直驱永磁同步风力发电机单位功率因数控制[J].电机与控制学报,2010,14(6):13-20.
    [62]胡书举,赵栋利,李建林,等.永磁直驱风电系统永磁同步发电机单位功率因数控制[J].电机与控制应用,2009,36(3):1-5.
    [63]冯哲峰,杨恩星,陈国柱.永磁直驱风力发电机的单位功率因数控制[J].机电工程,2007,24(9):70-73.
    [64] Morimoto S,Nakayama H,Sanada M,et al.Sensorless output maximization control forvariable-speed wind generation system using IPMSG[J]. IEEE Trans. on IndustryApplications,2005,41(1):60-67.
    [65] Tomonobu Senjyu,Satoshi Tamaki,Endusa Muhando,et al.Wind velocity and rotor positionsensorless maximum power point tracking control for wind generation system.RenewableEnergy,2006,31(11):1765-1775.
    [66] Di Tommaso A O,Miceli R,Galluzzo G R,et al.Optimum performance of permanent magnetsynchronous generators coupled to wind turbines[C]//Power Engineering Society GeneralMeeting.Tampa,USA:IEEE,2007:1-7.
    [67] Vaez S,John V I,Rahman M A.Adaptive loss minimization control of inverter-fed IPMmotor drives[C]//Power Electronics Specialists Conference.St. Louis,USA:IEEE,1997:861-868.
    [68] Xiaoliang Jiang,Pindong Sun,Zhu Z Q.Modeling and simulation of parameter identificationfor PMSM based on EKF[C]//International Conference on Computer,Mechatronics,Controland Electronic Engineering.Changchun,China:IEEE,2010:345-348.
    [69] Zhu Z Q,Zhu X,Sun P D,et al.Estimation of winding resistance and pm flux-linkage inbrushless AC machines by reduced-order extended Kalman filter[C]//Proceedings of the2007IEEE International Conference on Networking,Sensing and Control.London,UK:IEEE,2007:740-745.
    [70]陈振锋,钟彦儒,李洁.嵌入式永磁同步电机自适应在线参数辨识[J].电机与控制学报,2010,14(4):9-13.
    [71] Boileau T,Leboeuf N,Nahid-Mobarakeh B,et al.Online identification of PMSMparameters:parameter identifiability and estimator comparative study.IEEE Trans. onIndustry Application,2011,47(4):1944-1957.
    [72]安群涛,孙力,赵克.一种永磁同步电动机参数的自适应在线辨识方法.电工技术学报,2008,23(6):31-36.
    [73]刘侃,章兢.基于自适应线性元件神经网络的表面式永磁同步电机参数在线辨识[J].中国电机工程学报,2010,30(30):68-73.
    [74] Shaowei Wang,Shanming Wan.Identify PMSM’s parameters by single-layer neural networkswith gradient descent[C]//International Conference on Electrical and ControlEngineering.Wuhan,China:IEEE,2010:3811-3814.
    [75] Li Liu,Cartes D A,Wenxin Liu.Particle swarm optimization based parameter identificationapplied to PMSM[C]//Proceedings of the2007American Control Conference.New York,USA:IEEE,2007:2955-2960.
    [76] Miaowang Qian,Guojun Tan,Zang Ling.Parameter identification of PMSM based onFHPSO algorithm[C]//20102nd International Conference on Information Engineering andComputer Science.Wuhan,China:IEEE,2010:1-4.
    [77] Zhenzhen Zhu,Xi Xiao,Qing Kang.Cone selection-based parameter identification appliedto permanent magnet synchronous motors[C]//International Conference on ElectricalMachines and Systems.Incheon,Korea:IEEE,2010:1852-1855.
    [78]赵仁德,王永军,张加胜.直驱式永磁同步风力发电系统最大功率追踪控制[J].中国电机工程学报,2009,29(27):106-111.
    [79]姚骏,廖勇,瞿兴鸿,等.直驱永磁同步风力发电机的最佳风能跟踪控制[J].电网技术,2008,32(10):11-15.
    [80] Chinchilla M,Amaltes S,Burgos J C.Control of permanent-magnet generators applied tovariable-speed wind-energy systems connected to the grid[J].IEEE Trans. on EnergyConversion,2006,21(1):130-135.
    [81] Chen Z,Gomez S A,McCormick M.A fuzzy logic controlled power electronic system forvariable speed wind energy conversion systems[C]//International Conference on PowerElectronics and Variable Speed Drives.London,UK:IEE,2000:114-119.
    [82] Quincy Qing Wang.Maximum wind energy extraction strategies using power electronicconverters[D].Canada:The University of New Brunswick,2003.
    [83] Slootweg J G,de Haan S W H,Polinder H,et al.General model for representing variablespeed wind turbines in power system dynamics simulations[J].IEEE Trans. on PowerSystems,2003,18(1):144-151.
    [84]胡家兵.双馈异步风力发电机系统电网故障穿越(不间断)运行研究—基础理论与关键技术[D].杭州:浙江大学,2009.
    [85]张兴.PWM整流器及其控制策略的研究[D].合肥:合肥工业大学,2003.
    [86]伍小杰,罗悦华,乔树通.三相电压型PWM整流器控制技术综述[J].电工技术学报,2005,20(12):7-12.
    [87]赵仁德,贺益康.无电网电压传感器三相PWM整流器虚拟电网磁链定向矢量控制研究[J].中国电机工程学报,2005,25(20):56-61.
    [88]杨达亮,卢子广,杭乃善,等.三相电压型PWM整流器准定频直接功率控制[J].中国电机工程学报,2011,31(27):66-73.
    [89]杨兴武,姜建国.电压型PWM整流器预测直接功率控制[J].中国电机工程学报,2011,31(3):34-39.
    [90]尚磊,孙丹,胡家兵,等.三相电压型并网逆变器预测直接功率控制[J].电工技术学报,2011,26(7):216-222.
    [91] Noguchi T,Tomiki H,Kondo S,et al.Direct power control of PWM converter without powersource voltage sensors[J].IEEE Trans. on Industry Applications,1998,34(3):473-479.
    [92] Malinowski M,Jasinski M,Kazmierkowski M P.Simple direct power control of three-phasePWM rectifier using space-vector modulation(DPC-SVM)[J].IEEE Trans. on IndustrialElectronics,2004,51(2):447-454.
    [93]赵葵银,杨青,唐勇奇.基于虚拟磁链的PWM整流器的直接功率控制[J].电力自动化设备,2009,29(2):82-84.
    [94]王锋,姜建国.风力发电机用双PWM变换器的功率平衡联合控制策略研究[J].中国电机工程学报,2006,26(22):134-139.
    [95] Bon-Gwan Gu,Kwanghee Nam.A dc-link capacitor minimization method through directcapacitor current control[J].IEEE Trans. on Industry Applications,2006,42(2):573-581.
    [96] Namho Hur,Jinhwan Jung,Kwanghee Nam.A fast dynamic dc-link power-balancing schemefor a PWM converter-inverter system[J].IEEE Trans. on Industrial Electronics,2001,48(4):794-803.
    [97] Jinhwan Jung,Sunkyoung Lim,Kwanghee Nam.A feedback linearizing control scheme fora PWM converter-inverter having a very small dc-link capacitor[J].IEEE Trans. on IndustryApplications,1999,35(5):1124-1131.
    [98] Dong-Choon Lee,G-Myoung Lee,Ki-Do Lee.DC-bus voltage control of three-phase AC/DCPWM converters using feedback linearization[J].IEEE Trans. on Industry Applications,2000,36(3):826-833.
    [99] Hongwei Liu,Yonggang Lin,Wei Li.Study on control strategy of individual bladepitch-controlled wind turbine[C]//Proceedings of the6th World congress on Intelligent controland Automation.Dalian,China:IEEE,2006:6489-6492.
    [100] Miller N W,Sanchez-Gasca J J,Price W W,et al.Dynamic modeling of GE1.5and3.6MWwind turbine-generators for stability simulations[C]//Power Engineering Society GeneralMeeting.Toronto,Canada:IEEE,2003:1977-1983.
    [101] Schinas N A,Vovos N A,Giannakopoulos G B.An autonomous system supplied only bypitch-controlled variable-speed wind turbine[J].IEEE Trans. on Energy Conversion,2007,22(2):325-331.
    [102]郭鹏.模糊前馈与模糊PID结合的风力发电机组变桨距控制[J].中国电机工程学报,2010,30(8):123-128.
    [103]夏长亮,宋战锋.变速恒频风力发电系统变桨距自抗扰控制[J].中国电机工程学报,2007,27(14):91-95.
    [104]谢景凤,杨俊华,刘慧媛,等.变速恒频变桨距风力机自抗扰控制[J].微特电机,2010,(11):58-61.
    [105]许凌峰,徐大平,高峰,等.基于神经网络的风力发电机组变桨距复合控制[J].华北电力大学学报,2009,36(1):28-34.
    [106]邢作霞,郑琼林,姚兴佳,等.基于BP神经网络的PID变桨距风电机组控制[J].沈阳工业大学学报,2006,28(6):681-686.
    [107] Muljadi E,Butterfield C P.Pitch-controlled variable-speed wind turbine generation[J].IEEETrans. on Industry Applications,2001,37(1):240-246.
    [108] Senjyu T,Sakamoto R,Urasaki N,et al.Output power leveling of wind turbine generator forall operating regions by pitch angle control[J].IEEE Trans. on Energy Conversion,2006,21(2):467-475.
    [109]廖勇,何金波,姚骏,等.基于变桨距和转矩动态控制的直驱永磁同步风力发电机功率平滑控制[J].中国电机工程学报,2009,29(18):71-77.
    [110] Ushiwata K,Shishido S,Takahashi R,et al.Smoothing control of wind generator outputfluctuation by using electric double layer capacitor[C]//Proceeding of InternationalConference on Electrical Machines and Systems.Seoul,Korea:IEEE,2007:308-313.
    [111]郭学英,郑建勇,梅军,等.基于超级电容储能的风电并网功率调节控制系统[J].可再生能源,2011,29(2):28-32.
    [112]孙春顺,王耀南,李欣然.飞轮辅助的风力发电系统功率和频率综合控制[J].中国电机工程学报,2008,28(29):111-116.
    [113]胡雪松,孙才新,刘刃,等.采用飞轮储能的永磁直驱风电机组有功平滑控制策略[J].电力系统自动化,2010,34(13):79-83.
    [114]张保会,王进,李光辉,等.具有低电压穿越能力的风电接入电力系统继电保护的配合[J].电力自动化设备,2012,32(3):1-6.
    [115]赵紫龙,吴维宁,王伟.电网不对称故障下直驱风电机组低电压穿越技术[J].电力系统自动化,2009,33(21):87-91.
    [116] Hong-Seok Song,Kwanghee Nam.Dual current control scheme for PWM converter underunbalanced input voltage conditions[J].IEEE Trans. on Industrial Electronics,1999,46(5):953-959.
    [117]孙素娟,赵紫龙,陈玮.电网不对称时直驱风电机组双电流环控制策略[J].水电自动化与大坝监测,2010,34(1):41-45.
    [118]张兴,季建强,张崇巍,等.基于内模控制的三相电压型PWM整流器不平衡控制策略研究[J].中国电机工程学报,2005,25(13):51-56.
    [119]周国梁,石新春,魏晓光,等.电压源换流器高压直流输电不平衡控制策略研究[J].中国电机工程学报,2008,28(22):137-143.
    [120] Timbus A,Liserre M,Teodorescu R,et al.Evaluation of current controllers for distributedpower generation systems[J].IEEE Trans. on Power Electronics,2009,24(3):654-664.
    [121] Jiabing Hu,Yikang He.Multi-frequency proportional-resonant(MFPR) current controller forPWM VSC under unbalanced supply conditions[J].Journal of Zhejiang University:Science,2007,8(10):1527-1531.
    [122] Yazdani A,Iravani R.A unified dynamic model and control for the voltage-sourced converterunder unbalanced grid conditions[J].IEEE Trans. on Power Delivery,2006,21(3):1620-1629.
    [123] Yongsug Suh,Lipo T A.Control scheme in hybrid synchronous stationary frame for PWMAC/DC converter under generalized unbalanced operating conditions[J].IEEE Trans. onIndustry Applications,2006,42(3):825-835.
    [124] Conroy J F,Watson R.Low-voltage ride-through of a full converter wind turbine withpermanent magnet generator[J].IET Renewable Power Generation,2007,1(3):182-189.
    [125]胡书举,李建林,许洪华.适用于直驱式风电系统的Crowbar电路[J].电力建设,2007,28(9):44-47.
    [126]胡书举,李建林,许洪华.变速恒频风电系统应对电网故障的保护电路分析[J].变流技术与电力牵引,2008,(1):45-50.
    [127] Abbey C,Joos G.Effect of low voltage ride through(LVRT) characteristic on voltagestability[C]//Power Engineering Society General Meeting.San Francisco,USA:IEEE,2005:1901-1907.
    [128]胡书举,李建林,许洪华.永磁直驱风电系统低电压运行特性的分析[J].电力系统自动化,2007,31(17):73-77.
    [129]姚骏,廖勇,庄凯.电网故障时永磁直驱风电机组的低电压穿越控制策略[J].电力系统自动化,2009,33(12):91-95.
    [130] Mullane A,Lightbody G,Yacamini R.Wind-turbine fault ride-through enhancement[J].IEEETrans. on Power Systems,2005,20(4):1929-1937.
    [131] Matas J,Castilla M,Guerrero J M,et al.Feedback linearization of direct-drive synchronouswind-turbines via a sliding mode approach[J].IEEE Trans. on Power Electronics,2008,23(3):1093-1103.
    [132]杨晓萍,段先锋,钟彦儒.直驱永磁同步风电机组不对称故障穿越的研究[J].电机与控制学报,2010,14(2):7-12.
    [133] Chong H Ng,Li Ran,Bumby J.Unbalanced-grid-fault ride-through control for a wind turbineinverter[J].IEEE Trans. on Industry Applications,2008,44(3):845-856.
    [134] Saccomando G,Svensson J,Sannino A.Improving voltage disturbance rejection forvariable-speed wind turbines[J].IEEE Trans. on Energy Conversion,2002,17(3):422-428.
    [135] Alepuz S,Busquets-Monge S,Bordonau J,et al.Control strategies based on symmetricalcomponents for grid-connected converters under voltage dips[J].IEEE Trans. on IndustrialElectronics,2009,56(6):2162-2173.
    [136]李建林,胡书举,孔德国,等.全功率变流器永磁直驱风电系统低电压穿越特性研究[J].电力系统自动化,2008,32(19):92-95.
    [137]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,2006.
    [138] Zhe Chen,Guerrero J M,Blaabjerg F.A review of the state of the art of power electronics forwind turbines[J].IEEE Trans. on Power Electronics,2009,24(8):1859-1875.
    [139]杨顺昌.电机的矩阵分析[M].重庆:重庆大学出版社,1988.
    [140]李东东,陈陈.风力发电系统动态仿真的风速模型[J].中国电机工程学报,2005,25(21):41-44.
    [141]李景灿,廖勇.基于磁链观测器的PMSM反馈解耦矢量控制系统[J].微电机,2011,44(7):55-58.
    [142]王松.永磁同步电机的参数辨识及控制策略研究[D].北京:北京交通大学,2011.
    [143]邹旭东.变速恒频交流励磁双馈风力发电系统及其控制技术研究[D].武汉:华中科技大学,2005.
    [144]张侨.永磁同步电机参数辨识的研究[D].武汉:华中科技大学,2010.
    [145]王鸿山.风力发电机控制中的参数辨识技术[D].合肥:合肥工业大学,2009.
    [146] Stankovic A V,Lipo T A.A novel control method for input output harmonic elimination ofthe PWM boost type rectifier under unbalanced operating conditions[J].IEEE Trans. onPower Electronics,2001,16(5):603-611.
    [147]胡家兵,贺益康,王宏胜,等.不平衡电网电压下双馈感应发电机网侧和转子侧变换器的协同控制[J].中国电机工程学报,2010,30(9):97-104.
    [148] Yongsug Suh.Analysis and control of three phase AC/DC PWM converter under unbalancedoperating conditions[D].USA:University of Wisconsin-Madison,2004.
    [149] Yi Zhou,Bauer P,Ferreira J A,et al.Operation of grid-connected DFIG under unbalancedgrid voltage condition[J].IEEE Trans. on Energy Conversion,2009,24(1):240-246.
    [150]陈众,徐国禹,颜伟,等.UPFC直流侧电容电压弱控制策略研究[J].电工技术学报,2004,19(1):49-54.
    [151] Xibo Yuan,Fei Wang,Boroyevich D,et al.DC-link voltage control of a full power converterfor wind generator operating in weak-grid systems[J].IEEE Trans. on Power Electronics,2009,24(9):2178-2192.
    [152] Molinas M,Jon Are Suul,Undeland T.Low voltage ride through of wind farms with cagegenerators:STATCOM versus SVC[J].IEEE Trans. on Power Electronics,2008,23(3):1104-1117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700