大厂矿区多金属硫化矿浮选分离与铁闪锌矿生物浸出研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对中国广西大厂矿区的锡石-铅锑锌多金属硫化矿的浮选分离与细菌浸出,以及金属提取进行了系统的研究。以矿石中的脆硫锑铅矿、铁闪锌矿、磁黄铁矿为主要研究对象,研究它们在不同药剂条件下的浮选行为、细菌浸出行为,在此基础上进行了浮选流程结构的设计,以及采用浮选分离与细菌浸出联合工艺处理铅锑锌铁多金属硫化矿,从锌矿石细菌浸出液中分离和富集锌。
     查明了脆硫锑铅矿、铁闪锌矿、磁黄铁矿三种矿物浮选行为,脆硫锑铅矿在广泛的pH值范围(2-11)内均有很好的可浮性,比较丁基黄药、丁胺黑药、SN-9这三种捕收剂发现,丁胺黑药的捕收效果要好于另外两者;铁闪锌矿在pH值3-7的范围内具有很好的可浮性,当pH值大于8时,铁闪锌矿很难起浮;磁黄铁矿的天然可浮性较差,在pH在4.5-6的范围内磁黄铁矿有一定的可浮性,但当矿浆pH值大于8以后它将很难在没有活化剂的条件浮起。
     脆硫锑铅矿不能进行细菌浸出,已有的浸矿细菌对脆硫锑铅矿氧化作用不明显。磁黄铁矿完全可以进行细菌浸出,而且还可以作为浸矿细菌的培养基。选择合适的菌株,铁闪锌矿可以进行细菌浸出。大厂矿区92号矿原矿摇瓶细菌浸出锌完全可以进行,但渗滤柱浸则行不通,其困难在于浸出前必须耗费大量硫酸,而且浸出过程中矿柱渗滤性差,浸出液容易短路。浮选锌精矿可以进行细菌浸出,生物量、矿浆浓度、浮选药剂对浮选锌精矿的细菌浸出锌的速率有影响。
     实验结果比较如下,即首先通过混合浮选使铅(锑)与锌(硫)分离,获得铅粗精矿和锌精矿;再对锌精矿进行细菌浸出,使锌、硫分离,获得含锌的浸出液。整个流程中,铅锑的回收率均超过80%,分别为80.11%、80.04%;锌的回收率为90.8%;而纯粹采用浮选方法处理92号矿时,整个流程中,铅锑的回收率分别为80.11%、80.04%;锌的回收率为83.46%。所以从原理上讲,含铅锌锑多金属硫化矿采用浮选分离与细菌浸出联合工艺是可行的。
     理论研究表明,大厂矿区的铁闪锌矿是Fe混入闪锌矿,而不是类质同象,ZnS与FeS是晶体结构相似但属于不同晶象间的混溶,这种晶格结构在细菌作用下更容易遭到破坏,因此大厂矿区的铁闪锌矿容易被细菌浸蚀。在铁闪锌矿细菌浸出中,锌优先于铁被浸出。由于Fe进入闪锌矿所处的八面体位置比四面体位置的Zn具有更大的晶体场稳定能,Zn-S键比Fe-S键先遭到破坏,Zn2+离子先从闪锌矿晶格中释放出来,Fe则以FeS化合物形式存在浸出渣中。浮选药剂对细菌的抑制作用大小不同是因为它们对细菌的毒性不同,它们分子中的某些特定基团(乙基黄药的黄原酸基、丁胺黑药的铵基)在酸性溶液中对细菌的一些酶和一些特定的膜蛋白有毒性,黄原酸对蛋白质有强烈腐蚀毒害性)。电化学测试表明,有细菌存在时,铁闪锌矿的溶解速率增大,并且电极表面的钝化效应减弱,其原因是细菌的活性促进了元素硫的氧化,并改善了铁闪锌矿电极的导电性能。
In this paper, the flotation behaviors of sulfide minerals such as jamesonite、marmatite and pyrrhotite in DACHANG mine of Guangxi province of China were studied, and relationship between pH, concentration of collector (C) and floatability of sulfide mineral was discussed. Based on the flotation theory of sulfide mineral, the mechanism of sulfide flotation and its practical application was studied.
     Bioleaching of marmatite with a culture of Thiobacillus ferrooxidans and Thiobacillus thiooxidans at high concentration of iron was studied, the results showed the zinc leaching rate of the mixed culture was faster than that of the sole Thiobacillus ferrooxidans; the increasing iron concentration in leach solution enhanced the zinc leaching rate. The SEM analysis indicated that the chemical leaching residues was covered with porous solid layer of elemental sulfur, while elemental sulfur was not found in the bacterial leaching residues. The primary role of bacteria in bioleaching of sphalerite was to oxidize the chemical leaching products of ferrous ion and elemental sulfur, thus the indirect mechanism prevailed in the bioleaching of marmatite. In this paper bioleaching of low-grade zinc sulfide ore and marmatite concentrate was studied, and the mechanism of bioleaching of sphalerite at high concentrate of iron was discussed.
     The recovery of zinc from low-grade zinc oxide ores with Solvent Extraction- Electrowinning Technique was investigated by using D2EHPA as extractant and 260# kerosene as diluent. The results show it is possible to leach selectively zinc from the ores by heap leaching. The zinc concentration of leach solution in the first leaching cycle was 32.57g/L, and in the sixteenth cycle the zinc concentration was 8.27g/L after solvent extraction. The leaching solution is subjected to solvent extraction, scrubbing and selective stripping for enrichment of zinc and removal of impurities. The pregnant zinc sulfate solution produced from the stripping cycle is suitable for zinc electrowinning. Extra-pure zinc metal is obtained in the electrowinning test under conventional conditions.
     In bioleaching of zinc sulfide ore, the high concentration of iron released from dissolved pyrrhotite and pyrite accelerate the leaching rate of zinc.The primarily role of the bacterial in bioleaching of marmatite was to oxidize the chemical leaching products of ferrous ion and elemental sulfur, thus the indirect mechanism prevailed in the bioleaching of marmatite.
     In this research the effect of three flotation regents(Xanthates、Dithiophosphates、D-250) on the activity of bioleaching bacteria was discussed. Oxidized for 34 hours, the concentrations of Fe2+ in the 9K liquid solution added with Xanthates, Dithiophosphates and D-250 separately at the concentration of 4×10-4mol/L changed from 4.03 g/L to 4.64,4.77,5.91 g/L. The result showed that the inhibition of the three regents was from little to much. Experiment of bioleching on the sphlerite concentrate with flotation regents or no was done. After leaching for 23 days, the leaching ratios of the two were 63% and 46%. It has proved the conclusion that the flotation regents (Xanthates、D-250) have effect on the activity of bioleaching bacterias.
     Jamesonite and marmatite of Pb-Sb-Zn complex sulfide ore can be recovered using flotation and bioleaching processing, the jamesonite can be flotated at first, and the zinc of marmatite can be extracted by bioleaching technology. The results of test show that, the recovery rate of Pb, Sb, Zinc is 80.11%,80.04% and 90.8% respectively.
引文
[1]王淀佐.浮选理论的新进展[M].北京:科学出版社,1992:79-135.
    [2]韩发,大厂锡多金属矿床地质及成因,北京:地质出版社,1997
    [3]T Lager, E Forssberg, Comparative study of the flotation properties of jamesonite and stibnite, Scandinavian Journal of Metallurgy,1989,18(3):122—130
    [4]Gaudin A M, Preller G S. Surface areas of flotation concentrates and the thickness of collector coatings [J]. Trans.Am.Inst.Min.Metall.Eng.,1946,169:248-258.
    [5]Taggart A F, del Guidice G R M and Ziehl O A. The case of the chemical theory of flotation [J]. Trans. Inst. Min. Metall.,1934,112:348-381.
    [6]Wark I W and Cook A B. An experimental study of the effect of xanthates on contact angles at mineral surfaces [J]. Trans.Am.Inst.Min.Engrs.,1934,112:189-244.
    [7]Gaudin A M and Finkelstein N P. Interactions in the system galena—potassium ethyl xanthate-oxygen [J]. Nature,1956,207:389-391
    [8]Hagihara H. Mono-and multilayer adsorption of aqueous xanthate on galena surfaces [J]. J.Phys.Chem.,1952,56:616-621.
    [9]Plaksin I N and Bessonov S V. Role of gas in flotation reactions. Proceedings of the 2nd International Congress on Surface Activity,1957,3:361-367.
    [10]王淀佐.浮选药剂作用原理及应用[M].北京:冶金工业出版社,1982.
    [11]王淀佐,林强,蒋玉仁.冶金药剂的分子设计[M].北京:冶金工业出版社,1996.
    [12]Fereshteh, R., Caroline, S. and James, A. F., Sphalerite activation and surface Pb ion Concentration, Int. J. Miner. Process.2002,67:43-58.
    [13]Perry, D. L., Tsao, L. and Tayolr, L.A., Surface studies of the Inter-action of Copper ions with metal sulfide minerals[A].Proceedings-The Electrochemical Society, 1984(10):169~184
    [14]Maust, E.E. and Richardson, P. E., Electrophysical Considerations of the Activation of sphalerite for Flotation. V S Bureav of Mines Report of Invesfigation,1976,8108.
    [15]Andrea, P. G., Angela, G. L., Athryn, E. P. K. and Roger, C. S., The mechanism of copper activation of sphalerite, Applied surface science,1999,137:207~223
    [16]Lager, T., Forssberg, K. S. E., Comparative Study of the Flotation Properties of Jamesonite, Scandinavian Journal of metallurgy,1989,18(3):122~130.
    [17]王淀佐,顾帼华,高碱乙硫氮体系方铅矿的电位调控浮选,中国有色金属学报,1998,8(2):322-326
    [18]顾帼华,刘如意,电位调控浮选技术提高北山铅锌矿指标的研究,矿冶工程,1997,17(3):27-31
    [19]王濮等,系统矿物学(上册),北京:地质出版社,1982年
    [20]T Lager, E Forssberg, Beneficiation characteristics of antimony minerals, Mineral Engineering,1989,2(3):321—336
    [21]邓海波,许时,脆硫锑铅矿的浮选机理和铁闪锌矿的分离,有色金属(选矿部分),1988(5):32-35
    [22]刘如意等,锑铅锌多金属硫化矿综合利用工艺的研究与实践,有色金属(选矿部分),1994(4):34-36
    [23]余润兰、邱冠周、胡岳华、覃文庆,脆硫锑铅矿在乙硫氮-饱和Ca(OH)2体系中的电化学,中国有色金属学报,2004,14(10):1763-1769
    [24]覃文庆,硫化矿物颗粒间的电化学相互作用与电位调控浮选技术,中南工业大学博士学位论文,1997年
    [25]冯其明.硫化矿物浮选矿浆电化学理论和工艺研究[D].长沙:中南工业大学博士论文,1990年
    [26]王群,亚硫酸盐对铜离子活化的闪锌矿及铁闪锌矿抑制作用的研究,中南矿冶学院学报,1985(3):126-134
    [27]苏思平,吴伯增,车河选矿工艺流程改造实践,有色金属(选矿部分),2001(1):5-8
    [28]王群,关于黄原酸盐-亚硫酸盐体系中闪锌矿及铁闪锌矿浮选行为的研究,中南工业大学硕士论文,1985
    [29]B.Marouf, J Solecki, Copper ion activation of synthetic sphalerite with various ion contents, International Journal of Mineral Processing,1982(4):38—52
    [30]S R Popov etal. The ethylxanthate adsorption on copper-activated sphalerite under flotation-related and it ions in alkaline media, International Journal of Mineral Processing,1990(3):229—244
    [31]覃文庆等,对黄药在磁黄铁矿电极表面的电化学形成及吸附研究,中国矿业,1999,8(1):73-76
    [32]覃文庆等,黄药体系磁黄铁矿电极表面双黄药的稳定性及其浮选研究,中国矿业,1999,8(4):47-49
    [33]陈金中,宣道中,铁闪锌矿与磁黄铁矿浮选分离新方法研究,有色金属,1994,46(1):34-39
    [34]Pratt A. R., Muir I. J. and Nesbitt H. W., X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation. Geochimica et Cosmochimica Acta, pp.827,58(2),1994
    [35]Valli M, Persson I, A vibration and X-ray photoelectron spectroscopic study of the
    interaction between chalcopyrite, marcasite, pentlandite, pyrrhotite and troilite, and ethylxanthate and decylxanthate ions in aqueous solution, Colloids and Surfaces A: Physicochemical and Engineering Aspects,1994,83(3):207-217
    [36]李长根,肖庆苏,大屯选厂硫化矿“捕收剂解吸-铜离子沉淀-磁黄铁矿选择性去活化”新工艺研究,有色金属,1995,47(2):48-53
    [37]张芹,胡岳华,顾帼华,脆硫锑铅矿与磁黄铁矿在石灰介质中的浮选分离研究,矿冶工程,2004,24(2):30-32
    [38]张芹,胡岳华,顾帼华,氰化脆硫锑铅矿和磁黄铁矿选择性分离,中南大学学报(自然科学版),2004,35(3):372-375
    [39]杨菊,吴熙群,李成必,难选磁黄铁矿浮选工艺研究,有色金属(选矿部分)2002,4:11-13
    [40]广州有色金属研究院,广西大厂91号富矿体选矿试验报告,广州有色金属研究院,1994
    [41]黎性海,巴里硫化矿物浮选分离工艺研究,有色金属(选矿部分),1992(2):22-25
    [42]中国有色金属工业总公司,有色金属工业“十五”科技发展计划,2000.
    [43]大厂矿物局,巴里选矿厂锡石-多金属硫化矿浮选分离的新工艺报告,1998年
    [44]广西大厂矿务局,大厂100号特富矿+400m矿体选矿优化流程研究报告,1996
    [45]石桂珍等,提高大厂矿务局车河选矿厂锌选别指标的研究报告,广州有色金属研究院,1992
    [46]刘如意等,锑铅锌多金属硫化矿综合利用工艺的研究与实践,有色金属(选矿部分),1994(4):34-36
    [47]刘亮,伍平,银铅锑和锌的无氰浮选分离工艺研究,有色金属(选矿部分),1994(3):45-48
    [48]吴若琼,加温通二氧化硫浮选锌精矿,有色金属(选矿部分),1991(1):43-46
    [49]蓝方钊等,硫酸锌和氯化铵在铅锌分离中的应用,有色金属(选矿部分),1991(1):11-16.
    [50]J Paulica etal,在铅锌优化浮选中使用FeSO4/NaCN,国外金属矿选矿,1992(2):34-37
    [51]李正勤,铅锌硫化矿无氰浮选分离实践,有色金属(选矿部分),1986(6):3-5
    [52]哈兹米哈诺布尔,利用浮选新药剂YYYK制定多金属矿选矿无氰工艺,矿冶,1994(4):23-27
    [53]浮选分离多金属硫化矿石用的抑制剂,美国专利,No.504961
    [54]Bessonov S V,应用碳酸钙作调整剂混合浮选铜锌矿石,国外金属矿选矿,1994(7):22-25
    [55]唐林生,多金属硫化矿浮选分离的研究,中南工业大学硕士论文,1986
    [56]D K Sengupta等,用阴离子和阳离子染料浮选硫化矿物,国外金属矿选矿,
    1989(8):33-35
    [57]李波,234捕收剂浮选闪锌矿实践,有色金属(选矿部分),1985(6):58-60
    [58]胡为柏,浮选,北京:冶金工业出版社,1989年
    [59]王淀佐.浮选捕收剂发展的三个阶段及其特征规则.中国矿冶学院学取.1983年,增刊第1期
    [60]孙水裕,电位控制下黄铜矿和黄铁矿的无捕收剂浮选分离,中南矿冶学院学报,1993,24(4):466471
    [61]RWoods,硫化矿浮选的电化学,国外金属矿,1993年,4:P.10-28
    [62]R Mallikarjunan, S Venkatachalam, Proc. Int. Symp. Electrochemistry in Mineral and Metal Processing. In:Richardson P E. etal.(Eds.), Electro-chemistry Society, 1984,233-256
    [63]R Woods, P E Richardson, The Flotation of Sulphide Minerals-electrochemical Aspects. In:P. Somasundaran (ed.) Advance in Mineral Processing, SME.1986, 154-170
    [64]C Labonte, I Sandoval, Some Observation on Copper-Zinc Separation from Complex Ores. In:G. S. Dobby and S R. Rao (eds.), Processing of Complex Ores, Pergamon Press. New York.1989,193-202
    [65]孙水裕,黄铜矿-方铅矿浮选分离的电化学,中南工业大学硕士学位论文,1987年
    [66]胡庆春,方铅矿-毒砂浮选分离的电化学,中南工业大学硕士学位论文,1988年
    [67]B Palsson, E Forssbery, Computer Assisted Calculation of Thermodynamic Equilibrium in Galena—Ethyl Xanthate System, Int. J. Min. Proess,1988(23):93-121
    [68]俞瑞,电化学处理在选矿工艺中的应用,国外金属矿选矿,1996,10:P1-7
    [69].S G Salamy etal. The application of electrochemical methods to flotation research, Recent developments in mineral dressing(Institution of Mining and Metallurgy) London,1953:503—509.
    [70]孙水裕等,方铅矿自诱导浮选的电化学和量子化学研究,有色金属(季刊),1993,45(2):32-36
    [71].孙水裕,王淀佐,李柏淡,黄铜矿自诱导浮选的研究,有色金属(季刊),992,44(2):17--29
    [72]《浸矿技术》编委会,浸矿技术,北京:原子能出版社,1994
    [73]魏以和,钟康年,王军,生物技术在矿物工程中的应用,国外金属选矿,1996(1):1-13
    [74]刘汉钊,张永奎,微生物在矿物工程上应用新进展,国外金属选矿,1999(12):9-12
    [75]C. Solisio, A. Lodi, F. Veglio, Bioleaching of zinc and aluminum from industrial waste sludges by means of Thiobacillus ferrooxidans, Waste Managenment,2002
    (22):667-675
    [76]A R Clomer, M E Hinkle, The role of microorganisms in acid mine drainage:a preliminary report, Science,1947(106):253-256
    [77]K L Temple and E W Delchamps, Autotrophic bacteria and the formation of acid in Bituminous Coal Mines, Applied Microbiology,1953,1:255-258.
    [78]Bryner L C, et al, Microorganisms in leaching of sulfide minerals, Industrial and Engineering Chemistry,1954,46:2587~2592
    [79]Douglas E. Rawlings, Biomining:Theory, Microbes and Industrial Processes, Springer-Verlag and Landes Bioscience.1997
    [80]李雅芹,钟慧芳,陈秀珠等,嗜酸热硫球菌(S-5)对硫化物的氧化,微生物学报.1987,27(3):271-276
    [81]Bosecker, Bioleaching:metal solubilization by microorganisms, FEMS Microbiol Rev, 1997(20):591-604
    [82]P.C.Miller, M.K.Rhodes, R.winby, A.Pinches & P.J.van Staden. Commercialization of bioleaching for base-metal extraction, Minerals & Metallurgical Processing.1999, Vol.16, No.4:42-50
    [83]A.E. Torma, R. Guay, Effects of particle size on the biodegradation of a sphalerite concentrate, Nat. Can.,1976,103:133-138
    [84]S.N. Groudev, Oxidation of zinc sulfides by thiobacillus ferrooxidans, C. R. Acad. Bulgar Sci.,1983,36:105-108
    [85]Sanmugasunderam, Visvanathakurukal, Kinetic studies on the biological leaching of a zinc sulfide concentrate in two stage continuous stirred tank reactors, PhD Dissertation, 1981, The University of British Columbia (Canada)
    [86]M. Pistorio, G. Curutchet, E. Donati et al, Direct zinc sulfide bioleaching by Thiobacillus ferrooxidans and Thiobacillus thiooxidans, Biotechnology Letter,1994, 16 (4):419-424
    [87]Oswaldo Garcia Jr., Jerry M. Bigham, Olli H. Tuovien, Sphalerite oxidation by Thiobacillus ferrooxidans and Thiobacillus thiooxidans, Can. J. Microbiol.,1995,41: 578-584
    [88]M. Boon, M. Snijder, GS. Hansford, et al, Oxidation kinetics of zinc sulphide with Thiobacillus ferrooxidans, Hydrometallurgy,1998,48(2):171-186
    [89]杨显万,邱定蕃,湿法冶金,北京:冶金工业出版社,1997
    [90]F.K. Grundwell, Kinetics and mechanism of the oxidative dissolution of a zinc sulfide concentrate in ferric sulfate solution, Hysrometallurgy,1987,19:227-242
    [91]P. Massacci, M. Recinella, L. Piga, Factorial experiments for selective leaching of zinc sulfide in ferric sulfate media, Int. J. Miner. Process,1998 (53):213-224
    [92]M. Boon, K.C.A.M. Luyben J.J. Heijnen, The use of on-line off-gas analyses and stoichiometry in the bio-oxidation kinetics of sulfide minerals, Hydrometallurgy,1998, 48:1-26
    [93]W.K. Choi, A.E. Torma, R.W. Ohline et al, Electrochemical aspects of zinc sulfide leaching by thiobacillus ferrooxidans, Hydrometallurgy,1993,33:137-152
    [94]兰兴华,金和基本金属生物浸出的新进展,世界有色金属,2002(5):28-31
    [95]T.A. Flowler, F.K. Crundwell, Leaching of zinc sulfide by thiobacillus ferrooxidans: Experiments with a controlled redox potential indicate no direct bacterial mechanism, Appl. Envir. Microbiol.1998,64 (10):3570-3375
    [96]T.A. Flowler, F.K. Crundwell, Leaching of zinc sulfide by thiobacillus ferrooxidans: Bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ion, Appl. Envir. Microbiol.1999,65 (12): 5285-5292
    [97]T.A. Flowler, F.K. Crundwell, The role of thiobacillus ferrooxidans in the bacterial leaching of zinc sulfide, Presented at IBS 99, Spain.1999:273-282
    [98]Y.P.M. Driessens, T.A. Flowler, F.K. Grundwell, A comparison of the bacterial and chemical leaching of sphalerite at the same solution conditions, Presented at IBS 99, Spain:201-208
    [99]雷云,贾云芝,细菌浸出硫化锌矿氧化动力学研究进展,有色金属,1999,51(4):80-82
    [100]K.A. Natarajan, In:Indo-US seminar on special topics in mineral processing, 1987-1988
    [101]Y.A. Attia, M. El-Zeky, Effects of galvanic interactions of sulfides on extraction of precious metals from refractory complex sulfides by bioleaching, Inter. J. Miner. Processing,1990,30 (1-2):99-111
    [102]N. Jyothi, K.N. Sudha, K.A.Natarajan, Electrochemical aspects of selective bioleaching of sphalerite and chalcopyrite from mixed sulphides, Inter. J. Miner. Processing,1989,27 (3-4):189-203
    [103]M. Carta, M. Ghiani, G. Rossi, Beneficiation of a complex sulfide ore by an interated process of flotation and bioleachoing, In:Procc. Complex Sulfide Ore Conference. Rome. Institution or Mining and Metallurgy. London,1980
    [104]C.Gomez, J.L.Limpo, A.De Luis et al, Hydrometallurgy of bulk concentrates of Spanish complex sulphides:chemical and bacterial leaching, Canadian Metallurgical Quarterly,1997,36 (1):15-23
    [105]C. Gomez, M.L. Blazquez, A Ballester. Bioleaching of a Spanish complex sulphide ore bulk concentrate. Miner. Eng.,1999,12 (1):93-106
    [106]F.Torres, M.L.Blazquez, F.Gonzalez et al, Bioleaching of different sulfide concentrates using thermophilic bacteria, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science,1995,26 (3):455-465
    [107]P.Balaz, M.Kusnierova, V.I.Varencova et al, Mineral properties and bacterial leaching of intensively ground sphalerite and sphalerite-pyrite mixture, Inter. J. Miner. Processing,1993-1994,40 (3-4):273-285
    [108]童雄,魏以和,细菌氧化硫化矿物的机理及探讨(J),云南冶金,1996,4:19-23
    [109]Arpad E.Torma,生物湿法冶金的现状和未来的挑战(J).国外金属矿选矿1990,10:1-7(李纪归译)
    [110]A.V. Belyi, G.K. Zinenko, B.G. Korrov, Bacterial leaching of a collective copper-zinc concentrate, Tsvetnye Metally,1987(8):25-27
    [111]I. Palencia, R. Romero, F. Carranza, Silver catalyzed IBES process:application to a Spanish copper-zinc sulfide concentrate. Part 2. Biooxidation of the ferrous iron and catalyst recovery, Hydrometallurgy,1998,48:101-112
    [112]R. Romero, I. Palencia, F. Carranza, Silver catalyzed IBES process:application to a Spanish copper-zinc sulfide concentrate. Part 3. Selection of the operational parameters for a continu-ous pilot plant, Hydrometallurgy,1998,49:75-86
    [113]G.Roy Chaudhury, R.P.Das, Bacterial leaching-complex sulphide of copper, lead and zinc, Inter. J. Miner. Processing.1987,21 (1-2):57-64
    [114]P.C. Miller, Large-scale bacterial leaching of a copper-zinc ore in situ. Fundamental and Applied Biohydrometallurgy, Proceedings of the Sixth International Symposium on Biohydrometallurgy,1986:215-239
    [115]Lasse Ahonen, Olli H Tuovinen, Bacterial leaching of complex sulfide ore samples in bench-scale column reactors, Hydrometallurgy,1995,37(1):1-21
    [116]Ake Sandstrom, Stig Petersson, Bioleaching of a complex sulphide ore with moderate thermophilic and extreme thermophilic microorganisms, Hydrometallurgy,1997,46 (1):181-190
    [117]H.M. Lizama, M.J. Fairweather, Z. Dai et al, How dose bioleaching start? Hydrometallurgy,2003,69:109-116
    [118]Yasuhiro Konishi, Hirotugu Nishimura, Satoru Asai, Bioleaching of sphalerite by the acidophilic thermophile Acidianus brieleyi, Hydrometallurgy,1998,47:339-352
    [119]Yasuhiro Konishi, Hideaki Kubo, Satoru Asai, Bioleaching of zinc sulfide concentrate by Thiobacillus ferrooxidans, Biotechnology & Bioengineering,1992,39 (1):66-74
    [120]Ake Sandstrom, Stig Petersson, Bioleaching of a complex sulphide ore with moderate thermophilic and extreme thermophilic microorganisms, Hydrometallurgy,1997,46 (1):181-190
    [121]E. Gomez, A. Ballester, F. Gonzalez et al, Leaching capacity of a new extremely thermophilic microorganism, sulfolobus rivotincti, Hydrometallurgy,1999,52: 349-366
    [122]雷云,杨显万,生物湿法冶金与西部矿产资源开发,有色金属,2000,52(4):100-103
    [123]S.C. Selvi, J.M. Modak, K.A. Natarajan, Electrobioleaching of sphalerite flotation concentrate, Miner. Eng,1998,11 (8):783-788
    [124]Y科西尼,嗜热嗜酸A.b酸杆菌浸出硫化锌精矿,国外金属矿选矿,2000,9:31-35
    [125]Lesia Harahuc, Hector M. Lizama, Isamu Suzuki, Effect of anions on selective solubiliza-tion of zinc and copper in bacterial leaching of sulfide ores, Biotech. Bioengin,2000,69(2):196-203
    [126]A. Ballester, F. Gonzalez, M.L. Blazquez et al, Influence of various ions in the bioleaching of metal sulphides, Hydrometallurgy,1990,23 (2-3):221-235
    [127]T.J. Harvey, W.Van Der Merwe, K. Afewu, The application of the GeoBiotics GEOCOAT(?) biooxidation technology for the treatment of sphalerite at Kumba resources' Rosh Pinah mine, Miner. Eng,2002,15:823-829

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700