原油超声电磁复合防蜡的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“蜡沉积”是目前影响原油开采和管道集输的一个难题。常用的清防蜡方法或耗能大、成本高,或需停井作业,或影响原油的物性,且防蜡效果不明显,不能从根本上消除蜡沉积。超声电磁复合防蜡将超声波降粘技术和磁防蜡降粘技术相结合,是原油防蜡降粘的一种新方法。超声波可以改变蜡晶形态,抑制蜡晶生长,分散蜡晶颗粒,有效地降低原油的粘度,在不污染地层的前提下降低原油管输过程中的能耗;磁处理技术以其设备安装简单、使用方便、无污染、成本低等特点广泛地应用于油田原油集输。本文主要通过实验研究超声电磁复合作用的防蜡降粘效果。
     在分析原油成分和石蜡沉积特性的基础上,对超声防蜡、磁防蜡的作用机理进行了深入的研究,并探讨了超声电磁复合防蜡降粘的作用机理。
     为了提高辐射声功率,采用了换能器阵的超声振动系统。基于所设计的压电换能器,对换能器阵进行性能测试,采用串联电感法对其进行调谐匹配。根据Huygens积分定理,推导了圆形活塞换能器组成的组合平面线列阵的指向性函数和声场声压分布函数,并对其进行了数值模拟,确定了换能器阵的有效声场范围,设计了原油超声波防蜡降粘实验装置,为下一步实验提供了条件。
     采用粘温曲线法,分别研究了超声、电磁及声磁复合防蜡的效果。实验研究了超声处理时间、换能器工作电流、温度对超声防蜡降粘效果的影响;考察了磁场强度、磁处理时间对磁防蜡效果的影响;以换能器工作电流、超声作用时间、磁场强度为考察因素,通过正交实验法研究了各因素对原油降粘效果的影响程度及最佳的复合防蜡参数组合:换能器工作电流0.2A,处理时间3min,磁场强度62 mT,同时发现声磁复合防蜡效果要略优于单一场的效果,并研究了含蜡量对复合防蜡效果的影响。
“Paraffin deposition”is a key problem on gathering and transportation of crude oil. Lots of methods used to paraffin-controlling are great in energy consumption, or high in cost, or need stoping well operations, or affect the physical properties of crude oil, and the effect is limited, can not eliminate the wax deposition fundamentally. Complex technology of ultrasound and magnetic was a new method of viscosity reduction. Ultrasound can change the shape of paraffin crystals, inhibit the growth of paraffin crystals, dispease paraffin crystal particles, and effectively reduce the viscosity of crude oil, lower energy consumption of transfering the crude oil withour pollution formation. Magnetic treatment was widely used in gathering and transporting crude oil because it is simple installation, easy to use, no pollution and low cost. This paper study of paraffin viscosity reducing effect of electromagnetic complex role of ultrasound by experiment.
     Based on analysis of the oil composition and paraffin deposition characteristics, analyse the paraffin-controlling mechanism of ultrasound and magnetic, discuss the paraffin-controlling mechanism of complex technology of ultrasound and magnetic.
     To improve the radiated power, using transducer array ultrasonic vibration system. Based on the design of piezoelectric transducers, test the performance of the transducer array using series inductance method to match the tuning. According to Huygens integral theorem, derived directivity function generated by circular piston transducer composed of a combination of plane linear arrayand and sound field and pressure distribution function, and numerical calculation was carried out, determine the the sound field effective range of transducer array, design experimental device to reduce viscosity of crude oil by ultrasonic, provid conditions for the next experiment.
     With viscosity-temperature curve, respectively analyse the paraffin-controlling effect of ultrasound, magnetic and complex technology of ultrasound and magnetic. Experimental study the affect to paraffin-controlling effect of ultrasonic processing time, the transducer current and the temperature, investigate the affect to paraffin-controlling effect of magnetic field strength and magnetic treatment time. After the orthogonal experiment, determine the effect level to the crude oil viscosity of each factor which include ultrasonic power, ultrasonic time, the magnetic field strength and the best parameters combination to reduce viscosity: transducer operating current is 0.2A, processing time is 3 min, magnetic field strength is 62mT, and find that the paraffin-controlling effect of complex technology is better than only one field, the subject also study the affect to paraffin-controlling effect of the paraffin content in crude oil.
引文
1 Ferns S.W, Cowles H.C. Jr and Hendersen L.W. Composition of paraffin paraffin. Ind & Eng Chem. 1999, No 21:1090~1092
    2 McCain.W.D Jr. The Properties of Petroleum Fluids. Second Edition Pennwell Publishing Co. 1989:12~18
    3路斌,继腾,张建国.非牛顿流体流态判别方法的研究.石油工业. 2001,21(4):49~52
    4 Ahmadbazlee Matzain, Mandar S. Apte, Hong-Quan Zhang, Michael Volk, James P. Brill, J.L. Creek. Investigation of Paraffin Deposition During Multiphse Flow in Pipelines. 2002, 124(9):180~186
    5尉小明,刘喜林,王卫东,徐凤廷.稠油降粘方法概述.精细石油化工. 2002, (9): 45~48
    6 J. L. Creek, Hans Jacob Lund, James P. Brill, Mike Volk. Paraffin Deposition in single phase flow. Fluid Phase Equilibria. 1999: 158~160
    7 Ferns S.W, Cowles H.C. Jr, Hendersen L.W. Composition of Paraffin Paraffin. Ind &Eng Chem. 1999, (21): 1090~1092
    8 Nguyen X. Thanh, M. Hsieh, R. P. Philp. Paraffines and Asphaltenes in crude oil. Organic Geochemistry. 1999, (30): 119~132
    9武继辉,孙军,贺志刚.油井清、防蜡技术研究现状.油气田地面工程. 2004,23(7):14
    10邹德健.水溶性和油溶性清防蜡剂研制与应用.大庆石油学院硕士学位论文. 2003:34~37
    11徐卫华,雷光伦,薛芸,许涛等.微生物防蜡作用机理研究.西南石油学院学报. 2005,27(6):68~73
    12 Francis V. Hanson, Soon-Man Cha, Milind D. Deo and Alex G. Oblad. Pyrolysis of Oil Sand from the White Rocks Deposit in a Rotary Kiln. Fuel,1992, (71):1455~1463
    13郑茂俊,严炽培,马荔.超声波降粘、防蜡的机理分析.油气田地面工程. 1996,15(4):28~29
    14 C. T. Aarts, G. Ooms, K. J. Bil, E. T. G. Bot. Enhancement of Liquid Flow through a Porous Medium by Ultrasonic Irradiation. SPE 57720. 1999, 4(4)
    15 N. Bjorndalen, M. R. Islam. The Effect of Microwave and Ultrasonic Irradiation on Crude Oil during production with a Horizontal Well. Journal of Petroleum Science and Engineering. 2004, (43):139~150
    16闫向宏,严炽培.声波降低稠油粘度的实验研究.声学与电子工程. 1995,15(3):20~24
    17闫向宏,张亚萍.超声波降低稠油粘度的实验结果.油气田地面工程. 1996,15(5):20~21
    18路斌.流体动力式发声器在采油工业中的应用研究.物理学和高新技术. 2004,33(4):278~281
    19顾春元,虞建业,任永林,袁萍.超声波采油技术研究与应用.钻采工艺. 2003,26(6): 59~61
    20李兆敏,林日亿,张平,董贤勇.超声波对胜利浅海原油降粘实验研究.水动力学研究与进展. 2004,19(4): 463~468
    21武继辉,秦国鲲,张龙堂.超声波对原油粘度影响研究.胜利油田职工大学学报,2006,20(4):40
    22路斌,张建国.超声旋笛声波发生器在防蜡降粘方面的研究.石油矿场机械. 2004,33(1):74~76
    23张建国,赵磊.结蜡油井声波防蜡器:中国,CN 2410049Y. 2000 12
    24孙卫,杨东,张敏.超声波降粘器:中国,CN 2911173Y. 2007 6
    25王晓华.磁降凝降粘技术的研究与应用.大庆石油学院工程硕士论文. 2003:9~10
    26薛允连.方兴未艾的磁技术.江苏科技信息,1998,(2):20~21
    27 N.P.Tung,N.Q.Vinh,N.T.P Phong.Perspective for Using Nd-Fe-B Magnets as a Tool for the Improvement of the Production and Transportation of Vietnamese Crude Oil with High Paraffin Content.Physica B,2003,(327):443~-447
    28 N.P.Tung,N.T.Phuong,B.Q.K.Long.Studing the Mechanisms of Crude Oil Pour Point and Viscosity Reductions When Developing Chemical Additives With the Use of Advanced Analytical Tools.Houston:SPE International Symposium on Oilfield Chemistry,2001,
    29 N.P.Tung,N.Q.Vinh.Rheological Improvement for Paraffin Crude Oil Flows Treated by Nd-Fe-B Magnetic Fields in Non-newtonian Fluid Area.Hanoi:The 9th Asia Pacific Physics Conferrence,2004
    30 Linear Kinetic Cell Paraffin Control System. U.S.Patent.1992:3~5
    31胡博仲,周望,程子健.磁处理技术在大庆油田油水井中的应用研究.电工合金. 1997(2):37~39
    32耿殿雨.磁处理技术在油田中的应用.中国科学院院刊,1995,(3):256-257
    33朱林,熊滨莎,曲哲.原油磁处理降粘减租技术的研究.油田地面工程,1994,13(1):26-31
    34宋金璞,邵景玲,赵志伟.多极电磁器处理原油生产性试验.哈尔滨建筑大学学报. 2001,6.21~24
    35覃艺.变频变强电磁防蜡降粘器的研制与实验.哈尔滨工业大学硕士论文.2007:1 18~19
    36徐梅,石彦,王国先.空化声磁耦合防蜡器在淮东油田的试验应用.新疆石油科技.2009. 19(3):27~28
    37张建.声磁复合场流化床超细颗粒流化行为的研究.中国石油大学硕士论文.2007:65~70
    38胡晓花.电、磁、超声复合作用于水处理方面的应用研究.山东大学硕士论文.2006:35~45
    39 J. M. McCall and R. L. Johnson. Paraffin Treatment in the well Service Industry. presented at the 31st Annual Southwestern Petroleum Short Course, Lubbock TX, 1984. (4): 25~26
    40李鸿英,张劲军,高鹏.蜡晶形态、结构与含蜡原油流变性的关系.油气储运. 2004. 23(9):19~23
    41张红,沈本贤.蜡晶形态结构对原油降凝的影响.石油学报(石油加工). 2006,22 (5) :74~79
    42 Rizzo, H. Carrier, J. Castillo, S. Acevedo, J. Pauly. A new experimental setup for the liquid-solid phase transition determination in crude oils under high pressure conditions. Fuel, 2007, (86): 1758~1764
    43刘清林,权忠舆.含蜡原油热处理过程中若干组分的作用.石油学报. 1986,7(1):119~126
    44 Ramachandran Venkatesan, Jenny-Ann stlund, Hitesh Chawla, etal. The Effect of Asphaltenes on the Gelation of Paraffiny Oils. Energy & Fuel, 2003, 17: 1630~1640
    45 Hammami, A.Thermal.Behavior and Non-isothermal Crystallization Kinetics of Normal-alkanes and Their Paraffiny Mixtures Under Quiescent Conditions: Alberta,Canada: The University of Calgary, 1994
    46王明信.石蜡基原油常温集输技术研究.浙江大学硕士学位论文. 2002:12~19
    47 Paul H. Young. Experimental Studies and Modeling of Solvent Migration in Paraffin Deposits. 2003,12:21~23
    48 A.R.SOLAIMANY, NAZAR.B.DABIR, Experimental and Mathematical Modeling of Paraffin Deposition and Propagation in Pipes Transporting Crude Oil. 2005:56~57
    49 Rrown T S. The Effects of Light Ends and High Pressure on Paraffin Formation.SPE28506
    50 S.Witekowa.ChemiealeffeetsofultrasoniewavesⅢ,Actaehemiea,1972,17~97
    51汪仲清.液态流体的粘度及磁处理降粘作用机理.石油学报,1995,16(4): 154-160
    52敬加强.含蜡原油抑制机理研究.西南石油学院学报,2004,(6): 29-31
    53叶亚中.强磁防蜡应用实验.油气储运,1990,19(2):8-9
    54孟海军.磁处理在原油处理中的机理研究.中国科技信息,2006,(7): 85-86
    55林书玉.超声换能器的原理及设计.科学出版社,2004: 17~19
    56栾桂冬,张金铎,王仁乾.压电换能器和换能器阵.北京大学出版社,2005: 326~330
    57 Shedid A. An ultrasonic irradiation technique for treatment of asphaltene deposition[J]. Journal of Petroleum Science and Engineering .2004,42:57~70

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700