结构陶瓷磨削机理与热特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构陶瓷材料因其优异的机械、热学等性能而被广泛应用于各个
    工业领域,显示出优良的适应性和广阔的应用前景。而陶瓷材料的难
    加工性使其磨削加工成本居高不下,对其磨削加工机理和先进加工工
    艺的研究一直是行业的热点课题。磨削温度直接影响砂轮寿命和工件
    加工质量,是磨削加工领域研究加工过程及其本质的重点。在结构陶
    瓷材料的磨削过程中,磨削温度可能造成金刚石磨粒石墨化、工件表
    面残余应力等各种形式的热损伤,从而严重影响金刚石砂轮的寿命和
    结构陶瓷零件的使用性能。
    本论文研究了不同材料性能的结构陶瓷材料在不同磨削方式情况
    下的磨削机理和磨削温度特征及磨削过程中的磨削热传输特性,通过
    对磨削过程中磨削热的产生和传递机制的分析,有针对性地采取增强
    冷却和润滑作用的磨削热抑制实验研究。通过对理论解析和实验结果
    的分析,探讨结构陶瓷磨削过程中磨削热的产生和传输特性以及有效
    解决磨削热造成工件或者砂轮热损伤问题的手段。
    研究结果表明,结构陶瓷磨削过程中材料以塑性变形和脆性断裂
    两种方式去除,而大部分磨削能量是消耗于金刚石磨粒与工件间的塑
    性滑擦耕犁过程,因此在较小的单颗磨粒切削厚度条件下和磨削延性
    相对较好的陶瓷材料时磨削比能较高,高的磨削比能使其必须消耗更
    多的磨削能量,并在磨削弧区砂轮与工件的接触界面上转化为磨削热,
    而结构陶瓷材料导热性能差和金刚石磨料 良好的热特性使得磨削热传
    入工件的比例降低,更多的磨削热通过金刚石磨粒来传递使得磨粒点
    上的温度大幅上升,并可能导致金刚石磨料热损伤及因树脂结合剂软
    化而产生非正常脱落;通过运用内 冷却方式可以使冷却液 更充分地进
    入磨削弧区从而带走更多的磨削热而起到更有效的冷却作用,降低磨
    削温度;而通过施加润滑剂可以减少磨具 表面上金刚石磨粒塑性滑擦
    耕犁工件过程中两者间的摩擦作用,从而降低了磨削过程中能量消耗,
    达到了抑制磨削热的目的。
Structure ceramics are becoming popular materials for industrial
    components, and grinding with diamond wheel has been widely used in the
    production of structure ceramics components. Virtually, all of the energy
    consumed by grinding is essentially converted into heat distributing
    within the grinding zone. Concentrated heat input leads to temperature
    rise on the surface of structure ceramics which may lead to thermal
    damage to workpiece and grinding wheel. Therefore, it is necessary to
    study the characteristics of the grinding temperature and suppression on
    grinding heat in grinding of structure ceramics.
     In this study, mechanism of ceramics grinding and characteristics of
    grinding temperature were evaluated with grinding forces and
    temperature measurement in grinding of different ceramics under various
    conditions. With the analysis of heat transfer during ceramics grinding,
    suppression methods of grinding heat with enhanced cooling and
    lubrication were presented to prevent thermal damage during the grinding
    process.
     The results indicated that most of the grinding energy must be
    expended by ductile plowing, even though material removal is mainly by
    brittle facture. Therefore, the specific grinding energy increases with the
    decrease of material removal rate and grinding of ductile ceramic. The
    consumed energy is converted into heat distributing within the grinding
    zone where the ceramics interacts with the grinding wheel. Due to the low
    thermal conductivity of structure ceramics and high thermal conductivity
    of diamond abrasive, most of grinding heat is transferred into diamond
    grits and cause high tip temperature, which may lead to graphitization of
    diamond and softening of the resin bond. Adequately transporting coolant
    through the grinding zone or applying lubricant oil to suppress the
    friction between the wheel and workpiece can effectively lower grinding
    temperature.
引文
1. 符锡仁,郭景坤,等,现代陶瓷,上海:上海科技出版社,1980
    2. 樱井良文,小泉光惠,等,陈俊彦,王余君,译,新型陶瓷 —材
     料及其应用,北京:中国建筑工业出版社,1983
    3. 王零森,特种陶瓷,长沙:中南工业大学出版社,2000
    4. 黄勇,谢志鹏,杨金龙,等,新型陶瓷的现状与展望,中国陶瓷
     工业,1994,(3),27~39
    5. 周水仙,特种陶瓷在现代工业中的应用现状,江苏陶瓷,1998,
     14(1),30~32
    6. 王敏,国外特种陶瓷发展新动向,江苏陶瓷,2001,34(3),22~23
    7. 谢征芳,陈朝辉,李永清,特种陶瓷的发展与展望,中国陶瓷工
     业,2000,7(1),31~36
    8. 干福熹,无机非金属材料的发展,硅酸盐通报,1995,(4),13~18
    9. 郭景坤,中国结构陶瓷研究的进展及其应用,硅酸盐通报,1995,
     (4),11~28
    10. 黄勇,高性能结构陶瓷的现状和发展趋势,材料科学进展,1990,
     150~157
    11. 陈永胜,胡永强,余雷,等,工程陶瓷材料的现状及发展趋势,
     金刚石与磨料磨具工程,1998,104(2),37~39
    12. S.J. Schneider, R.W. Rice, The Science of Ceramic Machining and
     Surface Finishing I, NBS Special Publication, 1972, 348
    13. B.J. Hockey, R.W. Rice, The Science of Ceramic Machining and
     Surface Finishing II, NBS Special Pub lication, 1979, 562
    14. S. Jahanmir, L.K. Ives, A.W. Ruff, et al, Ceramic Machining:
     Assessment of Current Practice and Research Needs in the United
     States, NIST Special Publication, 1992, 834
    15. G.D. Quinn, L.K. Ives, S. Jahanmir, On the Fractorgarphic Analysis
     of Machining Cracks in Ground Ceramics: A Case Study on Silicon
     Nitride, NIST Special Publication, 2003, 996
    16. 任敬心,康仁科,史兴宽,难加工材料的磨削,北京:国防工业
     出版社,1999
    17. 魏源迁,国外硬脆材料最新加工技术,磨床与磨削 ,1998,(2),
     15~19
     114
    
    
    参考文献
    18. 于思远,林滨,林彬,国内外先进陶瓷材料加工技术的进展,金
     刚石与磨料磨具工程,2001,(4),36~39
    19. 徐燕申,田欣利,于爱兵,等,工程陶瓷材料加工技术的研究进
     展,中国机械工程,1996,7(6),59~62
    20. 贾志新,艾冬梅,张勤河,等,工程陶瓷材料加工技术现状,机
     械工程材料,2000,24(1),2~4
    21. 于怡青,徐西鹏,沈剑云,等,陶瓷磨削机理及磨削加工技术研
     究进展,湖南大学学报,1999,26(2),48~56
    22. 铁瑛,赵波,张波,等,工程陶瓷材料精密磨削加工技术的新发
     展,焦作工学院学报(自然科学版),2003,22(3),217~220
    23. R. Komanduri, D.A. Lucca, Y. Tani, Technological advances in fine
     abrasive processes, Annuals of the CIRP, 1997, 46(2). 545~596
    24. 任敬心,史兴宽,磨削技术的新进展-硬脆材料光滑表面的超精
     磨削,中国机械工程,1997,8(4),106~110
    25. 史兴宽,杨茂奎,原京庭,硬脆材料超光滑表面磨削技术的现状
     及发展趋势,机械科学与技术,1997,16(5),883~887
    26. I.P. Tuersley, A. Jawaid, I.R. Pashby, Review: Various methods of
     machining advanced ceramic materials, Journal of Materials
     Processing Technology, 1994, 42(4): 377~390
    27. I. Regiani, C.A. Fortulan, B.M. Purquerio, Abrasive Machining of
     Advance Ceramics, Industrial Diamond Review, 2000, (1): 37~42
    28. G. Spur, H. Cartsburg, Grinding Reinforced Aluminium Oxide,
     Industrial Diamond Review, 1993, (2): 92~97
    29. M. Huerta, S. Malkin, Grinding of Glass: The Mechanics of the
     Process, Transactions of the ASME, Journal of Engineering for
     Industry, 1976, 88(2): 459~467
    30. M. Huerta, S. Malkin, Grinding of Glass: Surface Structure and
     Fracture Strength, Transactions of the ASME, Journal of Engineering
     for Industry, 1976, 88(2): 468~473
    31. I. Inasaki, Grinding of hard and brittle materials, Annual of the CIRP,
     1987, 36(2): 463~471
    32. H.O. Juchem, Diamond abrasives in the machining of ceramics,
     Industrial Diamond Review, 1997, (4): 114~118
    33. E.C. Bianchi, E.J. Silva, C.E. Silva, et al, The Behavior of
     Resin-Bond Diamond Wheels in the Grinding of Advanced Ceramics,
     Industrial Diamond Review, 1998, (4): 105~110
     115
    
    
    参考文献
    34. J.E. Mayer, G-P Fang, Effect of Grinding Parameters on Surface
     Finish of Ground Ceramics, Annals of the CIRP, 1995, 44(1):
     279~282
    35. I. Inasaki, K. T?nshoff, T.D. Howes, Abrasive machining in the
     future, Annual of the CIRP, 1993, 42(2): 723~731
    36. L.C. Zhang, Grindability of Some Metallic and Ceramic Materials in
     CFG Regimes, International Journal of Machine Tool & Manufacture,
     1994, 34(8): 1045~1057
    37. L.C. Zhang, T. Suto, H. Noguchi, et al, A study of creep-feed
     grinding of metallic and ceramic materials, Journal of Materials
     Processing Technology, 1995, 48(1~4): 267~274
    38. T. W. Liao, G. Sathyanarayanan, On the study of creep feed grinding
     of alumina, International Journal of Machine Tools and Manufacture,
     1994, 34(2): 257~276
    39. T.W. Liao, K. Li, S.B. McSpadden, et al, Wear mechanisms of
     diamond abrasives during transition and steady stages in creep-feed
     grinding of structural ceramics, Wear, 2000, 242: 28~37
    40. T.W. Liao, K. Li, S.B. McSpadden, et al, Wear of diamond wheels
     during creep-feed grinding of ceramic materials I. Mechanisms, Wear,
     1997, 211: 94~103
    41. T.W. Liao, K. Li, L.J. O’Rourke, et al, Wear of diamond wheels
     during creep-feed grinding of ceramic materials II. Effects on
     process responses and strength, Wear, 1997, 211: 104~112
    42. S. Malkin, Grinding Technology: Theory and Application of
     Machining with Abrasives, New York: John Wiley & Sons, 1989
    43. K. Inoue, Y. Sakai, K.Ono, et al, Super High Speed Grinding for
     Ceramics with Vitrified Diamond Wheel, International Journal of
     Japanese Society Precision Engineering, 1994, 28(4): 344~345
    44. T.W. Hwang, C.J. Evans, S. Malkin, An investigation of high speed
     grinding with electroplated diamond wheels, Annals of CIRP, 2000,
     49(1): 245~248
    45. T.W. Hwang, C.J. Evans, E.P. Whitenton, et al, High Speed Grinding
     of Silicon Nitride With Electroplated Diamond Wheels, Part 1: Wear
     and Wheel Life, Transactions of the ASME, Journal of Manufacturing
     Science and Engineering, 2000, 122(1): 32~41
     116
    
    
    参考文献
    46. T.W. Hwang, C.J. Evans, S. Malkin, High Speed Grinding of Silicon
     Nitride With Electroplated Diamond Wheels, Part 2: Wheel
     Topography and Grinding Mechanisms, Transactions of the ASME,
     Journal of Manufacturing Science and Engineering, 2000, 122(1):
     42~50
    47. K. Ramesh, S. H. Yeo, S. Gowri, et al, Experimental Evaluation of
     Super High-Speed Grinding of Advanced Ceramics, International
     Journal of Advanced Manufacturing Technology, 2001, 17: 87~92
    48. H. Huang, Y.C. Liu, Experimental investigations of machining
     characteristics and removal mechanisms of advanced ceramics in
     high speed deep grinding, International Journal of Machine Tools &
     Manufacture, 2003, 43: 811~823
    49. H. Huang, Y.C. Liu, et al, High Speed Deep Grinding of Tetragonal
     Zirconia, SIM Tech Technical Report, 2001
    50. H. Huang, L. Yin, L.B. Zhou, High speed grinding of silicon nitride
     with resin bond diamond wheels, Journal of Materials Processing
     Technology, 2003, 141(1): 329~336
    51. A.J. Shih, S.B. McSpadden, T.O. Morris, et al, High speed and High
     Material Removal Rate Grinding of Ceramics Using the Vitreous
     Bond CBN wheel, Machining Science and Engineering, 2000, 4(1):
     43~58
    52. K. Wolf, Diamond Machining of Engineering Ceramics, Industrial
     Diamond Review, 1995, (1): 7~10
    53. V. von Mackensen, W. Longerich, P. Dennis, et al, Fine Grinding with
     Diamond and CBN, Industrial Diamond Review, 1997, (2): 40~43
    54. V. von Mackensen, Economic machining of ceramic components by
     fine grinding, Industrial Diamond Review, 2001, (1): 40~43
    55. P. Dennis, Economic double-side surface grinding with diamond and
     CBN grinding wheels, Technical report of Diamant-Werkzeuge
     Hameln GmbH, 2000
    56. C. Spanu, M. Hitchiner, I. Marinescu, Double Side Grinding of
     Alumina Ceramics Using Diamond Wheels, Abrasives Magazine,
     2003, (1): 1~7
    57. K. Kitajima, G.C. Cai, N. Kumagai, et al, Study on Mechanism of
     Ceramics Grinding, Annals of the CIRP, 1992, 41(1): 367~372
    58. B.R. Lawn, N.P. Padture, H. Cai, et al, Making Ceramics “Ductile”.
     Science, 1994, 263(25): 1114~1116
     117
    
    
    参考文献
    59. H.K. T?nshoff, H. Trampold, E. Brinksmeier, et al. Evaluation of
     Surface Layers of Machined Ceramics. Annals of the CIRP, 1989,
     38(2): 699~708
    60. R. Komanduri, On material removal mechanisms in finishing of
     advanced ceramics and glasses, Annals of the CIRP, 1996, 45(1):
     509~513
    61. J. Yoshioka, K. Koizumi, M. Shimizu, et al, Surface Grinding with
     Newly Developed Ultra Precision Grinding Machine, SME Technical
     Paper, 1982, MR82-930
    62. H.K. T?nshoff, B. Karpuschewski, T. Mandrysch, et al, Grinding
     Process Achievements and Their Consequences on Machine Tools
     Challenges and Opportunities, Annals of the CIRP, 1998, 47(2):
     651~668
    63. Y. Furukawa, N. Morinuki, K. Kitagawa, et al, Development of ultra
     precision machine tool made of ceramics, Annual of the CIRP, 1986,
     35(1): 279~282
    64. P. A. McKeown, K. Carlisle, P. Shore, et al, Ultra-precision, High
     Stiffness CNC Grinding Machines for Ductile Mode Grinding of
     Brittle Materials, Journal of the Japan Society of Precision
     Engineering, 1990, 806~813
    65. L. Chouanine, H. Eda, J. Shimizu, Development of Key-Technology
     on the State-of-the-Art Machine Tool and Generalization of Grinding
     Forces under Ductile Mode Grinding Experiments, International
     Journal of the Japanese Society for Precision Engineering, 1998,
     32(2): 98~103
    66. G. K?nnemann, H. Eichhorn, R. Petzold. Multi-Nano for the finish
     grinding of semiconductor materials, Industrial Diamond Review.
     2000, (4): 301~303
    67. G. K?nnemann, H. Eichhorn, R. Petzold, Nanogrinder for high
     precision machining of silicon wafers, Industrial Diamond Review,
     1999, (1): 30~33
    68. D.J. Stephenson, J. Corbett, J. Hedge, Ultra Precision Grinding Using
     the Tetraform Concept, Abrasives Magazine, 2002, (1): 15~20
    69. T.G. Bifano, T.A. Dow, R.O. Scattergood, Ductile Regime Grinding:
     A New Technology for Machining Brittle Materials, Transactions of
     the ASME, Journal of Engineering for Industry, 1991, 113(2):
     184~189
     118
    
    
    参考文献
    70. T.G. Bifano, J.B. Hosler, Precision Grinding of Ultra-Thin Quartz
     Wafers, Transactions of the ASME, Journal of Engineering for
     Industry, 1993, 115(3): 258~262
    71. B.K.A. Ngoi, P.S. Sreejith, Ductile Regime Finish Machining – A
     Review, International Journal of Advanced Manufactured Technology,
     2000, 16: 547~550
    72. 赵奕,周明,董申,等,脆性材料塑性域超精密加工的研究现状,
     高技术通讯,1999,(4):59~62
    73. I. Zarudi, L.C. Zhang, On the Limit of Surface Integrity of Alumina
     by Ductile-Mode Grinding, Transactions of the ASME, Journal of
     Engineering Materials and Technology, 2000, 122(1): 129~134
    74. B.P. Bandyopadhyay, H. Ohmori, I. Takahashi, Ductile regime mirror
     finish grinding of ceramics with Electrolytic In-process Dressing
     (ELID) grinding, Journal of Materials and Manufacturing Processes,
     1996, 11(5): 789~802
    75. 陈明君,董申,李旦,等,单晶硅脆性材料塑性域超精密磨削加
     工的研究,航空精密制造技术,2000,36(2):8~11
    76. 陈明君,张飞虎,董申,等,光学玻璃塑性模式超精密磨削加工
     的研究,中国机械工程,2001,12(4):460~462
    77. 陈明君,董申,张飞虎,等,陶瓷材料的超精密磨削加工,工具
     技术,1999,33(9):3~5
    78. H. Ohmori, T. Nakagawa, Mirror Surface Grinding of Silicon Wafers
     with Electrolytic In-Process Dressing, Annals of CIRP, 1990, 39(1):
     392~332
    79. 大森整, ELID 研削加工技术,日本东京:工业调查会(日本),
     2000
    80. H. Ohmori, T. Nakagawa, Analysis of Mirror Surface of Hard and
     Brittle Materials by ELID( Electronic In-Process Dressing)Grinding
     with Superfine Grain Metallic Bond Wheels, Annals of the CIRP,
     1995, 44(1): 287~290
    81. N. Itoh, H. Ohmori, S. Moriyasu, et al, Finishing Characteristics of
     brittle materials by ELID-lap grinding using metal-resin bonded
     wheels. International Journal of Machine Tool & Manufacture, 1998,
     38(7): 747~762
    82. 张飞虎,朱波,栾殿荣,等,ELID 磨削硬脆材料精密和超精密加
     工的新技术,宇航材料工艺,1999,(1):51~55
     119
    
    
    参考文献
    83. Paul Shore, ‘ELID’for Efficient Grinding of Super Smooth Surfaces,
     Industrial Diamond Review, 1993, 27(6): 318~322
    84. E.S. Lee, J.D. Kim, A study on the analysis of grinding mechanism
     and development of dressing system by using optimum in-process
     electrolytic dressing, International Journal of Machine Tool &
     Manufacture, 1997, 37(12): 1673~1689
    85. J.D. Kim, E.S. Lee, A study on the mirror-like grinding of MgO
     single crystal with various diamond wheel, Journal of Materials
     Processing Technology, 1997, 72: 1~10
    86. E.S. Lee, The Effect of Optimum In-Process Electrolytic Dressing in
     the Ultraprecision Grinding of Die Steel by Superabrasive Wheel,
     International Journal of Advanced Manufacturing Technology, 2000,
     16: 814~821
    87. H. Ohmori, W. Li, A. Makinouchi, et al, Efficient and Precision
     Grinding of Small hard and Brittle Cylindrical Parts by the
     Centerless Grinding Process with Electro-Discharge Truing and
     Electrolytic In-Process Dressing, Journal of Materials Processing
     Technology, 2000, 98: 322~327
    88. T. Bifano, R. Krishnamoorthy, et al, Fixed-Load Electrolytic
     Dressing With Bronze Bonded Grinding Wheels, Transactions of the
     ASME, Journal of Manufacturing Science and Engineering, 1999,
     121(1): 20~27
    89. 张飞虎,仇中君,陈明君,微晶玻璃超精密磨削技术研究,中国
     机械工程,2000,(8):863~865
    90. 张春河,袁哲俊,张飞虎,等,在线电解修整砂轮( ELID)超精
     密镜面磨削的影响因素初探,金刚石与磨料磨具工程,1996,93
     (3):21~23
    91. 徐燕申,张春河,林彬,等,ELID 超精密镜面磨削力变化规律的
     分析,制造技术与机床,1998,(9):32~33
    92. 林彬,张春河,徐燕申,ELID 超精密镜面磨削砂轮磨损规律的研
     究,天津大学学报,1999,32(1):74~76
    93. 史兴宽,原京庭,任敬心,等,铸铁结合剂微粉金刚石砂轮的在
     线电解修整的试验研究,航空学报,1997,18(5):611~614
    94. K. Subramanian, S. Ramanath, M. Tricard, Mechanisms of Material
     Removal in Precision Production Grinding of Ceramics, Transactions
     of the ASME, Journal of Manufacturing Science and Engineering,
     1997, 119(4): 509~519
     120
    
    
    参考文献
    95. H.G. Wobker, H.K. T?nshoff, High Efficiency Grinding of Structural
     Ceramics, NIST Special Publication: Machining of Advanced
     Material, 1993, 847: 171~183
    96. G. Warnecke, J. Wimmer, Stock Removal and Wear in Deep Grinding
     High Performance Ceramics, Industrial Diamond Review, 1995, (3):
     126~132
    97. B. Zhang, T.D. Howes, Material Removal Mechanisms in Grinding
     Ceramics. Annals of the CIRP, 1994, 43(1): 305~308
    98. J.C. Conway, H.P. Kirchner, Crack Branching as a Mechanism of
     Crushing during Grinding, Journal of American Ceramic Society,
     1986, 69: 603~607
    99. S. Malkin, T.W. Hwang, Grinding Mechanisms for Ceramics, Annals
     of the CIRP, 1996, 45(2): 569~580
    100. N. Kawabata, K. Takeuchi, High Efficiency Grinding of Ceramics,
     Industrial Diamond Review. 1991, (4): 176~181
    101. B.R. Lawn, M.V. Swain, Microfracture beneath Point Indentation in
     Brittle Solids. Journal of Materials Science, 1975, 10: 113~122
    102. B.R. Lawn, R. Wilshaw, Indentation Fracture: Principles and
     Applications, Journal of Materials Science, 1975, 10: 1049~1081
    103. B.R. Lawn, A.G. Evans, A Model for Crack Initiation in
     Elastic/Plastic: Indentation Fields, Journal of Materials Science,
     1977, 12: 2195~2199
    104. B.R. Lawn, A.G. Evans, D.B. Marshall, Elastic/Plastic Indentation
     Damage in Ceramics: The Median/Radial Crack System, Journal of
     American Ceramic Society, 1980, 63(9-10): 574~581
    105. D.B. Marshall, B.R. Lawn, A.G. Evans, Elastic/Plastic Indentation
     Damage in Ceramics: The Latered Crack System. Journal of
     American Ceramic Society, 1982, 65(11): 561~566
    106. S.S. Chiang, D.B. Marshall, A.G. Evans, The Response of Solids to
     Elastic/Plastic Indentation II. Fracture Indentation, Journal of
     Applied Physics, 1982, 153: 312~317
    107. A.G. Evans, M.E. Gulden, M. Rosenblatt, Impact Damage in Brittle
     Materials in the Elastic-plastic Response Regime, Proceedings of
     Royal Society of London, 1978, A361: 343~365
    108. B.R. Lawn, Partial Cone Crack Formation in a Brittle Material
     Loaded with a Sliding Spherical Indenter, Proceedings of Royal
     Society of London, 1967, A299: 307~316
     121
    
    
    参考文献
    109. M.V. Swain, Microfracture about scratches in brittle solids,
     Proceedings of Royal Society of London, 1979, A336: 575~597
    110. H.H.K. Xu, S. Jahamir, Microfracture and Material Removal in
     Scratching of Alumina. Journal of Materials Science, 1995, 30:
     2235~2247
    111. A.W. Ruff, H. Shin, C.J. Evans, Damage processes in ceramics
     resulting from diamond tool indentation and scratching in various
     environments, Wear, 1995, 181~183(2): 551~562
    112. D.B. Marshall, A.G. Evans, B.T. Khuri Yakub, et al, The Nature of
     Machining Damage in Brittle Materials, Proceedings of Royal
     Society of London, 1983, A385: 461~475
    113. J.C. Conway Jr, H.P. Kirchner, The Mechanics of Crack Initiation and
     Propagation Beneath a Moving Sharp Indenter, Journal of Materials
     Science, 1980, 15: 2879~2883
    114. B. Zhang, H. Tokura, M. Yoshikawa, Study on Surface Cracking of
     Alumina Scratched by Single-point Diamond, Journal of Materials
     Science, 1988, 23: 3214~3224
    115. T.J. Larchuk, J.C. Conway Jr, H.P. Kirchner, Crushing as a
     Mechanism of Material Removal during Abrasive Machining, Journal
     of American Ceramic Society, 1985, 68: 209~215
    116. G.D. Quinn, Fracture Mechanism Maps for Advanced Structural
     Ceramics Part 1 Methodology and Hot-pressed Silicon Nitride
     Results, Journal of Materials Science, 1990, 25: 4361~4376
    117. G.D. Quinn, W.R. Braue, Fracture Mechanism Maps for Advanced
     Structural Ceramics Part 2 Sintered Silicon Nitride, Journal of
     Materials Science, 1990, 25: 4377~4392
    118. T.M.A. Maksoud, A.A. Mokbel and J.E. Morgan, Evaluation of
     surface and sub-surface cracks of ground ceramic, Journal of
     Materials Processing Technology, 1999, 88 (1~3): 222~243
    119. H.H.K. Xu, S. Jahanmir, L.K. Ives, Material Removal and Damage
     Formation Mechanisms in Grinding Silicon Nitride. Journal of
     Materials Research, 1996, 11: 1717~1724
    120. J.E. Mayer, G.P. Fang, Diamond Grinding of Silicon Nitride Ceramic,
     NIST Special Publication: Machining of Advanced Material, 1993,
     847: 205-225
     122
    
    
    参考文献
    121. H.P. Kirchner, Damage Penetration at Elongated Machining Grooves
     in Hot-Pressed Si3N4. Journal of American Ceramic Society, 1984, 67:
     127~132
    122. T. Warren Liao, G. Sathyanarayanan, L. J. Plebani, et al,
     Characterization of grinding-induced cracks in ceramics,
     International Journal of Mechanical Sciences, 1995, 37(9):
     1035~1050
    123. B. Zhang, T.D. Howes, Subsurface evaluation of ground ceramics,
     Annals of the CIRP, 1995, 44(1): 263~266
    124. 邓朝晖,张璧,孙宗禹,等,陶瓷磨削材料去除机理的研究进展,
     中国机械工程,2002,13(18):1608~1611
    125. P.N. Blake, R.O. Scattergood, Ductile regime machining of
     germanium and silicon, Journal of American Ceramic Society, 1990,
     73(4): 949~957
    126. W.S. Blackly, R.O. Scattergood, Chip Topography for Ductile
     Regime Machining of Germanium, Transactions of the ASME,
     Journal of Engineering for Industry, 1994, 116(2): 263~266
    127. S. Shimida, N. Ikawa, T. Inamura, et al, Brittle/Ductile transition
     phenomena in micro indentation and micro machining, Annals of the
     CIRP, 1995, 44(1): 523~526
    128. Y. Kamimura, H. Yamaguchi, Y. Tani, Ductile regime cutting of
     brittle materials using a flying tool under negative pressure, Annals
     of the CIRP, 1997, 46(1): 451~454
    129. P.A. Beltrao, A.E. Gee, J. Corbett, et al, ‘Ductile mode’machining of
     commercial PZT ceramics, Annals of the CIRP, 1999, 48(1): 437~440
    130. S. Malkin, J.E. Ritter, Grinding Mechanism and Strength Degradation
     for Ceramics. Transactions of the ASME, Journal of Engineering for
     Industry, 1989, 111(2): 167~173
    131. T.W. Hwang, S. Malkin, Grinding Mechanism and Energy Balance for
     Ceramics, Transactions of the ASME, Journal of Manufacturing
     Science and Engineering, 1999, 121(4): 623~631
    132. T.W. Hwang, C.J. Evans, S. Malkin, Size effect for specific energy in
     grinding of silicon nitride, Wear, 1999, 225~229: 862~867
    133. T.W. Hwang, S. Malkin, Upper bound analysis for specific energy in
     grinding of ceramics, Wear, 1999, 231: 161~171
    134. 张幼桢,金属切削理论,北京:航空工业出版社,1988
     123
    
    
    参考文献
    135. 周泽华,金属切削原理,上海:上海科学技术出版社,1992
    136. 任敬心,华定安,磨削原理,西安:西北工业大学出版社,1987
    137. 李伯民,赵波,实用磨削技术,北京:机械工业出版社,1996
    138. M.C. Shaw, Principles of Abrasive Processing, Oxford, UK : Oxford
     University Press, 1996
    139. S. Chandrasekar, T.N. Farris, B. Bhushan, Grinding Temperatures for
     Magnetic Ceramics and Steel, Transactions of the ASME, Journal of
     Tribology, 1990, 112(3): 535~541
    140. T.N. Farris, S. Chandrasekar, High-speed sliding indentation of
     ceramics: thermal effects, Journal of Materials Science, 1990, 25:
     4047~4053
    141. R.R. Hebbar, S. Chandrasekar, T.N. Farris, Ceramic Grinding
     Temperatures, Journal of American Ceramic Society, 1992, 75(10):
     2742~2748
    142. T. Ueda, K. Yamada, T. Sugita, Measurement of Grinding
     Temperature of Ceramics Using Infrared Radiation Pyrometer with
     Optical Fiber, Transactions of the ASME, Journal of Engineering for
     Industry, 1992, 114(3): 317~322
    143. B. Zhu, C. Guo, J.E. Sunderland, et al, Energy partition to the
     workpiece for grinding of ceramics. Annals of the CIRP, 1995, 44(1):
     267~272
    144. J.E. Morgan, J.A. Scott, Temperature Measurement When Diamond
     Grinding Ceramics, Industrial Diamond Review, 1992, (2): 65~69
    145. 徐鸿钧,磨削温度的测量技术,磨料磨具与磨削,1986,(6):
    146. 徐西鹏,徐鸿钧,磨削弧区温度在线监测技术研究,制造技术与
     机床,1998,(2):24~26
    147. 徐西鹏,难加工材料高效深切磨削的基础研究:[博士学位论文],
     南京,南京航空航天大学,1992
    148. 徐鸿钧,浦学锋,胡协方,等,The workpiece temperature distribution
     in contact zone and burn mechanism during creep feed grinding.
     Chinese Journal of Mechanical Engineering,1990,3(1): 58~66
    149. 徐西鹏,黄辉,徐鸿钧,断续 CBN 砂轮缓进给磨削 K417 航空
     叶片材料的研究,航空学报,1997,18(3):316~323
    150. X.P. Xu, S. Malkin, Comparison of Methods to Measure Grinding
     Temperatures, Transactions of the ASME, Journal of Manufacturing
     Science and Engineering, 2001, 123(2): 191~195
     124
    
    
    参考文献
    151. T. Ueda, A. Hosokawa, A. Yamamoto, Studies on Temperature of
     Abrasive Grains in Grinding-Application of Infrared Radiation
     Pyrometer, Transactions of the ASME, Journal of Engineering for
     Industry, 1985, 107(2): 127~133
    152. T. Ueda, A. Hosokawa, A. Yamamoto, Thermal Analysis of Active
     Grains in Surface Grinding, Journal of Japan Society of Precision
     Engineering, 1985, 51(9): 1732~1737
    153. T. Ueda, A. Hosokawa, A. Yamamoto, Measurement of Grinding
     Temperature Using Infrared Radiation Pyrometer with Optical Fiber,
     Transactions of the ASME, Journal of Engineering for Industry, 1986,
     108(4): 247~251
    154. A.Y.C. Nee, A.O. Tay, On the Measurement of Surface Grinding
     Temperature, International Journal of Machine Tool Design Research,
     1981, 21: 279~291
    155. Y.D. Gu, G.J. Wager, Further Evidence on the Contact Zone in
     Surface Grinding, Annals of the CIRP, 1990, 39(1): 349~352
    156. 王西彬,任敬心,磨削温度及热电偶测量的动态分析,中国机械
     工程,1997,8(6):77~80
    157. M.C. Shaw, A Simplified Approach to Workpiece Temperatures in
     Fine Grinding, Annals of the CIRP, 1990, 39(1): 345~347
    158. T. Kato, H. Fujii, Temperature Measurement of Workpiece in Surface
     Grinding by PVD Film Method, Transactions of the ASME, Journal
     of Manufacturing Science and Engineering, 1997, 119(12): 689~694
    159. T. Kato, H. Fujii, Energy Partition in Conventional Surface Grinding,
     Transactions of the ASME, Journal of Manufacturing Science and
     Engineering, 1999, 121(3): 393~398
    160. 兰雄侯,王继先,高航,磨削温度理论研究的现状与进展. 金刚石
     与磨料磨具工程,2001,(3):5~9
    161. J.H. Hwang, S. Kompella, S. Chandrasekar, et al, Measurement of
     temperature field in surface grinding using infra-red (IR) imaging
     system, Transactions of the ASME, Journal of Tribology, 2003,
     125(2): 377~383
    162. 林彬,于思远,徐燕申,等, ZrO2 和 SiC 陶瓷的表面磨削温度,
     天津大学学报,2000,33(6):740~742
    163. B. Lin, A.B. Yu, J. Hu, et al, Studies of Surface Grinding
     Temperature Affected by Different Grinding Ways of Silicon Wafer,
     Transactions of Tianjin University, 2000, 6(1): 85~89
     125
    
    
    参考文献
    164. 田欣利,于爱兵,林彬,陶瓷磨削温度对表面残余应力的影响,
     中国机械工程,2002,13(18):1600~1601
    165. 王西彬,师汉民,任敬心,结构陶瓷的磨削温度,华中理工大学
     学报,1996,24(4):14~18
    166. 薄化川,吕振东,王鹏,等,陶瓷磨削温度的测量,哈尔滨工业
     大学学报,1997,2(3):
    167. 于怡青,曾伟民,徐西鹏,金刚石节块与花岗石界面锯切温度的
     测量与分析. 工具技术,2001,35(6):8~11
    168. 徐西鹏,S. Malkin, 金刚石砂轮与花岗石摩擦界面能量传输特征
     的实验研究,摩擦学学报,2001,21(1):1~5
    169. 李远,锯切花岗石过程中力和能量特征:[硕士学位论文],福建泉
     州,华侨大学,2000
    170. 徐西鹏,黄辉,于怡青,等,锯切过程中花岗石与金刚石间的摩
     擦效应,摩擦学学报,1999,19(4):344~309
    171. J.C. Jaeger, Moving Sources of Heat and Temperature at Sliding
     Contacts, Proc. of the Royal Society of New South Wales, 1942, 76:
     203~224
    172. 徐鸿钧,李迎,徐西鹏,等,缓磨烧伤过程的计算机仿真研究,
     航空学报,1996,17(4):503~507
    173. 徐鸿钧,徐西鹏,许洪昌,缓磨时工件表层温度分布的计算机仿
     真研究,应用科学学报,1996,14(2):199~207
    174. 徐鸿钧,徐西鹏,林涛,等,断续磨削时工件表层温度场解析,
     机械工程学报,1994,13(1):30~36
    175. 侯镇冰,何绍杰,李恕先,固体热传导,上海:上海科技出版社,
     1984
    176. K. Takazawa, Theory and Measuring of the Temperature Distribution
     in Ground Surface Layer, Theoretical Analyses on the Grinding
     Temperature (1st Report), Journal of Japan Society of Precision
     Engineering, 1964, 30(11): 851~857
    177. K. Takazawa, The Flowing Rate into the Work of the Heat Generated
     by Grinding, Theoretical Analyses on the Grinding Temperature (2st
     Report), Journal of Japan Society of Precision Engineering, 1964,
     30(12): 914~920
    178. S. Kawamura, S. Nishiguchi, Y. Iwao, Studies on the Fundamental of
     Grinding Burn (1st Report), Growing Process and Thickness
     Calculation of Oxide Film, Journal of Japan Society of Precision
     Engineering, 1977, 43(6): 702~707
     126
    
    
    参考文献
    179. S. Kawamura, Y. Iwao, S. Nishiguchi, Studies on the Fundamental of
     Grinding Burn (2st Report), Surface Temperature in Process of
     Oxidation, Journal of Japan Society of Precision Engineering, 1979,
     45(1): 83~88
    180. 傅玉灿,进一步开发高效磨削潜力的基础研究:[博士学位论文],
     南京,南京航空航天大学,1999
    181. J.O. Outwater, M.C. Shaw, Surface Temperatures in Grinding,
     Transactions of the ASME, 1952, 74(1): 73~86
    182. W.E. Littmann, J. Wulff, The Influence of the Grinding Process on
     the Structure of Hardened Steel, Transactions of the ASME, 1955, 47:
     692~714
    183. J.E. Mayer, M.C. Shaw, Grinding Temperatures, Journal of the
     American of Lubrication Engineering, 1957, 13(1): 21~27
    184. R.S. Hahn, The Relation Between Grinding Conditions and Thermal
     Damage in the Workpiece, Transactions of the ASME, 1956, 78(2):
     807~812
    185. H. Makino, T. Suto, E. Fukushima, An Experimental Investigation of
     the Grinding Process, Journal of Mechanical Laboratory of Japan,
     1966, 12(1): 17~25
    186. N.R. Des Ruisseaux, R.D. Zerkle, Thermal Analysis of the
     Grinding Process, Transactions of the ASME, Journal of Engineering
     for Industry, 1970, 92: 428~434
    187. N.R. Des Ruisseaux, R.D. Zerkle, Temperature in Semi-infinite and
     Cylindrical Bodies Subjected Moving Heat Sources and Surface
     Cooling, Transactions of the ASME, Journal of Heat Transfer, 1970,
     92(3): 456~464
    188. S. Malkin, R.B. Anderson, Thermal Aspects of Grinding: Part 1
     Energy Partition, Transactions of the ASME, Journal of Engineering
     for Industry, 1974, 96(4): 1177~1183
    189. S. Malkin, Thermal Aspects of Grinding: Part 2 Surface
     Temperatures and Workpiece Burn, Transactions of the ASME,
     Journal of Engineering for Industry, 1974, 96(4): 1184~1191
    190. R. Snoeys, K.U. Leuven, M. Maris, et al, Thermally induced damage
     in grinding, Annals of the CIRP, 1978, 27(2): 571~581
    191. T.D. Howes, K. Neailey, A.J. Harrison, Fluid Film Boiling in
     Shallow-cut Grinding, Annals of the CIRP, 1987, 36(1): 223~226
     127
    
    
    参考文献
    192. W.B. Rowe, J.A. Pettit, A. Boyle, et al, Avoidance of Thermal
     Damage in Grinding and Prediction of the Damage Threshold, Annals
     of the CIRP, 1988, 37(1): 327~330
    193. A.S. Lavine, S. Malkin, T.C. Jen, Thermal Aspects of Grinding with
     CBN Wheels, Annals of the CIRP, 1989, 38(1): 557~560
    194. A.S. Lavine, A simple Model for Convective Cooling During the
     Grinding Process, Transactions of the ASME, Journal of Engineering
     for Industry, 1988, 110(1): 1~6
    195. A.S. Lavine, T.C. Jen, Coupled heat transfer to workpiece, wheel,
     and fluid in grinding, and the occurrence of workpiece burn,
     International Journal of Heat Mass Transfer, 1991, 34(4/5), 983~992
    196. M.W. Harris, A.S. Lavine, Thermal Aspects of Grinding: The Effect
     of the Wheel Bond on Heat Transfer to an Abrasive Grain,
     Transactions of the ASME, Journal of Engineering for Industry, 1991,
     113(12): 395~401
    197. W.B. Rowe, M.N. Morgan, D.R. Allanson, An Advance in the
     Modelling of Thermal Effects in Grinding, Annals of the CIRP, 1991,
     40(1): 339~342
    198. W.B. Rowe, H.S. Qi, M.N. Morgan, et al, The Effect of Deformation
     on the Contact Area in Grinding, Annals of the CIRP, 1993, 42(1):
     409~412
    199. W.B. Rowe, S.C.E. Black, B. Mills, Temperatures in CBN Grinding,
     Industrial Diamond Review, 1995, (4): 165~169
    200. W.B. Rowe, S.C.E. Black, B. Mills, et al, Experimental Investigation
     of Heat Transfer in Grinding, Annals of the CIRP, 1995, 44(1):
     329~332
    201. W.B. Rowe, S.C.E. Black, B. Mills et al, Analysis of Grinding
     Temperatures by Energy Partitioning, Proceedings of the Institution
     of Mechanical Engineers, Part B: Journal of Engineering
     Manufacture, 1996, 210: 579~588
    202. H.K. T?nshoff, H.G. Wobker, G. Brunner, CBN Grinding with Small
     Wheels, Annals of the CIRP, 1995, 44(1): 311~316
    203. W.B. Rowe, M.N. Morgan, S.C.E. Black, A Simplified Approach to
     Control of Thermal Damage in Grinding, Annals of the CIRP, 1996,
     45(1): 299~302
     128
    
    
    参考文献
    204. C. Guo, S. Malkin, Analysis of Energy Partition in Grinding,
     Transactions of the ASME, Journal of Engineering for Industry, 1995,
     117(1): 55~62
    205. C. Guo, S. Malkin, Heat Transfer in Grinding, Journal of Materials
     Processing & Manufacturing Science, 1992, 1(1): 16~27
    206. C. Guo, S. Malkin, Cooling Effectiveness in Grinding, Transactions
     of NAMRI/SME, 1996, 23: 111~116
    207. C. Guo, S. Malkin, Analytical and Experimental Investigation of
     Burnout in Creep-Feed Grinding, Annals of the CIRP, 1994, 43(1):
     238~286
    208. C. Guo, Y. Wu, V. Varghese, et al, Temperatures and Energy Partition
     for Grinding with Vitrified CBN Wheels, Annual of the CIRP, 1999,
     48(1): 247~250
    209. S. Kohli, C. Guo, S. Malkin, Energy Partition to the Workpiece for
     Grinding with Aluminum Oxide and CBN Abrasive Wheels,
     Transactions of the ASME, Journal of Engineering for Industry, 1995,
     117(2): 160~168
    210. N.K. Kim, C. Guo, S. Malkin, Heat Flux Distribution and Energy
     Partition in Creep-Feed Grinding, Annals of the CIRP, 1997, 46(1):
     227~232
    211. M.C. Shaw, The Importance of Temperature in Grinding, Journal of
     Mechanical Working Technology, 1988, 17: 343~355
    212. Y. Ju, T. N. Farris, S. Chandrasekar, Theoretical Analysis of Heat
     Partition and Temperatures in Grinding, Transactions of the ASME,
     Journal of Tribology, 1998, 120: 789~794
    213. 曾伟民,锯切过程中工具与花岗石界面热特性研究,:[硕士学位论
     文],福建泉州,华侨大学,2002
    214. S. Ramanath, M.C. Shaw, Abrasive Grain Temperature at the
     Beginning of a Cut in Fine Grinding, Transactions of the ASME,
     Journal of Engineering for Industry, 1988, 110(1): 15~18
    215. K. Sato, Grinding Temperature, Bulletin of Japan Society of Grinding
     Engineer, 1961, 1: 31~33
    216. Xipeng Xu, Experimental study on temperature and energy partition
     at the diamond-granite interface in grinding, Tribology International,
     2001, 34: 419~426
     129
    
    
    参考文献
    217. X.P. Xu and H. Huang, Thermal Study on Rock Grinding, Part 3: The
     Effects of Temperatures, Key Engineering Materials, 2004, 259-260:
     163~170
    218. 王忠琪,陈锡让,于思远,等,陶瓷材料的加工表面变质层结构
     及相变,天津大学学报,1995,28(6):773~777
    219. 田欣利,徐燕申,林彬,等,陶瓷精密加工表面完整性的研究进
     展,中国机械工程,1998,9(6):63~66
    220. 田欣利,徐燕申,彭泽民,等,陶瓷磨削表面变质层的产生机理,
     机械工程学报,2000,36(11):30~32
    221. 王西彬,师汉民,PSZ 陶瓷磨削变质层的相变分布,华中理工大
     学学报,1996,24(9):18~20
    222. V.E. Annamalai, T. Sornakumar, Transformations during Grinding
     Ceria-Stabilized Tetragonal Zirconia Polycrstals, Journal of
     American Ceramic Society, 1992, 75(9): 2559~2561
    223. D.R. Clarke, F. Adar, Measurement of the Crystall graphically
     Transformed Zone Produced by Fracture in Ceramics Containing
     Tetragonal Zirconia, Journal of American Ceramic Society, 1982,
     65(6): 284~288
    224. M.V. Swain, R.H.J. Hannink, Metastability of the Martensitic
     Transformation in a 12 mol% Ceria-Zirconia Alloy: II, Grinding
     Studies, Journal of American Ceramic Society, 1989, 72(8):
     1358~1364
    225. 王西彬,任敬心,结构陶瓷磨削表面微裂纹的研究,无机材料学
     报,1996,11(4):658~664
    226. R.W. Monahan, Residual stress and damage effect on integrity of
     ground silicon nitride, Journal of Materials Science, 2000, 35(5):
     1115~1124
    227. Y. Ahn, S. Chandrasekar, T.N. Farris, Measurement of Residual
     Stresses in Machined Ceramics Using the Indentation Technique,
     NIST Special Publication: Machining of Advanced Materials, 1993,
     847: 135~146
    228. 王西彬,李相真,结构陶瓷磨削表面的残余应力,金刚石与磨料
     磨具工程,1997,(6):18~22
     130

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700