纳米颗粒射流微量润滑强化换热机理及磨削表面完整性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磨削加工过程中,磨削比能高,故磨削区的温度较高。当温度超过某一临界值时,就会引起零件表面的热损伤(表面氧化、烧伤、残余应力和裂纹),使其抗磨损性能下降,抗疲劳性差,从而降低使用寿命和可靠性。另外,磨削周期内工件的积累温升,会导致工件尺寸精度、形状精度误差以及砂轮寿命急剧下降。所以,有效控制磨削区的温度,防止工件表面的热损伤,是研究磨削机理和提高磨削表面完整性的重要课题。
     传统的磨削加工过程中,通常采用浇注磨削液的方式,来降低磨削温度。由于砂轮的高速旋转,在其周围形成“气障层”阻碍磨削液进入磨削区,真正有效进入磨削区的磨削液很少,大量的磨削液只能对工件基体起到冷却降温的作用。同时造成严重的浪费和污染,难以适应现代绿色制造的生产加工潮流。
     近几年人们提出了绿色磨削加工——微量润滑(minimum quantity lubricant,简称MQL)。它是将微量的润滑油充分雾化后形成微米级汽雾,借助高速流体冲破“气障层”,有效进入磨削区。微量润滑能够起到较好的润滑功效,但是其冷却作用差。由强化换热理论可知,固体的导热能力远远大于液体和气体。在微量润滑介质中添加入固体颗粒,可以显著的增加流体介质的导热系数,提高对流传热能力,从而弥补微量润滑冷却能力不足的缺陷。
     本论文将纳米固体颗粒添加入到润滑流体介质中制得纳米流体,然后采用高压射流方式,为氧化锆陶瓷的精密磨削加工提供润滑和冷却。主要内容包括:一、详细阐述了纳米流体强化换热的机理。重点介绍纳米流体的制备、组成要素;纳米流体热传导系数的测量实验研究和影响因素的分析。
     二、将纳米流体作为MQL磨削加工陶瓷的冷却介质进行实验研究。研究主要内容:磨削力、磨削力比和磨削温度,进一步分析材料去除机理。
     三、研究磨削热传递。针对纳米射流微量润滑的陶瓷磨削加工进行有限元仿真,计算磨削区的热量分配。
     四、表面完整性评价。根据磨削条件的变化,对陶瓷表面完整性的影响因素进行分析,对表面可控性磨削进行预测。
The grinding process generates an extremely high input of energy per unit volume of material removed. Virtually all this energy is converted to heat, which can cause high temperatures and thermal damage to the workpiece such as workpiece burn, phase transformations, undesirable residual tensile stresses, cracks, reduced fatigue strength, and thermal distortion and inaccuracies.In addition, the high grinding temperature rise will lead to the dimensional and shap accuracy of workpiece and dramatically life of wheel.Therefore,how to control the high grinding temperature and workpiece burning is very important.There is an important issue to study the theory of grinding and improve the integrity of workpiece.
     In traditional grinding usually use a large number of grinding fluids to control the grinding temperature.But a little grinding fluids can enter grinding zone for air flow layer around the high speed grinding wheel.So plentiful grinding fluids only can cool the substrate of workpiece,and then make a lot of pollution and waste.Environmental protection and the need for cost-reduction have all promoted the development of new environmentally conscious machining processes.
     Recent years,the minimum quantity lubricant(MQL) is a green machining way . The use of MQL is of great significance in conjunction between large cutting fluids application and dry machining. It can reduce the amount of frictional heat generation and provide some cooling in the tool-workpiece interface and hence keep the workpiece temperatures lower than those in a completely dry machining. Experimental results showed that MQL provided effective lubrication but insufficient workpiece cooling with conventional abrasive wheels. The recent development of nanofluids provides alterative cutting fluids which can be used in MQL grinding. The advanced heat transfer and tribological properties of these nanofluids can provide better cooling and lubricating in the MQL grinding process, and make it production-feasible.
     The main contents of this paper is MQL grinding of zirconia using nanofluids as the heat transfer medium.The following is the main content of the article:
     1. The research of heat transfer enhancement by nanofluids jet lubrication.It presents formation and characterization of nanofluids. The methods of nanofluids synthesis are introduced and several different types of nanofluids are formulated. The method used how to measure the thermal conductivity of nanofluids.
     2. It presents the experimental work of MQL grinding using conventional abrasive wheels. Both water based and oil based nanofluids were employed in MQL grinding and the performance was evaluated in terms of grinding force, G-ratio, and surface roughness, etc.
     3. There focuses on heat transfer in grinding. Based on thefinite element method,the temperature field of ceramics grinding conditions are modeled and analyzed.Temperature experiments of zirconia is researched under different grinding conditions and verified the finite element results above.
     4. The evaluation of the surface integrity in grinding.The microscopic photos can display the quality of grinding surface in all conditions.The parts of zirconia grinding will control the quality of surface after analysising.
引文
[1]蔡光起,冯宝富,赵恒华.磨削技术的最新进展[J].WMEM,2003,(2):16-19.
    [2]李伯民,赵波.现代磨削技术[M] .北京:机械工业出版社,2003,1:12-44.
    [3] Tonshoff H.K,Karpuschewski B,Mandrysch T.Grinding Process chievements and their Consequences on Machine Tools Challenges and portunities[J] .Annals of the CIRP,1998,Vol.47(2):651-667.
    [4]高濂,李蔚著.纳米陶瓷[M].北京:化学工业出版社,2002,第1版:1-9.
    [5]任敬心,康仁科,史兴宽.难加工材料的磨削[M].北京:国防工业出版社,1999:289-322.
    [6] Weinert K,Inasaki I, Sutherland J. W,et al. Dry Machining and Minimum Quantity Lubrication[J] .Annals of the CIRP,2004,Vol.53(2):323-349.
    [7]李长河,蔡光起.磨削中的摩擦冷却与润滑(一)(二)[J].磨料磨具通讯, 2007(199):4-7.
    [8]冯宝富,蔡光起,潘贤君等.高速磨削冷却液的注人新方法[J].机床与液压,2002(2):173-175.
    [9] Heinemann.R,Hinduja.S,Barrow.G, et al.Effect of MQL on the tool life of small twist drills in deep-hole drilling[J].International Journal of Machine Tools and Manufacture,2006,VOL.46:1-6.
    [10]陈洪容.绿色制造及其在机械加工中的应用发展概况[J].中国制造业信息化,2007(19):32-34.
    [11]横田秀雄,吴敏镜译.MQL切削的现状和发展[J].航空精密制造技术,2004(40):24-26.
    [12]侯亚丽,李长河,丁玉成.绿色切削磨削加工技术[J].工具技术,2009(4):32-35.
    [13] Wang Z Y, Rajurkar K P. Cryogenic Machining of Hard-to-cut Materials. Wear, 2000,239(2):168-175.
    [14]满忠雷.基于绿色制造的钛合金高速铣削技术研究[D].博士学位论文.南京:南京航空航天大学,2003.
    [15]侯亚丽,商姗姗,顾礼铎等.绿色切削加工[J].精密制造与自动化,2007,4:19-22.
    [16] Nguyen C T,Galanis N,Polidori G,et al. An experimental study of a confinedand submerged impinging jet heat transfer using Al2O3-water nanofluid[J]. International Journal of Thermal Sciences,2009,48:401-411.
    [17]宣益民,李强.纳米流体能量传递理论与应用[M].北京:科学出版社,2010,1:4-10,15-30.
    [18]李长河,刘占瑞,毛伟平等. Investigation of Coolant Fluid through Grinding Zone in High-Speed Precision Grinding[J].东华大学学报:英文版, 2010,1(27):87-91.
    [19] Vladimir VS,Markus W,Horst H.Sintering Behavior of nano-crystalline zirconia prepared by chemical vapor synthesis.J Am Ceram Soc,2000,83(4):729–736.
    [20]任俊,沈健,卢寿慈.颗粒分散科学与技术[M].北京:化学工业出版社.2005:18-25.
    [21] Choi S U S. Enhancing thermal conductivity of fluids with nanoparticles//Siginer D A[J]. Developments and Applications of Non-newtonian Flows, New York:ASME,1995:99-103.
    [22] Xuan Y M, Li, Q. Investigation on convective heat transfer and flow features of nanofluids[J]. Journal of Heat Transfer, 2003, vol. 125, no.1: 151-155.
    [23] Xu T, Zhang J, and Xu K. The ball-bearing effect of diamond nanoparticles as an oil additive[J]. Applied Physics, 1996, vol. 29: 2932-2937.
    [24] Keblinski P, Eastman J A, Cahill D G. Nanofluids for thermal transport[J]. Materialstoday, 2005,(6):36-44.
    [25]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性[M].北京:化学工业出版社,2003:45-55.
    [26] Thomas D G. Transport charcteristics of supension:Ⅷ.A note on the viscosity of newtonian suspensions of uniform spherical particles[J]. Journal of Colloid Science,1995,20:267-277.
    [27]袁哲俊.纳米科学与技术[M].哈尔滨:哈尔滨工业大学出版社,2005,8:184-240.
    [28] Choi SUS. Nanofluids: From vision to reality through research[J]. ASME Journal of Heat Transfer,2009,131.
    [29] Russel W B,Saville D A, Schowalter W R. Colloidal Dispersions[M]. Cambridge: Cambridge University Press,1989.
    [30] Masuda H, Ebata A, Teramae K. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion ofγ-Al2O3, SiO2 and TiO2 ultra-fine particles) [J]. Netsu Bussei, 1993, vol.4: 227-233.
    [31] Lee S, Choi, Li S. Measuring thermal conductivity of fluids containing oxide nanoparticles[J]. ASME Journal of Heat Transfer, 1999, vol. 121, no. 2: 280-289.
    [32] Xie H, Wang J, Xi T,et al. Thermal conductivity enhancement of suspensions containing nanosized alumina particles[J]. Jappl. Phys. 2002,vol. 91: 4568-4572.
    [33] Eastman J A, Choi, Li S,et al.Enhanced thermal conductivity through development of nanofluids[J]. Materials II, ed. S Komarnenl, JC Parker, HJ Wollenberger, 1997,3. Pittsburgh: Materials Research Society.
    [34] Zhou L P, Wang B X, Experimental research on the thermophysical properties of nanoparticle suspensions using the quasi-steady method[M]. Annu. Proc. Chin. Eng. Thermophys, 2002:889-892.
    [35] Xie H, Wang J, Xi T,et al.Thermal conductivity of suspensions containing nanosized SiC particles[J]. Int J Thermophys, 2002, vol. 23, no. 2: 571-580.
    [36] Murshed, Leong KC,Yang C. Enhanced thermal conductivity of TiO2 - water based nanofluids[J]. International Journal of Thermal Sciences, 2005, vol. 44: 367-373.
    [37] Choi, Li S,et al.Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles[J]. Applied Physics Letters, 2001,vol. 78, no. 6: 718-720.
    [38] Xuan Y, Li Q.Heat transfer enhancement of nanofluids[J]. Int. J. Heat & Flow, 2000,vol. 21, no. 1:58-64.
    [39]施明恒,赵言冰,刘中良.固体颗粒强化液体沸腾换热和抗垢特性的研究[J].东南大学学报,2002,32(2):18-22.
    [40] Das S K,N Putra,Roetzel W.Pool boiling characteristics of nano-fluids[J]. International Journal of Heat and Mass Transfer,2003,46:851-862.
    [41] Bang I C,Chang S H. Boiling heat transfer performance and phenomena of Al2O3-2water nano-fluids form a plain surface in a pool[J].International Journal of Heat and Mass Transfer,2005,48:2407-2419.
    [42] Wen D, Ding Y. Experimental investigation into the pool boiling heat transfer of aqueous based alumina nanofluids[J].Journal of Nanoparticle Research,2005,7:265-274.
    [43]袁哲俊,王先逵.精密和超精密加工技术[M].北京:机械工业出版社,1999,10:16-34.
    [44]张立德编著.纳米材料[M].北京:化学工业出版社,第1版,2000:6–10,39–41.
    [45]郑文裕,陈潮钿,陈仲丛.二氧化锆的性质、用途及其发展方向[J].无机盐工业,2000,32(1):190–197.
    [46] Vladimir VS,Markus W,Horst H.Sintering Behavior of nano-crystalline zirconia prepared by chemical vapor synthesis.J Am Ceram Soc,2000,83(4):729–736.
    [47]高濂,李蔚.纳米陶瓷[M].北京:化学工业出版社,第1版,2002:1–9.
    [48]江东亮.精细陶瓷材料[M].北京:中国物资出版社,第1版,2000:11–21.
    [49]高陇桥.ZrO2陶瓷及其封接技术[J].陶瓷学报,2001.12:35-38.
    [50]宋文植.牙科氧化锆纳米复合陶瓷的制备及性能研究[D].博士论文,长春:吉林大学,2004,6:6-10.
    [51] Swain.陶瓷的结构与性能[M].材料科学与技术丛书.郭景坤译.北京:科学出版社,第1版,1998,93–94.
    [52]侯亚丽,李长河,冯宝富.磨削液对CBN砂轮磨削性能的影响[J].润滑与密封,2007,5:22-24.
    [53]李长河,丁玉成,卢秉恒.硬脆材料高效精密磨粒加工[J].精密制造与自动化,2008,2:16-20
    [54]牟军,郦剑,郭绍义等.氧化锆增韧陶瓷的相变及相变增韧.材料科学与工程,1994,12(3):6–11.
    [55] Bifano TG,Dow T,Scattergood RO.Ductile-regime:a new technology for machining brittle material.Trans.ASME J.Eng.Ind.1991,113(5),184-189.
    [56] Zhang B,Zheng X L,Tokura H,et a1.Grinding induced damage in ceramics.JotlmaJ ofMaterial Processing Technology,2002,1 32:353-364
    [57]龚江宏.陶瓷材料断裂力学[M].北京:清华大学出版社,2001:45-80.
    [58] Chiang S S,Marshfll D B,Evans A G The 1-esix)nse of solids to elastic/plastic Indentation.II.Fracture Indentation.J.Appl.Phys,1982,153:312—317.
    [59] Evans A G Marshall D B.Wear mechanism in ceramics,fundamentals of friction andwearofmaterials,Ed.byRigneyDA,ASME,1981,439.
    [60]于怡青,徐西鹏,沈剑云等.陶瓷磨削机理及磨削加工技术研究进展[J].湖南大学学报,1999,V01.26(2,增刊):48—56.
    [61] Regiani I,Fortulan CA,Purqucrio B M.Abrasive machining of advance ceramics[J].Industrial Diamond Rev-iew,2000(1):37-42.
    [62] Malkin S,Ritter JE.Grinding mechanism and stmngth degradation for ceramics[J].ASME.J.ofEng.for Ind.1989,111:167—173.
    [63]于思远,林彬,林滨等.工程陶瓷超精密磨削表面质量的研究[J].金刚石与磨料磨具工程,2002,5(总131):12—16.
    [64] S.马尔金著,蔡光起,巩亚东,宋贵亮译.磨削技术理论与应用[M].沈阳.东北大学出版社,2002.08:1-12.
    [65]刘占瑞,杜超,李长河.干切削和微量润滑概述[J].精密制造与自动化,2009,03:13-17.
    [66]周春宏,赵汀,姚振强.最少量润滑切削技术(MQL)—经济有效的绿色制造方法[J].机械设计与研究,2005(5):82—84.
    [67] Shen Bin.Minimum quantity lubrication grinding using nanofluids[D]. The University of Michigan,2008:5-26.
    [68]贝季瑶.磨削温度的分析与研究[J].上海交通大学学报,1964,28(3):45-49.
    [69]刘占瑞,李长河.纳米氧化锆陶瓷精密磨削温度场建模及有限元仿真[J].制造技术与机床,2010.9:20-25.
    [70]王霖,刘延俊,刘镇昌等.变化的表面传热系数对磨削温度场的影响[J].山东大学学报(工学版),2003,33(5):482-485.
    [71]胡国良,任继文.ANSYS有限元分析入门与提高[M].北京:国防工业出版社,2009.287-296.
    [72]周德旺,周志雄等.平面磨削温度场三维有限元仿真及其实验研究[J].制造技术与机床, 2008,12:20-25.
    [73] Changhe Li, Zhanrui Liu, cui yi,et al. Performances Evaluation of Vitrified Bonded CBN Wheel under Different Grinding Fluid[J]. 2010 international conference on measuring technology and chatronicsutomation.2010 :887-890.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700