反应烧结碳化硅材料磨削去除机理和加工参数优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了降低加工成本,探索快速、高效加工反应烧结碳化硅(RBSiC)高性能光学材料的有效方法,本文通过材料的组成及性能测试,系统的研究了RBSiC材料的磨削去除机理和磨削表面完整性,分析了材料强度受磨削、退火和抛光处理的影响,优化了磨削加工参数,具体工作如下:
     对RBSiC材料进行了物相分析,并测试了材料的各项热性能和力学性能。RBSiC材料是由α-SiC和Si组成的多晶材料,Si相分散在SiC相间。性能测试结果显示,RBSiC材料较为致密,热性能良好,具有较高的室温抗弯强度和弹性模量,极高的硬度,断裂韧性较低,适合作为空间反射镜片。
     结合单颗磨粒临界切削深度计算,通过扫描电镜、原子力显微镜和光学显微镜等手段对磨削表面的观测,系统地研究了RBSiC材料的去除机理。RBSiC材料以脆性断裂和塑性切除两种机理去除,表现为微破碎、穿晶断裂、撕裂以及犁耕等去除方式。
     根据粗糙度测量与表面SEM观察,并结合磨削力及磨削比能方程,分析了加工参数对磨削表面粗糙度和表面形貌的影响。加工参数中砂轮轴向进给增加,使磨削力增加,粗糙度增大,断裂去除模式所占的比例增加,磨削比能降低;工作台转速对粗糙度的影响趋势不明显;光刀能够显著降低表面粗糙度,但也会使磨削中引入的亚表面裂纹扩展,增加粗糙度。累计去除厚度与砂轮轴向进给的交互作用对粗糙度的影响很大。
     通过正交试验对磨削加工工艺进行优化,得出的最佳加工参数为轴向进给0.9μm/s,工作台转速2.1转/分,光刀1分钟,累计去除厚度0.1mm后修整砂轮。
     根据对磨削后表面和截面的观察以及硬度的测量结果,建立了RBSiC材料磨削表面损伤层组织特征。磨削表面损伤层含有塑性变形层、破碎层和裂纹层,且随轴向进给增大,磨削力增加,损伤层厚度增加。
     使用X射线衍射测量以及有限元模拟方法,研究了磨削后表面残余应力状态。测量结果显示,残余应力具有很强的方向依赖性,同样轴向进给,平行工作台半径放置进行磨削,试样的残余压应力数值大,残余压应力对控制小裂纹开裂的作用较明显;抛光和退火能够释放残余压应力,800℃1h退火后残余压应力数值极低。对磨削后热应力和机械残余应力的有限元分析显示,在磨削RBSiC材料中,热载荷作用小,随轴向进给增大,机械载荷和热载荷作用降低,机械载荷降低速度快于热载荷。
     根据断裂力学和韦伯统计的方法,分析了磨削、抛光及退火后的裂纹和残余应力对强度的影响。轴向进给增大,磨削试样的特征强度下降,同样轴向进给,垂直工作台半径放置磨削的试样受磨削引入长直裂纹及较低残余压应力的影响,强度低。800℃1h的退火释放了表面残余压应力,但由于退火作用使裂纹尺寸减小,特征强度与磨削试样相近,都大于抛光试样。
     RBSiC材料性能、去除机理及强度可靠性分析对反射镜材料性能及加工工艺的研究具有重要的实用价值。
RBSiC material is a promising mirror material for space optical applications. In order to reduce the damage introduced in grinding process and enhance the grinding efficiency and the mechanics reliability, grinding mechanism, grinding parameters optimization and strength of annealed, polished and ground RBSiC material are studied.
     The structures, composition and physical properties of RBSiC are investigated. The experiment results show that RBSiC is a polycrystalline material composing ofα-SiC and Si. The filling of residual Si to the pores makes the products compact. The properties measurement results reveal that this RBSiC is appropriate for optical applications. The material has high Young’s modulus, high bending strength and outstanding thermal properties. It also has high hardness and low fracture toughness and.
     According to the calculated critical grit cut depth, the removal mechanism is explored using scan electron microscope (SEM), Atom force microscope (AFM) and optical microscope technique. The removal mechanism includes brittle fracture and ductile cutting, presented as micro fracture, plowing, grains fracture and so on.
     According to the roughness measurement and SEM observation, the effect of grinding parameters on surface roughness and surface topography is investigated. The effect of grinding parameters on grinding force and specific energy is also analyzed. The analysis shows that the increaseing down feed leads to large grinding force, which makes surfaces rough and the fracture percents increased. There has no obvious relationship between worktable rotational speed and surface roughness. Burnishing can improve the surface quality, but it can also cause the extension of subsurface cracks induced in grinding process toward the surface. As a result, the surface gets worse. The combination of the total removal depth and the down feed has significant effect on surface roughness.
     The optimized grinding parameters obtained using orthogonal tests are as follow: down feed of 0.9μm/s, worktable rotational speed of 2.1 r.p.m, burnishing for 1 minute and truing/dressing the wheel after 0.1mm is removed.
     The surface/subsurface damage characteristics are analyzed. The subsurface damage consists of plastic distortion layer, chipping layer and crack layer. The damage layer increases with down feed.
     The ground surface residual stresses were determined using X-ray diffraction technique. The results show that residual stress has great direction dependency. The residual stress is high when the specimen was ground with its long axis paralleling to the worktable radius. Anneal and polishing can relax the compressive residual stress The finite element method was used to simulate the thermal and mechanical stress in grinding processing. The analysis reveals that the effects of mechanical load and thermal load decrease with the increasing down feeds.
     The effect of residual stresses and cracks on bending strength is assessed. The increase of down feed decreases the characteristic strength. The long straight cracks have less effect on strength of the specimens ground with their long axis paralleling to the worktable radius. The compressive residual stress has better control on the small cracks than the long cracks. After anneal at 800℃for one hour the specimens has small crack size, which makes its characteristic strength close to the ground one and larger than the polished specimens.
     The investigations of properties, removal mechanism and strength reliability provide valuable experimental data on material properties and grinding optimization of RBSiC optical materials.
引文
1吴清彬,陈时锦,董申.光学遥感器轻质反射镜的结构—热优化设计.光学技术. 2003, 29(5):15~16
    2郝寅雷,赵文兴,翁志成.新型反射镜材料——碳化硅.宇航材料工艺. 2001, (4):11~14
    3 I. A. Palusinski, I. Ghozeil. Developing SiC for Optical System Applications. SPIE. 2004, 5524:14~20
    4 M. Ohmukai. Observations of SiC Mirror Damage Induced by an Argon Excimer Laser. J. Appl. Phys. 1992, (31):696~699
    5 J. S. Goela, M. A. Pickering and L. M. Cohen. Fabrication of CVD-SiC Thin Shells for X~ray Optics Applications. SPIE. 1999, 3766:81~84
    6黄清伟,高积强,金志浩.反映烧结碳化硅材料研究进展.兵器材料科学与工程. 1999, 22(1):49~53
    7 H. Kaneda. Optical Performance of the ASTRO~F Telescope at Cryogenic Temperatures. SPIE. 2003, 4850:230~241
    8黄清伟,高积强,金志浩.反应烧结碳化硅的显微组织.西安交通大学学报. 2000, 34(2):89~90
    9 H. Zhou, C. R. Zhang and Y. B. Cao. Lightweight C/SiC Mirrors for Space Application. SPIE. 2006, 6148:1~6
    10 K. M. Vinogradov. Astronomical Optics. J. Opt. Technol. 1998, 65(9):748~7501
    11 M. J. Edwards. Current Fabrication Techniques for ULE and Fused Silica Lightweight Mirrors. SPIE. 1998, 3356: 702~704
    12 W. H. Thomas. Cornings Fabrication Techniques for ULE and Fused Silica Lightweight Mirrors. SPIE. 2003, 5179:1~11
    13 R. R. VanBrocklin, M. J. Edwards, T. W. Hobbs. Corning Lightweight Core Fabrication Technologies. SPIE. 2003, 5179: 323~330
    14 M. J. Edwards. Total Quality Manufacturing:The Success of Corning's 8~meter Mirror Blank Programs. SPIE. 1998, 3352:182~193
    15 T. Dohring. Zerodur Mirror Blanks for ELTs:Technology and Production Capacity at Schott. SPIE. 2004, 5382:285~295
    16 T. Dohring. Production of The 4.1M Zerodur Mirror Blank for the VISTA Telescope. SPIE. 2004, 5494:340~349
    17 R. R. Rohioff, E. Pitz, T. Hawarden. Lightweighted Secondary Mirror for the United Kingdom Infrared Telescope. SPIE. 1999, 3785:152~160
    18 T. Hadjimichael, D. Content, C. Frohlich. Athermal Lightweight Aluminum Mirror and Structures. SPIE. 2002, 4849:396~406
    19 C. Zhou, X. Miao. Fabrication and Testing of Grazing Incidence X~ray Imaging Telescope Aspherical Objective Barrel to be Used in Astronomical Satellite. Advanced Technology Optical Telescopes IV. 1990, 1236 :718~722
    20 D. Philippe. Optical Quality and Stability of 1.8~M Aluminum Mirrors. SPIE. 1993, 1931:78~84
    21 Recent Advances in Aluminum Oxynitride (ALONTM) Optical Ceramic. L. M. Goldman, T. M. Hartnett, J. M. Wahi. SPIE. 2001, 4375: 71~73
    22 O. Citterio, P. Conconi, M. Ghigo. Progress on the Use of Ceramics Materials for High Throughput Light weight X~ray Optics. SPIE. 2000, 4012:48~49
    23 T. B. Parsonage. Select Mirror Materials for High Performance Optical Systems. SPIE. 1999, 1335:119~126
    24 M. CAYREL.VLT Beryllium Secondary Mirror No.1 - Performance Review. SPIE. 1998, 3352: 721~728
    25 M. Cayrel. VLT Beryllium Secondary Mirror No.1 ~ Performance Review. SPIE. 1998, 3352:27~30
    26 S. E. Kendricka, T. Reeds and S. Streetmana. In~process Status of the 1.4M Beryllium Semi-rigid Advanced Mirror System Demonstrator (AMSD). SPIE. 2001, 4451:58~60
    27 D. M. Chaney, R. J. Browna and S. E. Kendrick. Results of the Beryllium AMSD Mirror Cryogenic Optical Testing. SPIE. 2004, 5487: 838~839
    28 T. Parsonage. JWST Beryllium Telescope ~ material and Substrate Fabrication,SPIE. 2004, 5494:77~79
    29 L. D. Feinberg. James Webb Space Telescope (JWST) Optical Telescope Element (OTE) Development Status. SPIE. 2004, 5487:813~815
    30 M. L. Delatte, D. L. Hibbard. Fabrication of a Large~aperture BerylliumTelescope for Space Application. SPIE. 1995, 2542:158~164
    31 S. E. Kendrick, R. J. Browna and S. Streetmana. Lightweighted Beryllium Cryogenic Mirrors for Both Monolithic and Segmented Space Telescopes. SPIE. 2003, 4850: 241~250
    32初昶波,周绍祥.碳纤维增强复合材料反射镜的刚度分析.光子学报. 2004, 33(2):240~244
    33 A. Abusafieh, D. Federicoa and S. Connella. Dimensional Stability of CFRP Composites for Space Based Reflectors. SPIE. 2001, 4444: 9~16
    34 R. C. Romeo. CFRP Composite Thin~shelled Mirrors for Future Space Telescopes. SPIE, 2002, 4849:86~94
    35 R. Wagner, M. Deyerler and G. Heiwig. Advanced Materials for Ultra-lightweight Stable Structures. SPIE. 1999, 3737:232~240
    36 S. J. Coe11, K. J. Dodsofla andZ. Friedman. Design Progression of an All~Composite Primary Mirror for the FIRST Telescope. SPIE. 2000, 4013:173~184
    37 S. D. Vining, P. J. Hood. Multi~component Composites and Their Application in Replica Mirrors for Lightweight Space~based Optics. SPIE. 2004, 5166:87~93
    38 B. Catanzaro, D. Keane and S. Connell. UItraLITE Glass/Composite Hybrid Mirror, SPIE. 2000, 4013:55~61
    39 P. C. Chen, R. C. Romeo. Ultra Lightweight Precision Optics Technology. SPIE. 2000, 4003:29~34
    40 A. J. Fortini. Open~cell Silicon Foam for Ultralightweight Mirrors. SPIE. 1999, 3786: 440~444
    41 M.T. Jacoby, W. A. Goodman and H. P. Stahl. Helium Cryo Testing of a SLMS (silicon lightweight mirrors) Athermal Optical Assembly. SPIE. 2003, 5180:104~106
    42 C. Müller, U. Papenburg and W. A. Goodman. C/SiC High Precision Lightweight Components for Optomechanical Applications, SPIE. 2000, 4198: 249~251
    43 W. A. Goodman, M. T. Jacoby. Dimensionally Stable Ultra~lightweight Silicon Optics for both Cryogenic and High~energy Laser Applications. SPIE. 2001, 4198:47~53
    44 W. A. Goodman, M. T. Jacoby. Lightweight Athermal SLMS Innovative Telescope. SPIE. 2004, 5528:133~134
    45 W. A. Goodman, M. T. Jacoby and M. Kr?del. Lightweight Athermal Optical System Using Silicon Lightweight Mirrors (SLMS) and Carbon Fiber Reinforced Silicon Carbide (Cesic) Mounts. SPIE. 2002, 4822:157~159
    46 P. Antoine, M. Frutt. SiC Telescope Demonstrator (Mirrors & Structure) Opto Mechanical performances. SPIE. 1999, 3737:418~430
    47 R. A. M. Keski~kuha. CVD Silicon Carbide Mirrors for EUV Applications. SPIE. 1995, 2543:173~177
    48 R. A. M. Keski~Kuha, J. F. Osantowski and D. B. Leviton. Chemical Vapor Deposited Silicon Carbide Mirrors for Extreme Ultraviolet Applications. Opt. Eng. 1997, 36(1):157~161
    49 G. E. Holland. Effect of Energetic Electron and Proton Bombardment on the Reflectance of Sillicon~carbide Mirrors In the Extreme~Ultraviolet Region.Applied Optics. 1994, 33(25):5900~5905
    50 W. Kowbel, C. Bruce and J.C. Withers. Lightweight Composite/Foam Mirrors for UV Applications. SPIE. 2002, 4849:217~219
    51王艳香,谭寿洪,江东亮.反应烧结碳化硅的研究与进展.无机材料学报. 2004, 19(3):457~462
    52武安华,曹文斌,李江涛. SiC烧结的研究进展.粉末冶金工业. 2002, 12(3):28~32
    53黄清伟,高积强,金志浩.反应烧结碳化硅材料的研究进展.兵器材料科学与工程. 1999, 22(1):49~54
    54张玉娣,张长瑞,刘荣军. C/SiC复合材料与CVDSiC涂层的结合性能研究.航空材料学报. 2004, 24(4):27~29
    55 D. B. Leviton, T. T. Saha. Far Ultraviolet and Visible Light Scatter Measurements for CVD SiC Mirrors for SOHO. SPIE. 1998, 3443:19~21
    56 J. S. Goela, H. D. Desai, R. L. Taylor. Thermal Stability of CVDSiC Lightweight Optics. SPIE. 1995, 2543:38~48
    57 A. Khounsary,P. Fernandez and L. Assoufid. Design, Fabrication and Evaluation of an Internally Cooled Silicon Carbide Mirror. Review of Scientific instruments. 2002, 73(3):88~89
    58 J. Casstevens, A. Rashed, R. Plummer. Silicon Carbide High Performance Optics : A Cost~Effective, Flexible Fabrication Process. SPIE. 2001, 4451:548~551
    59 R. Eng, J. R. Carpenter and C. A. Foss. Cryogenic Performance of a Lightweight Silicon Carbide Mirror. SPIE. 2005, 5868:501~504
    60 C. A. Foss. CVC Silicon Carbide Optical Properties and Systems. SPIE. 2005, 5868:319~324
    61 K. B. Becker. Synchrotron Radiation Mirrors for High Intensity Beam Lines. Rev. Sci. Instrum. 1992, 63(8):1420~1424
    62 D. A. Bath, D. Spain, E. Ness. Evaluation of Segmented and Brazed Mirror Assemblies. SPIE. 2005, 5868:477~478
    63 M. Bougoin, P. Deny. The SiC technology is ready for the next generation of extremely large telescopes. SPIE. 2004, 5494:·9~10
    64 R. A. Paquin, M. B. Magida and C. L Vernold. Large Optics from Silicon Carbide. SPIE. 1991, 1618:111~112
    65 E.Tobin, M.Magida and S.Kishner. Design, Fabricateon and Test of a Meter Class Reaction Bonded SiC Mirror Blank. SPIE. 1995, 2543:12~21
    66 M. A. Ealey, J. A. Wellman. Highly Adaptive Integrated Meniscus Primary Mirrors. SPIE. 2004, 5166:444~445
    67 M. A. Ealey. Fully Active Telescope. SPIE. 2004, 5166:19~27
    68 Y. Y. Yui, T. Kimura and Y. Tange, High~strength Reaction~sintered SiC:a New Candidate Material for Large Space~borne Telescope Systems. SPIE. 2004, 5570:601~602
    69 S. Suyama, Y. Itoh, K. Tsuno. NT~SiC (New~Technology Silicon Carbide):Φ650mm Optical Space Mirror Substrate of High~strength Reaction~sintered Silicon Carbide. SPIE. 2005, 5868:1~10
    70 K. Tsuno, H. Irikado, K. Oono. New~Technology Silicon carbide (NT~SiC): Demonstration of New Material for Large Lightweight Optical Mirror. SPIE. 2005, 5659:138~146
    71 P. Robb. Interferometric Measurements of Silicon Carbide Mirrors at Liquid Helium Temperature. SPIE. 1995, 2543:196~200
    72 J. Casstevens, D. J. Bray and A. Rashed. Rapid Fabrication of Large Mrror Substrates by Conversion Joining of Silicon Carbide. SPIE. 2005, 5868:88~98
    73 G. Mondello, A.Novi, C. Devilliers. Development of Sintered~SiC and C/SiC Mirrors for Cryogenic Telescope. SPIE. 2004, 5494:311~319
    74张长瑞,周新贵,曹英斌. SiC及其复合材料轻型反射镜的研究进展.航天返回与遥感. 2003, 24(2):14~18
    75 C. Devilliers, M. Kroede1. CESIC﹫~ A New Technology for Lightweight and Cost Effective Space Instrument Structures and Mirrors. SPIE. 2005, 5868:1~15
    76 R. Volkmer, O. Lühe, D. Soltau. Optical and Thermal Design of the Main Optic of the Solar Telescope GREGOR. SPIE. 2003, 5179:270~275
    77 B. Catanzaro, G. Mehle and M. Seilonen,C/SIC Advanced Mirror System Demonstrator Design. SPIE. 2000, 4013:672~680
    78 J. B. Hadaway, R. Eng and H. Philip Stahl. Cryogenic Performance of Lightweight SiC and C/SiC Mirrors. SPIE. 2004, 5487:520~524
    79 W. Kowbel, R. Woida and J. C. Withers, SiC~SiC Composites for Optical Applications. SPIE. 2005, 5868:557~561
    80 J. Robichaud, J. J. Guregian and M. Schwalm. SiC Optics for Earth Observing Applications. SPIE. 2003, 5151:53~62
    81 H. Kaneda. Optical Performance of the ASTRO~F Telescope at Cryogenic Temperatures. SPIE. 2003, 4850:230~241
    82 H. Kaneda, T. Onaka and T. Nakagawa. Wavefront Measurement of Space Infrared Telescopes at Cryogenic Temperature. SPIE. 2005, 5965:88~94
    83 M. Schwalm, D. Dibiase and D. Landry. Silicon Carbide Pointing Mirror and Telescope for the Geostationary Imaging Fourier Transform Spectrometer (GIFTS). SPIE. 2005, 5868:147~149
    84 J. Robichaud, J. Schwartz and D. Landry. Recent Advances in Reaction Bonded Silicon Carbide Optics and Optical Systems. SPIE. 2005, 5868:205~206
    85 E. F. Ericksona, M. A. Honakerb and C. A. Brivkalnsa. Backup Secondary Mirror and Mechanism for SOFIA. SPIE. 2004, 5489:79~84
    86 U. Papenburg, W. Pfrang and G.S. Kutter. Optical and Optomechanical Ultra~lightweight C/SiC? Components. SPIE. 1999, 3782:4~9
    87 D. Logut, J. Breysse and Y.Toulemont. Light Weight Monolithic SiliconCarbide Telescope for Space Application. SPIE. 2005, 5962:1~4
    88 H. Bittner1, M. Erdmann1 and P. Haberler1. Baseline Design of the SUNRISE Telescope. SPIE. 2004, 5489:926~937
    89 Herschel mission: status and observing opportunities. G?ran L. Pilbrat. SPIE. 2004, 5487:404~405
    90 E. Sein, et al. AФ3.5 M SiC Telescope for HERSCHEL Mission. SPIE. 2003, 4850:606~619
    91 Y Toulemont, T. Passvogel and G. Pillbrat. The 3.5m All SiC Telescope for HERSCHEL, Optical, Infrared, and Millimeter Space Telescopes. SPIE. 2004, 5487:380~388
    92 H. Kaneda, T. Nakagawa and Takashi Onaka. Development of Space Infrared telescope for the SPICA mission. SPIE. 2004, 5487:991~1001
    93 Y. Toulemont, J. Breysse and D. Pierot,The 3.5m all SiC Telescope for SPICA. SPIE. 2004, 5487:421~423
    94 K. Enyaa, T. Nakagawaa and H. Katazaa, Optical Quality of C/SiC Composite for the SPICA Telescope, Optical, Infrared, and Millimeter Space Telescopes. SPIE. 2004, 5487:1092~1100
    95 T. Onaka, H. Kaneda and K. Enya. Development of large aperture cooled telescopes for the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) mission. SPIE. 2005, 5962:732~735
    96 A. Novi, G. Mondello and C. Devilliers. CoMParison of Sintered~SiC and C/SiC Mirrors Behaviour at Cryo~temperatures. SPIE. 2003, 5179: 365~368
    97 D. Lester, D. Benford and H. Yorke. Science Promise and Conceptual Mission Design for SAFIR ~ the Single Aperture Far Infrared Observatory. SPIE. 2006, 6265:1~10
    98 R. A. Paquin, M. B. Magida and C. L.Vernold. Large Optics form Silicon Carbide. SPIE. 1992, 1618:53~56
    99 M. Murahara. Excimer Laser-induced Photo~chemical Polishing of SiC Mirror. SPIE. 2002, 4679:69~75
    100 I. Inasaki. Grinding of Hard and Brittle Materials. Annals of the CIRP. 1987, 36(2):463~471
    101邓广敏陈锡让.工程陶瓷精密研磨技术.天津大学学报. 1996, 29(1):94~95
    102 N. Ebizuka. Development of SiC Ultra Light Mirror for Large Space Telescope and for Extremely Huge Ground Based Telescope. SPIE. 2003, 4842:329~334
    103 L. Yin, E. Y. J. Vancoille, L. C. Lee. High~quality Grinding of Polycrystalline Silicon Carbide Spherical Surfaces. Wear. 2004, 256:197~207
    104 J. Robichaud. SiC Optics for EUV, UV, and Visible Space Missions. SPIE. 2003, 4854:39~40
    105 M. A. Ealey. Polishablity of CERAFORM Silicon Carbide. SPIE. 1996, 2857:78~85
    106 M. A. Ealey, G Q Weaver. Developmental History and Trends for Reaction Bonded Silicon Carbide. SPIE. 1996, 2857:66~72
    107 M. A. Ealey, J. A. Wellman. Ultralightweight Silicon Carbide Mirror Design. SPIE. 1996, 2857:73~77
    108 P. A. Jones. Cryogenic Performance of Passive Lightweight Mirror. SPIE. 1998, 3356:883~891
    109李江,吴春冬,苗林.碳化硅陶瓷的低温烧结技术及进展.江苏陶瓷. 2001, 34(1):4~9
    110 M. Deyerler, N. Pailer and R. Wagner. Ultra~Lightweight Mirrors:Recent Developments of C/SiC. SPIE. 2000, 4003:73~80
    111 S. Johnson. SiC Coatings on RB SIC Mirrors for Ultra-Smooth Surfaces. SPIE. 1993, 2018:237~248
    112 M. B. Magida. Dimensional Stability of Bare and Coated Reaction Bonded Silicon Carbide SPIE. 1990, 1335:60~68
    113 J. Boy, M. Kr?del, CESIC? Light~weight SiC Composite for Optics and Structures. SPIE. 2005, 5868:568~569
    114 M. Kr?del, G. S. Kutter and M. Deyerler. Short Carbon-fiber Reinforced Ceramic - Cesic? -for Optomechanical Applications. SPIE. 2003, 4837:774~776
    115张华,王文,庞媛媛.光学表面超精密加工技术.光学仪器. 2003, 25(3):47~51.
    116叶伟昌.关于人造金刚石和立方氮化硼磨具的新国标,机械工艺师,1990(4):15~17
    117 Y.S.杜洛金.固体热物理性知导论-理论和测量.奚同庚,王梅华译.中国计量出版社,1987:284~304
    118中国金属学会.中国有色金属学会.金属材料物理性能手册.第一册:金属物理性能及测试方法.冶金工业出版社, 1987:299~325
    119 S. Johnson. SiC Coating on RBSiC Mirror for Ultra~smooth Surfaces. SPIE. 1993, 2018: 237~247
    120 L. Yin, E. Y. J. Vancoille and L. C. Lee. High-quality Grinding of Polycrystalline Silicon Carbide Spherical Surfaces. Wear. 2004, 256:197~207
    121 R. A. Paquin, M. B. Magida and C. L. Vernold. Large Optics from Silicon Carbide. SPIE, 1992, 1618:53~56
    122 R. D. Maschio. A Simplified Approach for Ceramic Fracture Toughness Evaluation by Indentation. Engineering Fracture Mechanics. 1995, 51(2):209~215
    123 R. D. Maschio. A Simplified Approach for Ceramic Fracture Toughness Evaluation by Indentation. Engineering Fracture Mechanics, 1995, 51(2):209~215
    124无机材料物理性能,关振铎等.清华大学出版社,1992:118~126
    125 H.H.K. Xu, S. Jahanmir. Simple Technique for Observing Subsurface Damage In Machining Of Ceramics. Journal of The American Ceramic Society. 1994, 77 (5):1388~1390
    126邓朝晖,张璧,孙宗禹.陶瓷磨削材料去除机理的研究进展.中国机械工程. 2002,13(18):1608~1011
    127 B. Zhang, X.L.Zheng, H.Tokura. Grinding Indeced Damage in Ceramics. J Of Mat Pro Tec. 2003, 132:353~346
    128邓朝晖,张璧,孙宗禹.陶瓷磨削的材料去除机理.金刚石与磨料磨具工程. 2002, 2(128):47~50
    129刘子旭.陶瓷磨削机理.磨床与磨削. 1998(1): 36~42
    130朱洪涛,林滨,吴辉.陶瓷磨削机理及其对表面/亚表面损伤的影响.精密制造与自动化. 2004, 2: 15~18
    131 H.T. Young, H.T. Liao, H.Y. Huang. Novel Method to Investigate the Critical Depth of Cut of Ground Silicon Wafer. Journal of Materials Processing Technology. 2007, 182: 157~162
    132潘立,谢伟东.陶瓷材料磨削加工的技术研究与发展现状.机械. 2003, 30(6):18~21
    133 X. Chen, W.Brian Rowe, B.Mills, D.R.Allanson. Analyses and Simulation of the Grinding Process. PartⅣ: Effects of the Wheel Wear. Int.J.Mach.Tools Manufact. 1998, 38(1-2):41~49
    134正交试验法.《正交试验法》编写组.国防工业出版社,1976:45~82
    135 K. Li, T.W. Liao. Surface/subsurface Damage and the Fracture Strength of Ground Ceramics. Journal of Materials Processing Technology, 1996, 57:207~220
    136 B.Eigenmann, E.Macherauch. Determination of Inhomogeneous Residual Stress States In Surface Layers of Machined Engineering Ceramics by Synchrotron X-Rays. Nuclear Instruments and Methods in Physics Research B. 1995, 97:92~97
    137范敏霞,张飞虎,崔玲丽.用有限元法进行低温磨削钛合金温度场的研究.金刚石与磨料磨具工程.2005, 4:20~24
    138 T. Hoshide, J. Abe. Grinding-Induced Residual Stress Estimation by Indentation-Fracture Method in Ground Silicon Nitrides, Journal of materials engineering and performance. 2001,10(5):586~590
    139王西彬,李相真.结构陶瓷磨削表面的残余应力.《金刚石与磨料磨具工程》. 1997, 6(102):18~23
    140 K. Li, T.W. Liao. Surface/subsurface damage and the fracture stress of ground ceramics, Journal of Mterials Processing Technology.1996, 57: 207~220
    141 E.Welle, W.Reimers, S.Immelmann. X-ray Residual Stress Analysis on Machined and Tempered HPSN-Ceramics. Material Science and Engineering A. 1997, 238:287~292
    142 C.Genzel, M.Klaus, I.Denks. Residual Stress Field in Surface Treated Silicon Carbide for Space Industry-CoMParison of Biaxial and Triaxial Analysis using Different X-Ray Methods. Material Science and Engineering A. 2005, 390:376~384
    143 H. Yang, L. Gao and R.Z. Yuan. Effect of Residual Stress on the Bending Strength of Ground Al2O3/Ticn Ceramics, Materials Chemistry and Physics. 2003, 80:305~308
    144 A.G.Tomba, A.L.Cavalieri. Surface Finish and Mechanical Strength of Dense Alumina. Materials Research Bulletin. 2000, 24:1077~1085
    145 W.Pfeiffer. Influence of Grinding Parameters on Strength-Dominating Near-Surface Characteristics of Silicon Nitride Ceramics. T.Hollstein, Journal of the European Ceramics Society. 1997, 17:487~494
    146 R.Hessert, B.Eigenmann, O.Vohringer. Fracture Mechanical Evaluation of the Effects of Grinding Residual Stresses on Bending Strength of Ceramics. Material Science and Engineering A. 1997, 234-236: 1126~1129
    147 K. Li, T.W. Liao. Surface/Subsurface Damage and the Fracture Strength of Ground Ceramics, Journal of Material Processing Technology. 1996, 57: 207~220
    148 D.Johnsonwalls, A. G. Evans. Residual Stress in Machined Ceramic. J.Am.Ceram.Soc. 1986, 69(1):44~47
    149 K. Xue, L.S. Niu, H.J. Shi. Structural Relaxation of Amorphous Silicon Carbide Thin Films in Thermal Annealing, Thin Solid Films. 2008, 516:3855~3861
    150 Y.S.Zheng, J. M. Vieira, F. J. Oliveira. Relationship between Flexural Strength and Surface Roughness for Hot-Pressed Si3N4 Self-Reinforced Ceramics. Journal oF the European Ceramic Society. 2002, 20:1345~1353
    151 B. Zhang, T. D.Howes. Surface Evaluation of Ground Ceramics, Annals of the CIRP. 1995, 44: 263~266

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700