碳基复合吸波材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吸波材料作为现代飞行器、武器装备的基础材料,是现代隐身技术的重要支撑。随着电子化和信息化技术的迅猛发展,各种电子和通信设备给人们带来极大便利的同时也对人们生存环境和健康造成危害。吸波材料不仅应用于军事隐形、对抗和反对抗,而且应用于人体安全防护、通讯及导航系统的电磁干扰、微波暗室的消除、安全信息保密等许多方面。因此高性能吸波材料的开发已成为研究的主要方向。目前,通过碳材料改性方法制备复合吸波材料的研究已经取得一定的研究进展,但是制备的复合材料仍然存在着吸收频带窄,强度不高,或工程应用实施困难等问题。在此基础上,本文结合实验室聚丙烯腈(PAN)基碳纤维的制备工艺,对碳纤维前驱体前驱体PAN聚合液进行改性处理,利用添加的磁性原材料与PAN中活性元素反应生成磁性能优异的铁磁性化合物改善复合材料的磁导率,研制兼具电损耗和磁损耗的新型碳基复合吸波材料。探索制备过程中热稳定气氛、碳化温度、磁性原材料含量等各工艺参数对碳基复合吸波材料性能的影响规律。并根据电磁波传输理论,结合碳材料和磁性材料的特性,利用计算机辅助优化设计碳基复合材料的电磁参数,选择相互匹配的介电常数和磁导率
     在磁性原材料选择方面,本文选用还原铁粉、纳米铁粉和草酸亚铁作为改性前驱体添加到PAN聚合溶液中,凝固成形后在N2氛围中进行热处理得到碳基复合材料。复合材料中Fe元素主要以Fe304的形式存在。其中加入还原铁粉和纳米铁粉制备的碳基复合材料表现出了优异的吸波性能,当涂层厚度分别为1.9mm和2.2mm时,在12.7~18GHz频段内,两种复合材料的反射率都小于-10dB。当涂层厚度增加至2.5mm时,最小反射损失值分别为-46dB和-29.8dB。由此可知,选择还原铁粉作为PAN基碳材料的改性前驱体制备碳基复合吸波材料的方法是切实可行的。
     还原铁粉加入PAN聚合液中,一部分Fe可以和PAN分子链上由IA引入的羧基反应,把氢置换出来,进入PAN分子链,另一部分主要以单质铁的形式存在,并且在热稳定化过程中稳定存在。在热处理过程中,Fe结合PAN大分子链上的活性N、O元素生成磁性化合物,提高碳基体的磁导率。多相磁性物质的存在有利于增加界面极化对介电常数的贡献,同样有利于磁导率的多个共振波峰的出现,拓宽吸波频带。
     通过对不同热稳定气氛和碳化温度的碳基复合材料的碳收率、电磁参数和吸波性能的研究表明:碳基复合材料的碳收率随着碳化温度的升高而减小;空气中预氧化后再碳化得到的碳基复合材料的碳收率较大,其次是氮气中热处理;热处理至700℃,氩气中得到的复合材料的碳收率最低。通过分析不同温度下的碳基复合材料的电磁参数可知,随着碳化温度的升高,碳基复合材料的介电常数增加,介电损耗增强。比较空气、氮气和氩气三种气氛中热稳定化的碳基复合材料的吸波性能可知,在空气中预氧化后再在N2氛围中热处理得到的复合材料的吸波性能较好。
     随着还原铁粉含量的增加,PAN线形大分子链的有序性遭到破坏,结晶度降低。当含量增加到一定值,复合材料中磁性物质会阻碍基体导电网络的形成。因此,复合材料的介电常数实部先增大后降低。然而,磁导率的大小不仅与磁性物质含量有关系,也与物相形态和各成分相对含量有关。分析吸波效果可知,在相同的厚度下,随着铁含量的增加吸收峰向低频移动,当含量达到一定值时,吸收峰返回高频段,复合材料的整体吸波性能下降。
     结合湿法纺丝工艺,将含有还原铁粉的PAN聚合液纺制成纤维,制备碳基复合纤维材料。通过性能分析可知,还原铁粉作为PAN基纤维的改性磁材料的前驱体,其颗粒尺寸较大,在纤维中分散不均匀,不利于与基体之间的结合和反应。因此在制备过程中应选用具有纳米级尺寸且结构疏松的改性磁材料,有利于改善复合材料的磁导率。而且在PAN复合原丝的纺制过程中,要避免还原铁粉的氧化。通过对碳基复合材料的各工艺参数进一步优化,制备了一种高性能的碳基复合薄膜材料。结果显示,材料涂层厚度为1.3mm时,低于-10dB的有效频段为6-13.2GHz和13.9-18GHz,在12.1GHz反射损失值最小为-21.1dB。当涂层厚度增加至1.6mm,高频段反射率损失减小,低频段反射率损失增大,2-10GHz和16.8-18GHz内反射率都低于-10dB,反射损失值在6.3GHz达到最小为-21.1dB。研究表明,碳基体和磁性物质的结构形态对复合材料的吸波性能有很大影响。多孔中空结构的碳基体可以多重散射进入材料内部的电磁波,从而可以有效达到衰减电磁波的目的。纳米级片状结构磁性材料可以有效的改善碳基复合材料的磁导率,提高复合材料整体的吸波性能。
     利用matlab程序软件模拟与碳基体介电常数相匹配的磁导率,通过分析数据可知,在低频段,吸波材料必须有高的介电常数和磁导率才能对电磁波有效吸收,且随着频率的增加,磁导率可以相应降低。然而,基体材料的介电常数值很小,则很难在低频段实现好的吸收效果;在相对高的频段内,碳基体对磁导率值的要求降低,而且较易实现与磁性材料的复合,从而达到好的吸波性能。
As basic material of modern aircrafts, weapons and electronic equipment, microwave absorbing material is an important support for the modern stealth technology. With the rapid development of electronic and information technology, a lots of electronic and information equipment introduce a great deal of harm to the health and living environment of human beings while bringing people with great convenience. Thus, microwave absorbing material is not only used in military stealth, confrontation and anti-confrontation, but also applied in safe guarding for human body, elimination of electromagnetic interference and microwave dark-room produced by communication and navigation systems, information safety and so on. Therefore, the development of high-performance absorbing materials has become the main research direction recently. At present, some studies have made progress in the preparation of composites as absorbers by modification carbon materials. However, the absorbers still have some problems, such as narrow absorption band, weak electromagnetic wave absorption, or difficulty in engineering application. Based on the preparation technology of carbon fiber in our laboratory, the novel carbon based composites with dielectric and magnetic losses were prepared using polyacrylonitrile(PAN) and magnetic material as precursors in the paper, which reacted with active element from PAN to form ferromagnetic compounds and improved the permeability of carbon based composites. In the process of preparation, technological parameters of polymerization, forming, thermal stabilization and carbonization were studied, and various process parameters that effected on the absorbing properties were investigated, such as thermal stabilization atmospheres, carbonization temperatures, contents of modified magnetic materials and so on. According to the theory of electromagnetic wave transmission, combining with the characteristics of carbon materials and magnetic materials, the carbon based composites were designed, and the matched electromagnetic parameters were optimized.
     In the choice of modified magnetic material aspect, Fe, nano-Fe and FeC2O4·2H2O as the precursors were added in PAN solution. After heat treatment in N2atmosphere, carbon-based composites were obtained. Iron element exists in the form of Fe3O4in composite materials. The reflectivity was below-10dB in the frequency range of12.7-18GHz with1.9mm and2.2mm in thicknesses when the composites used Fe and nano-Fe as precursors. When the thickness increased to2.5mm, the minimum reflection loss value was-46dB and-29.8dB respectively. It indicates that the fabrication of carbon based composites using Fe as precursor is feasible.
     When Fe powders were added in PAN solution, a part of Fe reacted with carboxyl group, which was introduced by itaconic acid(IA) of PAN molecular chain, and displaced hydrogen. The other part of Fe was not involved in chemical reaction even in the process of thermal stabilization. During the heat treatment, Fe combined with active N and O to produce magnetic compounds, which would improve the complex permeability of carbon matrix. The interfacial polarization of multi-phase magnetic materials increased the contribution to the complex permittivity, and benefited to the appearance of permeability multi-resonance peaks and broadening of wave absorbing band.
     The carbon yield, electromagnetic parameters and wave absorption properties of the carbon based composites obtained at different thermal stabilization atmosphere and carbonization temperature were studied. The results showed that the carbon yield decreased with the increase of carbonization temperature, and compared with that of the composite heat-treated in N2atmosphere, the carbon yield of the composite stabilized in air before carbonization was bigger. For the composites thermal stabilized in N2, air and Ar atmospheres and carbonized at700℃, the carbon yield of that in Ar was lowest. Through analyzing the electromagnetic parameters of the composites carbonized at different temperatures, it showed that the permittivity increased with the increase of temperature. The composite, which was oxidative stabilized in air and carbonized in N2, displayed a better absorbing performance.
     With the content of Fe increase, the order of PAN linear macromolecular chain from PAN was destroyed, and the crystallinity was decreased. When the content increased to a certain value, the magnetic materials in the composite prevented the formation of conductive network. Therefore, the real part of permittivity increased firstly and then decreased. However, the complex permeability was also influenced by the phase, relative content and morphology of the magnetic substances. The absorption peak moved to the low frequency band with the increase of iron content. However, when the content increased to a certain value, it returned to the high frequency, meanwhile the overall microwave absorption property of the composite declined.
     PAN composite fiber was prepared using wet spinning method, followed by heat treatment. The performance analysis showed that the particle size of the iron as modified precursor was too large to disperse uniformly, and it was not conducive to the combination and reaction with the carbon matrix. Therefore, in order to improve the permeability of carbon fiber composites, it was necessary to select magnetic particles with nanometer size and loose structure as modification material, and avoid to be oxidized in the spinning process. In addition, through optimizing the process parameters of the carbon based composite, one high-performance composite was prepared. An optimal reflection loss of-21.1dB was obtained at12.1GHz with the-10dB bandwidth over the frequency ranges of6-13.2GHz and13.9~18GHz for the absorber thickness of1.3mm. When the thickness increased to1.6mm, the minimum reflection loss value of-19.9dB was observed at6.3GHz and the reflection loss values exceeding-10dB were obtained in the frequency ranges of2~10GHz and16.8-18GHz. The results showed that the structure of the carbon matrix and magnetic materials had a significant impact on the microwave absorption property of the composite. The carbon matrix with porous and hollow structure can scatter electromagnetic wave multiply, and effectively achieved the purpose of attenuating the electromagnetic wave. The flaky nanoscale magnetic materials can effectively improve the permeability and absorbing properties of the carbon-based composites.
     Complex permeability matched with the complex permittivity of the carbon matrix was simulated using Matlab software. The simulation data showed that the absorber, which had high permittivity and permeability, could effectively absorb electromagnetic wave of low frequency, and the value of permeability decreased with the increase of frequency. However, because of the low permittivity, it is difficult to achieve excellent absorption for the composite. During the relatively high frequency band of2~18GHz, lower permeability could meet the request of carbon matrix, thus, it was easier to composite with magnetic materials and had good absorption performance.
引文
[1]邢丽英.隐身材料.北京:化学工业出版社[M],2004.
    [2]崔东辉,朱绪宝.雷达吸波材料发展趋势[J].飞航导弹,2000,11:54-57.
    [3]Chin WS, Lee DG. Development of the composite RAS (radar absorbing structure) for the X-band frequency range[J]. Composite Structures,2007,77:457-465.
    [4]汪世平.隐身吸波涂料概述[J].上海涂料,2006,44(5):16-18.
    [5]胡传妍.隐身涂层技术[M].北京:化学工业出版社,2004.
    [6]李洪瑞,刘长华,朱守中.雷达吸波材料技术研究综述[J].中国西部科技,2008,7(25):6-8.
    [7]Fan HL, Yang W, Chao ZM. Microwave absorbing composite lattice grids[J]. Composites Science and Technology,2007,67:3472-3479.
    [8]Zhou KS, Deng JJ, Yin LS, Ma SH, Gao SH. Microwave absorbing properties of La0.Ba0.2MnO3 nano-particles[J]. Transactions of Nonferrous Metals Society of China.2007,17:947-950.
    [9]Yu B, Qi L, Sun H, Ye JZ. Radar wave absorbing characterization of bicomponent fibers[J]. Journal of Materials Science,2007,42:3783-3788.
    [10]谢俊磊,杜仕国,施冬梅.新型雷达吸波材料研究进展[J].飞航导弹,2008,7:58-61.
    [11]康青.新型微波吸收材料[M].北京:科学出版社,2006.
    [12]高攸纲,张苏慧.电磁环境对人体健康的危害效应和剂量学中存在的若干问题[J].安全与电磁兼容,2004,6:38-40.
    [13]石慧宇,李萍,马莹.高强度电磁辐射对人体产生的危害及有效防护[J].高新技术,201 0,23:13-13.
    [14]邓桦.电磁辐射和微波的生物学效应[J].国外医学·放射医学核医学分册,2002,26(4):191-193.
    [15]刁庆安,高故纲.电磁环境对生态的危害及防护[J].基础医学与临床,2000,20(1):3-7.
    [16]Folgueras LC, Nohara EL, Faez R, Rezende MC. Dielectric microwave absorbing material processed by impregnation of carbon fiber fabric with polyaniline[J]. Materials Research,2007,10(1):95-99.
    [17]Wang ZZ, Bi H, Liu J, Sun T, Wu XL. Magnetic and microwave absorbing properties of polyaniline/γ-Fe2O3 nanocomposite[J]. Journal of Magnetism and Magnetic Materials,2008,320:2132-2139.
    [18]赵东林,沈曾民.含碳纳米管微波吸收材料的制备及其微波吸收性能研究[J].无机材料学报,2005,20(3):608-612.
    [19]Ling QC, Sun JZ, Zhao Q, Zhou Q. Microwave absorbing properties of linear low densitypolyethylene/ethylene-octene copolymer composites filled with short carbon fiber[J]. Materials Science and Engineering B,2009,162:162-166.
    [20]Caffarena VR, Capitaneo JL. Microwave absorption properties of Co, Cu, Zn substituted hexaferrite polychloroprene nanocomposites[J]. Materials Research,2008,11(3):335-339.
    [21]Chen Z, Yang A. Mabalingam K, Averett KL, Gao J, Brown GJ. Structure, magnetic, and microwave properties of thick Ba-hexaferrite films epitaxially grown on GaN/Al2O3 substrates[J]. Applied Physics Letters,2010,96:242502-3.
    [22]Allibe J, Bougot-Robin K, Jacquet E, Infante C, Fusil S, Carretero C. Optical properties of integrated multiferroic BiFeO3 thin films for microwave applications[J]. Applied Physics Letters,2010,96:182902-3.
    [23]Yang Y, Zhang BS, Xu WD. Microwave absorption studies of W-hexaferrite prepared by Co-precipitation/mechanical milling[J]. Journal of Magnetism and Magnetic Materials,2003,265(2):119-122.
    [24]Wei J, Liu JH, Li SM. Electromagnetic and microwave absorption properties of Fe3O4 magnetic films plated on hollow glass spheres[J]. Journal of Magnetism and Magnetic Materials,2007,312:414-417.
    [25]Ma J, Li JG, Ni X, Zhang XD, Huang JJ. Microwave resonance in Fe/SiO2 nanocomposite[J]. Applied Physics Letters,2009,95:102505-3.
    [26]Zou Z, Xuan AG, Yan ZG, Wu YX, Li N. Preparation of Fe3O4 particles from copper/iron ore cinder and their microwave absorption properties[J]. Chemical Engineering Science,2010,65(1):160-164.
    [27]张秀成,赵振声,何华辉.微波铁氧体吸收剂复磁导率和复介电常数的温度特性研究[J].功能材料,1994,25(2):169-171.
    [28]刘归.纳米Fe304复合材料的微波吸收特性研究[D].硕士学位论文,中南大学,2005.
    [29]王群,葛凯勇,毛倩谨,张晓宁,周美玲.超细镍粉在电磁防护功能材料中的应用[J].材料与表面处理,2002,2:41-43.
    [30]潘顺康,成丽春,林培豪,陆长福,罗小桃,杨涛.Fe-Cr合金吸波性能研究[J].广西师范大学学报:自然科学版,2010,28(2):87-90.
    [31]Feng YB, Qiu T, Shen CY. Absorbing properties and structural design of microwave absorbers based on carbonyl iron and barium ferrite[J]. Journal of Magnetism and Magnetic Materials,2007,318:8-13.
    [32]李淑环,邹华,王鑫,张立群,田明.羰基铁粉/锶铁氧体/MVQ吸波复合材料的制备与性能研究[J].橡胶工业,2010,57(1):17-21.
    [33]刘飚,官建国,王琦,张清杰.核壳型铁钴复合材料的制备及其微波吸收性能的研究[J].功能材料,2005,36(1):133-135.
    [34]Han Z, Li D, Liu XG, Li J, Geng DY, Zhang ZD. Broadband electromagnetic-wave absorption by FeCo/nanocapsules[J]. Applied Physics Letters,2009,95: 023114-3.
    [35]陈利民,亓家钟,朱雪琴.纳米γ-(Fe,Ni)合金颗粒的微观结构及微波吸收特性[J].兵器材料科学与工程,1999,22(4):3-6.
    [36]赵振声,张秀成,聂言,何华辉.多晶铁纤维吸波材料的微波磁性研究[J].磁性材料及器件,2001,31(1):18-20.
    [37]杨志民,毛昌辉,杜军.杨剑,苏兰英,高兆祖.Fe4N电磁波吸收剂的合成及其吸波性能的研究[J].稀有金属,2002,26(2):103-107.
    [38]Qing YC, Zhou WC, Jia S. Dielectric properties of carbon black and carbonyl iron filled epoxy-silicone resin coating[J]. Journal Material Science,2010,45: 1885-1888.
    [39]Fang ZG, Li CS, Sun JY, Zhang HT. Zhang JS. The electromagnetic characteristics of carbon foams[J]. Carbon,2007,45:2873-2879.
    [40]吴红焕.短切碳纤维和炭黑的吸波性能研究[D].硕士学位论文,西北工业大学,2007.
    [41]Kim JB, Lee SK, Kim CG. Comparison study on the effect of carbon nano materials for single-layer microwave absorbers in X-band[J]. Composites Science Technology,2008,68:2909-2916.
    [42]Atwater JE, Wheeler Jr RR. Complex permittivities and dielectric relaxation of granular activated carbons at microwave frequencies between 0.2 and 26 GHz[J]. Carbon,2003,41:1801-1807.
    [43]Paton KR, Windle AH. Efficient microwave energy absorption by carbon nanotubes[J]. Carbon,2008,46:1935-1941.
    [44]Micheli D, Apollo C, Pastore R, Marchetti M. X-Band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation[J]. Composites Science Technology,2010,70:400-409.
    [45]吴红焕,于晓艳,张玲.碳纤维吸波材料的研究进展[J].材料导报,2007,21(5):115-117.
    [46]李轶,徐劲峰,徐政.吸波纤维研究进展[J].现代陶瓷技术,2005,1:24-29.
    [47]Mizoguchi H, Ueda K, Orita M. Decomposition of water by a Ca TiO3 photocatalyst under UV light irradiation[J]. Materials Research Bulletin,2002, 37(15):2401-2406.
    [48]M Wong, M Paramsothy, Xu XJ. Physical interactions at carbon nanotube-polymer interface[J]. Polymer,2003,44(25):7757-7764.
    [49]Yun HL. Chang EL, Kim DH. Gating effect of suspende multiwalled carbon nanotube with all-shell rooted from electrodes:parallel growth from ferromagnetic catalytic contact[J]. Chemical Physics Letters,2004,392(4-6): 319-323.
    [50]Duesberg GS, Graham AP, Kreupl F. Ways towards the scaleable integration of carbon nanotubes into silicon based technology[J]. Diamond and Related Materials,2004,13(20):354-361.
    [51]Li XF, Guan WC, Yan HB. Fabrication and atomic force microscopy/friction force microscopy (AFM/FFM) studies of polyacrylamide-carbon nanotubes (PAM-CNTs) copolymer thin films [J]. Materials Chemistry and Physics,2004, 88(1):53-58.
    [52]廖宇涛,张兴华.多壁碳纳米管电磁参数的研究和吸波性能模拟[J].材料导报,2006,20(3):138-140.
    [53]葛凯勇,王群,张晓宁,毛倩瑾,周美玲.碳化硅吸波性能改进的研究[J].功能材料与器件学报,2002,8(3):263-266.
    [54]于新民,周万城,朱冬梅,郑文景,罗发.C涂层对SiC纤维介电性能的影响[J].精细化工,2008,25(12):1171-1174.
    [55]张玉娣,周新贵,张长瑞.Cf/SiC陶瓷基复合材料的发展与应用现状[J].材料工程.2005,4:60-63.
    [56]曹英斌,张长瑞,陈朝辉,周新贵.Cf/SiC陶瓷基复合材料发展状况[J].宇航材料工艺,1999,5:10-14.
    [57]杜光旭,王旭辉,涂国荣,周晓华,郝文析.Ni-Co化学镀制备陶瓷基吸波材料[J].无机化学学报,2006,22(2):281-286.
    [58]Kima SS, Kima ST. Ahnbl JM. Magnetic and microwave absorbing properties of Co-Fe thin films plated on hollow ceramic microspheres of low density[J]. Journal of Magnetism and Magnetic Materials,2004,271(1):39-45.
    [59]Mouchon E. Microwave absorbent preparation, mechanic properties and microwave conductivity of SiC fiber reinforced Nasicon matrix composite[J]. Materials Science,1996,31(2):323-332.
    [60]宜兆龙,易建政.雷达波吸收剂的研究现状及发展趋势[J].材料科学与工程,1999,17(2):94-97.
    [61]孙晶晶,李建保,张波.陶瓷吸波材料的研究现状[J].材料工程,2003,2:43-47.
    [62]欧阳国恩.碳化硅-碳功能纤维[J].功能材料,1999,25(4):300-305.
    [63]陈其道,卢建平,洪啸吟.导电高分子材料的新进展[J].材料研究学报,1997,11(6):587-592.
    [64]Pant RP. Dhawan SK, Kataria ND. Investigations on ferrofluid-conducting polyaniline polymer and its application[J]. Journal of Magnetism and Magnetic Materials,2002,252:16-19.
    [65]毛卫民,方鲲,吴其晔,冯惠平.导电聚苯胺/羰基铁粉复合吸波材料[J].复合材料学报,2005,22(1):11-14.
    [66]丁春霞,范丛斌,章洛汗.新型视黄基席夫碱盐的合成与吸波性能研究[J].合成材料老化与应用,2006,35(4):1-3.
    [67]王少敏,高建平,于九皋,李卫国,王为.视黄基席夫碱盐的合成及其吸波性能[J].应用化学,1999,16(6):42-45.
    [68]Liu JR, Itoh M, Horikawa T, Taguchi E, Mori H, Machida K. Iron based carbon nanocomposites for electromagnetic wave absorber with wide bandwidth in GHz range[J]. Applied Physics A,2006,82:509-513.
    [69]Fang ZG, Cao XM, Li CS, Zhang HT, Zhang JS, Zhang HY. Investigation of carbon foams as microwave absorber:Numerical prediction and experimental validation[J]. Letters to the Editor/Carbon,2006,44:3348-3378.
    [70]Nie Y, He HH, Gong RZ, Zhang XC. The electromagnetic characteristics and design of mechanically alloyed Fe-Co particles for electromagnetic-wave absorber[J]. Journal of Magnetism and Magnetic Materials,2007,310:13-16.
    [71]袁军,周小艳.电磁吸波材料研究的现状与发展趋势[J].医疗卫生装备,2011,32(5):76-77.
    [72]Huo J, Wang L, Yu HJ. Polymeric nanocomposites for electromagnetic wave absorption[J]. Journal of Materials Science,2009,44:3917-3927.
    [73]高文,冯志海.涂层改性碳纤维复合材料的微波性能研究[J].宇航材料工艺,2000,30(5):53-56.
    [74]黄小忠,冯春祥,李效东.一种新型的Ba-M型铁氧体磁性涂层吸波碳纤维研制[J].新型碳材料,1999,14(4):72-74.
    [75]孟辉,王智慧,胡传圻.碳纤维/羰基铁粉复合涂层吸波效果及机理分析[J].材料保护,2006,1:17-19.
    [76]Park KY, Han JH, Lee SB, Kim JB, Yi JW, Lee SK. Fabrication and electromagnetic characteristics of microwave absorbers containing carbon nanofibers and NiFe particles[J]. Composites Science Technology,2009,69: 1271-1278.
    [77]Lin HY, Zhu H, Guo HF, Yu LF. Investigation of the microwave-absorbing properties of Fe-filled carbon nanotubes[J]. Materials Letter,2007,61: 3547-3550.
    [78]汪洁洋.碳纳米管对电磁波吸收特性的研究[D].硕士学位论文,湖南大学2005.
    [79]廖宇涛.碳纳米管复合材料的电磁参数与吸波性能的研究[D].硕士学位论文,广东工业大学,2006.
    [80]Qing YC, Zhou WC, Luo Fa, Zhu DM. Epoxy-silicone filled withmulti-walled carbon nanotubes and carbonyl iron particles as a microwave absorber[J]. Carbon, 2010,48:4074-4080.
    [81]Collins PG, Zettl A, Band H. Nanotube nanodevice[J]. Science,1997,278: 100-102.
    [82]Dong XL, Zhang Z D, Jin S R. Characterization of Fe-Ni(C) nanocapsulates synthesized by arc discharge in methane[J]. Journal Materials Research,1999,14 (5):1782-1790.
    [83]Wang Z H, Zhang ZD, Choi CJ. Structure and magnetic properties of Fe(C) and Co(C) nanocapsules prepared by chemical vapor condensation[J]. Journal of alloy and compounds,2003,361(1/2):289-293.
    [84]Sun X C, Toledo J A. Magnetic and microstructural properties of the assembly of Ni(C) nanoparticles[J]. Current Applied Physics,2002,2(2):113-116.
    [85]Liu XG, Li B, Geng DY, Cui WB, Yang F, Xie ZG. (Fe, Ni)/C nanocapsules for electromagnetic-wave-absorber in the whole Ku-band[J]. Carbon,2009,47: 470-474.
    [86]安玉良,王俊,袁霞,刘艳秋.碳包覆铁纳米颗粒制备及电磁性能分析[J].纳米技术与精密工程,2010,8(1):16-19.
    [87]Yosida Y, Shida S, Ohsuna T, Shiraga N. Synthesis, identification, and growth mechanism of Fe, Ni and Co crystals encapsulated in multiwalled carbon nanocages[J]. Journal of Applied Physics,1994,76(4533):358446-7.
    [88]Zhang XF, Dong XL, Huang H, Lv B, Lei JP, Chai CJ. Microstructure and microwave absorption properties of carbon-coated iron nanocapsules[J]. Journal of Physics D:Applied Physics,2007,40:5383-5387.
    [89]Zhang XF, Dong XL, Huang H, Liu YY, Wang WN, Zhu XG, Lv B, Lei JP. Microwave absorption properties of the carbon-coated nickel nanocapsules[J]. Applied Physics Letters,2006,89:053115-3.
    [90]Wang W, Wang CG, Guo Y. Fabrication and microwave characteristics of Fe3O4/C composites[J]. Advanced Materials Research,2012,430-432:146-149.
    [91]王雯,王成国,郭宇,陈肠.新型碳基复合吸波材料的制备及性能研究[J].航空材料学报,2012,32(1):64-68.
    [92]王成国,王雯,于美杰.一种碳基复合吸波材料的制备方法[P],201110219859.8.
    [93]Lin HY, Zhu H, Guo HF, Yu LF. Microwave-absorbing proper of Co-filled carbon nanotubes[J]. Materials Research Bulletin,2008,43(10):2697-2702.
    [94]Wang M, Duan YP, Liu SH, Li XG. Ji ZJ. Absorption properties of carbonyl-iron/carbon black double-layer microwave absorbers[J]. Journal of Magnetism and Magnetic Materials,2009,321:3442-3446.
    [95]胡礼初.吸波材料的制备与电磁性能的研究[D].硕十学位论文,广东工业大学,2007.
    [96]吴子秋.新型吸波材料的制备及表征[D].硕士学位论文,广东工业大学,2008.
    [97]Shi XL, Cao MS, Yuan J, Fang XY. Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability[J]. Applied Physics Letters,2009,95(16):163108-3.
    [98]Wang C, Han XJ, Xu P, Zhang XL, Du YC, Hu SR. The electromagnetic property of chemically reduced grapheme oxide and its application as microwave absorbing material[J]. Applied Physics Letters,2011,98(7):072906-3.
    [99]Ding DH, Zhou WC, Zhang B. Complex permittivity and microwave absorbing properties of SiC fiber woven fabrics[J]. Joural Materials Science,2011,46: 2709-2714.
    [100]Cao MS, Song WL, Hou ZL, Wen B, Yuan J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites[J]. Carbon,2010,48: 788-796.
    [101]Tang X, Tian Q, Zhao BY, Hu KA. The microwave electromagnetic and absorption properties of some porous iron powders[J]. Materials Science and Engineering A,2007,445-446:135-140.
    [1]Gupta VB, Kumar S. The effect of heat setting on the structure and mechanical-properties of poly(ethylene-terephthalate) fiber Part 1 Structure changes[J]. Journal of Applied Polymer Science,1981,26 (6):1865-1876.
    [2]冯永宝,丘泰.传输/反射法测量微波吸收材料电磁参数的研究[J].电波科学学报,2006,21(2):293-297.
    [3]Nicolson AM, Ross GF. Measurement of the intrinsic properties of materials by time domain techniques[J]. IEEE Transsactions on Intrument and Measurement, 1970,19(6):377-382.
    [4]Wei WB. Automatic of complex dielectic constant and permeability at microwave frequencies[J]. Proceedings of the IEEE,1974,62(1):33-36.
    [5]景翠慧,蒋全兴.基于同轴线的传输/反射法测量射频材料的电磁参数[J].宇航学报,2005.26(5):630-635.
    [6]吴杰,赵锐.固体介质电磁参数自动测试系统[J].国外电子测量技术,2006,25(4):43-45.
    [7]逯贵贞,周灏,林全才.反射参数反演电磁参数的新方法[J].电波科学学报, 2009,24(2):378-381.
    [8]孙昌.低频微波吸收剂的优选、制备及性能研究[D].博士学位论文,山东大学,2007.
    [9]胡齐发.吸收剂电磁参数数据库与反射率优化[D].硕士学位论文,华中科技大学,2006.
    [1]何华辉,吴明忠,赵振声.多晶铁纤维吸收剂微波电磁参数的各向异性研究[J].物理学报,1999,48(S):138-143.
    [2]贾宝富,刘述章,林为干.复合铁氧体吸波材料电磁特性的研究[J].电子学报,1991,19(6):99-101.
    [3]赵伯琳,于卓,饶克谨.多向定向铁纤维吸波材料的雷达反射特性研究[J].电波科学学报,2004,19(3):280-255.
    [4]谢伍瑶,江建军,邓联文,何华辉.微细磁粉微波电磁参数的影响因素[J].金属功能材料,2002,9(5):28-30.
    [5]王雯,王成国,郭宇,陈旸.新型碳基复合吸波材料的制备及性能研究[J].航空材料学报,2012,32(1):64-68.
    [6]Lagarkov AN, Sarychev A K. Electromagnetic properties of composites containing elongated conducting inclusions[J]. Physics Review B,1996,53:6318-6336.
    [7]Calame JP. Evolution of Davidson-Cole relaxation behavior in random conductor-insulator composites[J]. Journal of Applied Physics,2003,94(9): 5945-5957.
    [8]Qing YC, Zhou WC, Luo F, Zhou DM. Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl Fe particles as a microwave absorber[J]. Carbon, 2010,48:4074-4080.
    [1]于美杰.聚丙烯腈纤维预氧化过程中的热行为与结构演变[D].山东大学博士学位论文,2007.
    [2]井敏.PAN基预氧丝在碳化过程中的工艺及物化行为研究[D].山东大学博士学位论文,2008.
    [3]Yu MJ, Wang CG, Bai YJ, Wang YX, Wang QF, Liu HZ. Combined effect of processing parameters on thermal stabilization of PAN fibers[J]. Polymer Bulletin,2006,57:525-533.
    [4]J M, Wang CG, Zhu B, Wang YX, Gao XP, Chen WN. Effect of Pre-oxidation and carbonization technologies on tensile strength of PAN-based carbon fiber[J]. Journal of Applied Polymer Science,2008, 108(2):1259-1264.
    [5]Wang W, Wang CG, Guo Y. Fabrication and microwave characteristics of Fe3O4/C composites[J]. Advanced Materials Research,2012,430-432:146-149.
    [6]Cao MS, Song WL, Hou ZL, Wen B, Yuan J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites[J]. Carbon,2010,48: 788-796.
    [7]Gupta AK, Singhal RP. Effect of copolymerization and heat treatment on the structure and X-ray diffraction of polyacrylonitrile[J]. Journal of Polymer Science: Polymer Physics Edition,1983,21:2243-2262.
    [8]Mathur RB, Bahl Op, Mittal J, Nagpal KC. Structure of thermally stabilized PAN fibers[J]. Carbon,1991,29(7):1059-1061.
    [9]李媛,李久生.电磁场与微波技术[M].北京:北京邮电大学出版社,2010.
    [1]Bajaj P, Paliwal DK, Gupta AK. Acrylonitrile-acrylic acids copolymers:Ⅰ. Synthesis and characterization[J]. Journal of Applied Polymer Science,1993,49:823-833.
    [2]张美珍,刘白坚,谷晓昱.聚合物研究方法[M].北京:中国轻工业出版社,2000.
    [3]Minagawa M. Miyano K, Takahashi M, Yoshii F. Infrared characteristic absorption bands of highly isotactic poly (acrylonitrile)[J]. Macromolecules,1988,21: 2387-2391.
    [4]Bajaj P, Padmanaban M. Copolymerization of acrylonitrile with 3-chloro, 2-hydroxy-propyl acrylate and methacrylate[J]. Journal of Polymer Science: Polymer Chemistry Edition,1983,21(8):2261-2270.
    [5]Usami T, Itoh T, Ohtani H, Tsuge S. Structural study of polyacrylonitrile fibers during oxidative thermal degradation by pyrolysis-gas chromatography, solid-state carbon-13 NMR, and Fourier-transform infrared spectroscopy[J]. Macromolecules, 1990,23:2460-2465.
    [6]Sivy GT, Coleman MM. Fourier transform IR studies of the degradation of the degradation of polyacrylonitrile copolymers[J]. Carbon,1981,19:127-131.
    [7]赵亚奇.水相沉淀聚合工艺制备碳纤维用高分子量聚丙烯腈[D].博士学位论文,山东大学,2010.
    [8]Deng SB, Bai RB, Chen JP. Behaviors and mechanisms of copper adsorption on hydrolyzed polyacrylonitrile fibers[J]. Journal of Colloid and Interface Science, 2003,260:265-272.
    [9]Varma SP, Lal BB, Srivastava NK. IR studies on preoxidized PAN fibers[J]. Carbon, 1976,14:207-209.
    [1]高文,冯志海.涂层改性碳纤维复合材料的微波性能研究[J].宇航材料工艺,2000,30(5):53-56.
    [2]黄小忠,冯春祥,李效东.一种新型的Ba-M型铁氧体磁性涂层吸波碳纤维研制[J].新型碳材料,1999,14(4):72-74.
    [3]宋瑞霞.纳米碳纤维表面磁性涂层的研究[D].青岛科技大学硕士学位论文,2006.
    [4]赵璐.碳纤维粉表面化学镀及其电磁性能的研究[D].北京交通大学硕十学位论文,2008.
    [5]Shen GZ, Xu Z, Li Y. Absorbing properties and structural design of microwave absorbers based on W-type La-doped ferrite and carbon fiber composites[J]. Journal of Magnetism and Magnetic Materials.2006.301:325-330.
    [6]Shen GZ, Xu M, Xu Z. Double-layer microwave absorber based on ferrite and short carbon fiber composites[J]. Materials Chemistry and Physics,2007,105: 268-272.
    [7]Park KY, Han JH, Lee SB, Kim JB, Yi JW, Lee SK. Fabrication and electromagnetic characteristics of microwave absorbers containing carbon nanofibers and NiFe particles[J]. Composites Science Technology,2009,69: 1271-1278.
    [8]刘新,王荣国,刘文博,杨玉蓉,闫亮.异形截面碳纤维复合材料的吸波性能[J].复合材料学报,2009,26(2):94-100.
    [9]陈丽娟,李文军.螺旋碳纤维-雷达隐身的关键吸波材料[J].高技术纵览,2005,9:56-57.
    [10]陈仁松,何俊发,汪建科,吴红莉.杨志凌.螺旋形纳米碳纤维的电磁波吸收特性分析[J].上海航天,2006,2:42-44.
    [11]Motojima S, Hoshiya S, Hishikawa Y. Electromagnetic wave absorption properties of carbon microcoils/PMMA composite beads in W bands[J]. Letters to the Editor/Carbon,2003,41:2653-2689.
    [12]Deliyanni EA, Bakoyannakis DN, Zouboulis AI, Matis KA, Nalbandian L Akaganeite-type β-FeO(OH) nanocrystals:preparation and characterization[J]. Microporous and Mesoporous Materials,2001,42:49-57.
    [13]Yang HX, Lu R, Downs RT, Costin G. Goethite, α-FeO(OH), from single-crystal data[J]. Acta Crystallographica Section E,2006,62:250-252.
    [14]张德勇,程海峰,唐耿平,刘海韬,周永江.吸收剂形状对雷达吸波材料性能的影响研究响[J].功能材料,2007,38(S):2963-2965.
    [15]Wu LZ, Ding J, Jiang HB, Chen LF, Ong CK. Particle size influence to the microwave properties of iron based magnetic particulate composites[J]. Journal of Magnetism and Magnetic Materials,2005,285:233-239.
    [16]吴友朋,刘徉萱,周友杰,莫斌,吴春.吸收剂颗粒尺寸对吸波材料性能的影响[J].宇航材料工艺,2010,1:42-44.
    [17]刘欣,薛向欣,段培宁.多孔结构对材料吸波性能的影响[J].材料与冶金学报,2007.6(4):306-310.
    [18]谢炜,程海峰,楚增勇.以中空多孔碳纤维为主体的轻质吸波材料吸波性能研究[J].无机材料学报,2009,24(2):320-324.
    [19]郭欣,王鲜,廖章奇.片状FeCoZr合金吸收剂吸波性能的正交实验[J].电子元件与材料,2009,28(7):27-29.
    [20]高芳乾,赵素玲.研磨介质对片状羰基铁结构及电磁性能的影响[J].中国粉体技术,2011,4(17):29-31.
    [21]葛福鼎,朱静,陈利民.吸收剂颗粒形状对吸波材料性能的影响[J].宇航材料工艺.1996,5:42-49.
    [22]Sugimoto S, Maeda T, Book D. GHz microwave absorption of a fine a-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen[J]. Journal of Alloys and Compounds,2002,330:301-306.
    [23]Wen FS, Qiao L, Zhou D. Influence of shape anisotropy on microwave complex permeability in carbonyl iron flakes/epoxy resin composites[J]. Chinese Physics B, 2008,17:2263-2267.
    [24]Wu MZ, Zhang Y, Hui DS. Microwave magnetic properties of Co50/SiO2 nanoparticles[J]. Applied physics Letters,2002,80:4404-4408.
    [25]Zhang Q, Li CF, Chen YN, Han Z, Wang H, Wang ZJ. Effect of metal grain size on multiple microwave resonances of Fe/TiO2 metal-semiconductor composite[J]. Applied Physics Letters,2010,97:133115-3.
    [26]Qing YC, Zhou WC, Luo F, Zhu DM. Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl iron particles as a microwave absorber[J]. Carbon, 2010,48:4074-4080.
    [1]秦柏,秦汝虎,金崇君.广义匹配规律的论证及在隐身材料中的应用[J].哈尔滨工业大学学报,1997,29(4):115-117.
    [2]张秀成,赵爱军,于晓凌,何华辉.网格图形法在涂层吸波材料电磁参数调整中的应用[J].磁性材料及器件,2002,33(5):8-10.
    [3]张晨.多层结构吸波复合材料的设计与制备[D].北京交通大学硕士学位论文,2007.
    [4]张皓.改性碳纳米管及复合吸波材料的制备与性能研究[D].北京交通大学硕士学位论文,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700