二维超声振动磨削纳米氧化锆陶瓷的温度场分布特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陶瓷材料由于离子键、共价键为主的键性决定其具有高脆、断裂韧性低、弹性模量高等特点,因此硬脆性的陶瓷材料很难进行铣、刨、磨、抛、钻孔等加工。目前,使用金刚石工具(主要是砂轮)的磨削加工是工程陶瓷去除加工的基本途径。由于刀具与工件之间的相对运动速度很快,工件和金刚石的硬度很高,会在刀具与工件界面引起很高的温度,从而导致工件热损伤和加速刀具的磨损。因此,陶瓷材料的广泛应用迫切需要新的高效高质量的先进磨削加工工艺。
     将二维超声振动复合加工应用到陶瓷材料的磨削加工中是探寻新的高效磨削技术的创新。本研究通过普通磨削和二维超声振动磨削对比实验,对二维超声振动磨削纳米ZrO_2陶瓷的温度场进行了试验研究。对比磨削比能的特征、形成和分配机理,研究了磨削参数对二维超声振动磨削温度的影响规律,并通过正交试验进行回归分析,给出二维超声振动磨削纳米ZrO_2陶瓷的磨削温度经验公式。在此基础上研究了试件表面形貌、残余应力和显微硬度随磨削温度变化的特征,建立了纳米ZrO_2陶瓷表面变质层结构模型,对它们反映出的材料去除机理和磨削温度的形成机理进行了探讨。并建立了平面磨削时工件的传热学模型,采用有限元法对纳米ZrO_2陶瓷试件在普通和二维超声振动条件下的磨削温度场进行了数值模拟仿真,得到二维超声振动磨削温度场的等温分布图,并获得了磨削温度场的波形组合图。
     本论文研究发现采用超声振动磨削技术大大扩大了陶瓷材料磨削的塑性加工区域,有效降低了磨削区的温度,从而有利于纳米陶瓷的磨削。有限元数值模拟仿真结果与试验值基本吻合,从理论上证明了数值模拟仿真结果的可靠性,为研究磨削温度场提供了一种新的方法。
The ceramics material has many merits because of its ionic bond and covalent bond, such as high brittleness, low break toughness, high elastic coefficient and so on, therefore the hard brittle ceramics are very difficult to carry on milling, planning, rubbing, throwing, drilling and so on. At present, the grinding machining using of diamond tool (mainly the grinding wheel) is the essential way of the ceramics removal processing. Because the relative movement speed between the cutting tool and the work piece is very fast, and the hardness of the work piece and the diamond is very high, thus causes the very high temperature in the contact surface between the cutting tool and the work piece, which causes the work piece heat injury and accelerates the cutting tool attrition. So, new advanced grinding methods which have high productivity and high integrality are needed urgently because of the abroad used ceramics.
     The application of TDUVG(Two Dimensional Ultrasonic Vibration Grinding) on the grinding machining of ceramics is a creation to search new high-efficient grinding technique. Through common grinding and TDUVG contrast experiments, the nano ceramics grinding temperature fields under TDUVG are experimental studied. Contrasting the characteristics, formation and distribution mechanisms of grinding specific energy, the grinding temperature influence rule was studied from grinding parameters under TDUVG, through the orthogonal regression analysis, the grinding temperature test formula of nano ZrO_2 ceramics can be obtained under TDUVG. On this foundation the effect of grinding temperature on ceramics surface topography , residual stress and microhardness were analyzed, and the grinding surface layer structure model of ceramics is established, the indicated material removal modes and temperature mechanisms are also studied. This paper also established a heat transmission model of ceramics workpiece during surface grinding. Based on the finite element method, the grinding temperature of nano ZrO_2 ceramics under different grinding conditions are numerical simulated .The uniform temperature distribution diagram is obtained and the wave constitution diagram of temperature field is achieved too.
     The results of this paper show that the ultrasonic vibration grinding method can greatly enlarge the plastic machining area of engineering ceramics grinding and can effectively lower the temperature in the grinding zone, thereby helps to improve the grinding performance of nano ceramics. The finite element numerical simulation result and the experimental value are basically anastomotic, which theoretically proves the reliability of numerical simulation result and provides a new method for the research of the grinding temperature field.
引文
[1]李伯民,赵波主编.现代磨削技术.北京:机械工业出版社,2003.6
    [2]王瑞刚,潘伟.可加工陶瓷及工程陶瓷加工技术及发展.硅酸盐通报,2001.03
    [3] ChangW,SkandanG,DanforthSC, etal . Nanostruc - tured[J]. Materials ,1994 ,4(5) :5
    [4] El - Shall M and Baraton M I. Astracts of Second International Conference on Nano– structured Materials. Stuttgart :Germany , 1994. 7601
    [5]王军,庞楠,郑焕文.工程陶瓷超声波磨削加工技术.金刚石与磨料磨具工程,2000.3,32~34
    [6] Zhu B , Guo C , Sunderland J E , et al . Energy partition to the workpiece for grinding of ceramics. Annals of CIR P ,1995 ,44 (1) :267~270
    [7]高航,李剑.磨削温度场通式及其计算机仿真分析.东北大学学报,2004,25(6)
    [8]郑文裕等.无机盐工业,2000(1):18-21
    [9]王零森.陶瓷工程,31(2),1997-2,1997-4:40-44,43-50
    [10]孙亚光等.化工新型材料:2000(4):28-30
    [11]曾汉民等.高技术新材料要览[M].北京:中国科学技术出版社,1993.
    [12] E.Kato, A.Nagai,M.hirano,Y.Kobayashi,J.mater.Sci.1997,32(7),1989
    [13] Antonino Gulino , Salvatore La Delfa , Ignazio Fragala, Russell G.Egdell, Chem.Mater. 1996,8,1287
    [14] P.murugave,M.Kalaiselvam,A.R.Raju,and C.N.R.Rao, J.Mater.Chem.,1997,7(8),1433
    [15] M.Z.C.Hu, M.T.Harris and C.H.Byers, J.Colloid Interface Sci.,1998,198,87
    [16] J.A.Navio, M.C.Hidalgo, G.colon, S.G.Botta and M.I.Litter, Langmuir ,2001,17(1),202
    [17] Ana E.Bohe, Julio Andrade-Gamboa , Daniel M.Pasquevich , Alfredo J.Tolley and Jorge L.pelegrina J.Am.Ceram..Soc.,2000,83(4),755
    [18]金志浩,高积强,乔冠军编著.工程陶瓷材料.西安:西安交通大学出版社,2000.8:6
    [19] Dimilia RA, Reed J S. Dependence of Compaction on the Glass Transition Temperature of the Binder Phase, Am.Ceram.Soc.Bull.,1983,62(4):484-488
    [20]任敬心等.难加工材料的磨削.国防工业出版社,1999
    [21]罗方承,吕文广.锆化合物材料应用现状及其展望[J].化工进展,2002,21(3):196-199
    [22]吕瑞行,孙亚光,张庆杰,张建军.锆化合物的生产、应用及发展[J].无机盐工业,1996,(5):19-21
    [23]郑文裕,陈潮细,陈仲丛.二氧化锆的性质、用途及其发展方向[J].无机盐工业,2000,32(1):18-21.
    [24]杨新民.我国锆化学制品产业现状及发展战略[J].钛工业进展,2002,(4):37-39
    [25] B.J.Hockey, R.W.Rice.The Science of Ceramic Machining and Surface Finishing II. NBS Special Publication ,1979,562
    [26] G.D.Quinn, L.K.Ives, S.Jahanmir, On the Fractorgarphic Analysis of Machining Cracks in Ground Ceramics : A Case Study on Silicon Nitride ,NIST Special Publication ,2003,996
    [27]铁瑛,赵波,张波等.工程陶瓷材料精密磨削加工技术的新发展.焦作工学院学报(自然科学版),2003,22(3),217~220
    [28] I. Regiani, C.A.Fortulan, B.M. Purquerio.Abrasive Machining of Advance Ceramics. Industrial Diamond Review, 2000, (1): 37-42
    [29]向道辉.纳米氧化锆陶瓷的超声磨削机理研究:[硕士学位论文].河南:河南理工大学,2004
    [30]闫艳燕.二维超声振动磨削新型陶瓷的磨削机理研究:[硕士学位论文].河南:河南理工大学,2005
    [31]徐西鹏,S.Malkin.金刚石砂轮与花岗石摩擦界面能量传输特征的实验研究[J].摩擦学学报,2001,21(1):1~5
    [32]徐鸿钧.磨削温度的测量技术.磨料磨具与磨削,1986.6(36)
    [33] T. Kato, H. Fujii, Temperature Measurement of Workpiece in Surface Grinding by PVD Film Method, Transactions of the ASME, Journal of Manufacturing Science and Engineering, 1997, 119(12): 689~694
    [34] T. Kato, H. Fujii, Energy Partition in Conventional Surface Grinding,Transactions of the ASME, Journal of Manufacturing Science and Engineering, 1999, 121(3): 393~398
    [35]史金飞.基于磨屑流热辐射信号的磨削工况在践监测研究,东南大学博士论文,1998,6
    [36] J.H. Hwang, S. Kompella, S. Chandrasekar, et al, Measurement of temperature field in surface grinding using infra-red (IR) imaging system, Transactions of the ASME, Journal of Tribology, 2003,125(2): 377~383
    [37] Xu X P , Malkin S. Comparison of methods to measure grinding temperatures. ASME Journal of Manufacturing Science and Engineering , 2001 ,123 (2) :191—195
    [38] B.Zhu,C.Guo,J.E.Sunderland,S.Malkin.Energy partition to the workpiece for grinding of ceramics[J].Annals of the CIRP.1995,44(1).
    [39]曾伟民.锯切过程中工具与花岗石界面热特性研究[D].华侨大学硕士论文,2002.5
    [40]熊光楞.计算机仿真及其在制造业中的应用.计算机仿真.1996,1:31~33
    [41]梁式.外圆切入磨削过程的计算机仿真.新技术新工艺.1998,3:10~12
    [42] H.K.Tonshoff,J.Peters,I.Inasaki,T.Paul, Modelling and Simulation of Grinding Process. Annals of the CIRP Vol.41.1992,4:677~688
    [43] Suto,Tt.,Sata,T.Simulation of Grinding Process Based on Wheel Surface Characterististics,Bull.Japan Soc.Prec.Edgg,1981
    [44] Steffens.K.,Closed Loop Simulation of Grinding ,Annals of the CIRP Vol.32,1984,1
    [45] N.Chiu,Malkin. Computer Simulation for Cylindrical Plunge Grinding ,Annals of the CIIRP Vol.42 1993,1:671~674
    [46] Xun Chen,W.B.Rowe. Analysis and Simulation of Grinding Process. Int JMTM. Vol.36.1996, 8:871~906
    [47] G.Warnecke, U.Zitt. Kinematic Simulation for Analyzing and Predicting Hign– Performance Grinding Processes. Annals of CIRP Vol.47 1998,1:265~270
    [48]崔玲丽.磨削温度场的仿真及其实验研究:[硕士学位论文].黑龙江:哈尔滨工业大学,2001.7
    [49] Outwater.J.Q, Shaw.M.C. Surface Temperatures in Grinding .Trans ASME. 1952, pp 73~78
    [50] W.B.Rowe,M.N.Morgan,S.C.E.Black,B.Mills.A Sunplifield Approach to Control 0f Thermal Damage in Grinding, Annals 0fthe CIRP,Vol,45/1/1996
    [51] Hahn.R.S.On the Nature of the Grinding Process .Proc. of the 3 rd MTDR Conference, 1966,pp129~154
    [52] Makino.Suto,Fokushima.An Experimental Investigation of the Grinding Process[J].Journal of Mech.Laboratory of Japan.Vol.12,nl,p17
    [53] Rowe.W.B,Qi.H.S,Morgan.M.N,Zheng.H.W.The Effect of Deformation on the Contact Area in Grinding.Annals of the CIRP.Vol.42/1/1993,pp409-412
    [54] Malkin.S,Guo.C.Effectiveness of cooling in Grinding. Presented at CIRP Annual Convention.STCG,Enschede
    [55] Des Ruisseaux.N.R, Zerkle.R.D.Temperature in Semi-infinite and Cylindrical Bodies Subjected to Moving Heat Sources and Surface Cooling[J].Journal of Heat Transfer.Nov.1970,pp456-464
    [56] Howes.T.D,Neailey.K,Harrison.A.J.Fluid Film Boiling in Shallow-cut Grinding. Annals of the CIRP.Volume 36/1/1987,pp223-226
    [57] Malkin.S.Cook.N.H. The Wear of Grinding Wheels,Part 2-Fracture Wear[J].Journal of Engineering for Industry.Nov,1971,pp1129-1133
    [58] Rowes.W.b,Pettit.J.A,boyle.A and Moruzzi.J.L. Avoidance of Thermal Damage in Grinding and Prediction of the Damage Threshold.Annals of the CIRP.Volume 37/1/1988, pp327-330
    [59] Lavine.A.S.Thermal Aspects of Grinding.Heat Transfer to Workpiece.Wheel and Fluid .Collected Papers in Heat Tranfer.ASME HTD.Vol.123/1989,pp267-274
    [60] Rowe.W.B,Morgan.M.N and Allanson.D.R. An Advance in the Modelling of Thermal Effects in Grinding .Annals of the CIRP.Volume 40/1/1991,pp339-342
    [61] Rowe.W.B,Black.S.C.E.,Mills.B,Qi.H.S,Morgan,M.N.Experimental Investigation of heat Transfer in Grinding.Annals of the CIRP.Volnme 44/1/1995,pp329-332
    [62] W.B.Rowe,M.N.Morgan,S.C.E.Black,B.Mills.A Sunplifield Approach to Control 0f Thermal Damage in Grinding, Annals 0fthe CIRP,Vol,45/1/1996
    [63] C.Cuo,Y.Wu,V.Varghese,s.Malkin.1999.Temperature and Energy Parbtion for Grinding with Vitrified CBN Wheels.Annals of the CIRP、Vol.48/1/247
    [64]贝季瑶.磨削温度的分析与研究,上海交通大学学报,1964,9(3)
    [65] H.W.zheng,H.Gao.A General Thermal Model for Grinding with Slotted or Segmented Wheel. Annal of the CIRP,Vol.43/1/1994
    [66]金滩.高效深切磨削技术的基础研究:[博士学位论文].东北大学,1999.12
    [67] Jeager ,J.C. Moving sources of heat and the temperature at sliding contacts, Proceedings of the Royal Society of New South Wales ,76,1942,p203
    [68] Guo.c, Y.Wu,Varghese.V and Malkin.S. Temperature and Energy Partition for Grinding with Vitrified CBN Wheel . Annals of the CIRP,Vol.48/1/1999
    [69]徐燕申,田欣利,于爱兵等.工程陶瓷材料加工技术的研究进展.中国机械工程,1996, 7 (6), 59~62
    [70] T.W. Hwang, S. Malkin.Grinding Mechanism and Energy Balance for Ceramics, Transactions of the ASME, Journal of Manufacturing Science and Engineering, 1999, 121(4): 623-631
    [71]张云电.韧性材料超声珩磨机理研究进展.电加工,1998.1
    [72] [日]隈部淳一郎.精密加工振动切削.机械工业出版社,1985
    [73]田欣利,张纾,徐燕申,林彬.工程陶瓷磨削过程对表面残余应力的影响研究.中国机械工程.第11卷第11期,2000.11
    [74]李堑.磨削温度场的理论解析及测试:[硕士学位论文].河南:河南理工大学,2002.06
    [75]李晓天,陈明,孙方宏等.DZ4材料的磨削烧伤机理.科学成果学术论文.2001.6
    [76] J.C.Jaeger, Theoretical analysis on grinding temperature field. Proc.Soc.of New South Wales ,Vol.76(1942)
    [77]贝季瑶.磨削温度的分析与研究.上海交通大学学报,1964,9(3)
    [78]孟庆国,李文卓.磨削温度场的数值计算.机械工艺师,1996(10)
    [79]和村末久ほか.精密机械,1979,Vol.(1)23~29
    [80]李伟.钛合金切削磨削冷却润滑理论与技术研究.南京航空航天大学博士学位论文,1992.9
    [81]张冬梅.氧化锆陶瓷超声磨削的温度场分布特性研究:[硕士学位论文].河南:河南理工大学,2006.5
    [82]张朝晖主编.ANSYS8.0热分析教程与实例解析.北京:中国铁道出版社,2005.6
    [83] Saeed Moaveni.Finite Element Analysis Theory and Application with Ansys,Beijing:Publishing House of Electionics Industy.2003
    [84] ASTM 1996 C1327-96: Standard Test Method for Vickers Indentation Hardnessof Advanced Ceramics, Annual Book of ASTM Standards,1.03,ASTM,Easton, MD.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700