外圆磨削磨粒喷射加工机理及表面特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的外圆磨削中,由于磨削高温使工件表层材料出现缺陷,例如:微裂纹、残余拉应力和表面烧伤等,同时表面的粗糙度和波纹度也较大,这将影响零件的疲劳强度、抗蚀性和接触刚度。因此,重要零件在磨削加工后需要去除表面缺陷层、进行降低粗糙度和波纹度的光整加工。外圆磨削磨粒喷射加工是重要零件在磨削加工后进行去除表面缺陷层、降低粗糙度和波纹度为目的的光整加工新工艺。该工艺是在工件完成磨削后,砂轮停止切入进给,并将磨料混合液注入外圆磨削的楔形接触区。由于砂轮高速旋转,当磨料流体注入砂轮与工件之间的楔形间隙时,就形成了流体动压现象,产生了速度场及压力场。磨料在砂轮约束下获得压力和速度,从而对工件表面进行微去除光整加工实验研究表明,该加工方法既可以保持高的表面形状精度,又可以高效地获得粗糙度Rα。0.19-0.6μm的无缺陷外圆加工表面,实现高效、高精度、低粗糙度,并且可以将磨削和抛光集成的表面精密光整加工。本文以外圆磨削楔形接触区流体场为核心,围绕磨料流体压力场、速度场的建模与仿真和材料去除机理以及工件表面特性等进行了系统的基础性理论和实验研究。本文的主要研究工作包括以下几个方面:
     (1)论述了国内外光整加工技术的发展概况,以及光整加工技术的实际应用和最新成就。论述了光整加工技术在机械制造中的重要作用,光整加工技术的分类、特点和发展方向,重点论述了游离磨粒精密光整加工技术的性能特点以及发展方向,阐述了本课题的背景及意义。
     (2)依据Navier-Stokes方程和流体流动的连续性方程建立了外圆磨削砂轮与工件之间楔形接触区流体动压力的三维数学模型,结合流体力学和仿真技术,利用Matlab软件,对三维流体压力场进行了计算机模拟和仿真研究。研究了楔形接触区流体动压力的分布规律及其影响因素,其仿真结果与实验结果相接近,为磨削楔形接触区流体压力场的仿真研究提供了方法。
     (3)建立了外圆磨削砂轮与工件之间楔形接触区的流体速度场模型,利用Fluent软件,对二维、三维流体速度场进行了计算机模拟和仿真,研究了楔形接触区流体速度场的分布规律及其影响因素。其次研究了单颗、多颗磨粒在楔形接触区的运动轨迹,以及磨粒的释放位置对运动轨迹的影响。最后研究了磨粒在运动过程中随时间的分布规律和磨粒在楔形接触区不同位置的分布情况。
     (4)基于磨粒特征尺寸与砂轮和工件之间最小间隙的比值变化,研究了外圆磨削砂轮约束磨粒喷射加工的材料去除机理,即:两体研磨加工和三体冲蚀加工模式的集成。运用概率统计的方法,建立了楔形接触区有效活动磨粒数的数学模型;依据单颗磨粒的材料去除模型和实际参加光整加工的有效磨粒数模型,建立了工件表面材料去除率模型。在外圆磨床上进行了磨粒喷射加工材料去除的实验研究,通过实验结果验证了工件材料去除率的理论模型。
     (5)对外圆磨削砂轮约束磨粒喷射加工表面微观形貌进行分析,研究了工件表面的尖峰去除机理和波纹度的均化、改善机理。利用外圆磨床MB1332A对45钢进行磨粒喷射加工实验,用表面轮廓仪对加工前后的工件表面进行微观几何参数测量,并用SEM扫描电镜观察表面微观形貌变化。实验结果表明,随着喷射加工时间的增加,表面微观形貌由方向一致的沟槽过渡到随机的、无方向性的微细凹坑,工件表面网纹交错,表面粗糙度值明显降低。
     (6)通过运用自相关函数、功率谱密度函数、互相关函数以及傅立叶谱对磨削加工和磨粒喷射加工外圆表面轮廓进行相关性及谱分析。
     (7)对外圆磨削磨粒喷射加工表面进行物理力学性能的评价,研究了光整加工前后工件表面特性对摩擦磨损性能、耐腐蚀性能和金相组织等的影响。并应用分形维数对磨削表面和磨粒喷射加工表面进行辅助性的分析。
     (8)通过对平面磨削和外圆磨削砂轮约束磨粒喷射加工楔形接触区压力场、速度场、以及工件表面质量等方面的对比,揭示了光整加工平面工件和外圆工件的差异,讨论了此工艺对加工平面工件的可行性。
     (9)总结了论文工作,并提出了探索性的建议。
Because of high grinding temperature, the traditional cylindrical grinding makes defects on the ground surface such as micro-crack、tensile residual stresse、burned layer and so on, and the roughness and ripple values are also greater. All of these would affect the fatigue strength, resistance corroding capability and contact rigidity of the ground surface. Therefore important parts require micro finishing in order to reduce the surface defects and diminish the surface roughness and ripple. A new method named abrasive jet precision machining of cylindrical grinding is to remove surface defect layer and diminish roughness and ripple. When the workpiece was after grinding the slurry of abrasive and liquid solvent was injected to the grinding zone under no depth of cut infeed condition. For the high speed of grinding wheel, when the abrasive slurry is injected to the grinding zone, hydrodynamic pressure has formed, pressure field and velocity field have also formed. The abrasives are driven and energized by the rotating grinding wheel and the surface of workpiece achieved micro removal machining process. The investigate shows that, not only the higher form accuracy of surface but also the no defect cylindrical surface with Ra0.19-0.6μm can be achieved efficiently. Furthermore, cylindrical grinding process and polishing method can be integrated together. This paper has done a lot of systemic research about the model building and simulation on the basic of theory and experiment, which kernel is fluid wedge field of grinding zone、pressure field、velocity field、removal theory and character surface. The purpose of the work is to offer the basis theory and experimental research for the new methord and the primary study work includes these several sides:
     (1) Analysis the sketch of the development of the finishing technique, the practical appliance and the newest achievement in and out country. The function, sorts, trait and development of the finishing technology were summarized and the important action of the finishing technique was also discussed. Especially, the loose abrasive finishing technique and the latest achievement of the domestic and international were especially analyzed. The intention and significance of the topic research was also introduced.
     (2) Based on Navier-Stokes and continuity equations, the 3D hydrodynamic pressure model of wedge-like zone between the grinding wheel and workpiece was established, combined hydrodynamics and simulation technology,3D hydrodynamic pressure field was simulated by using Matlab, and the distributing principle and affecting factor of the liquid hydrodynamic pressure were investigated. The simulation solution is close to the experiment', which has provide the method for the simulation study of the fluid pressure field of grinding.
     (3) The velocity field model of wedge zone between the grinding wheel and cylindrical workpiece was established. The velocity field of liquid in 2D and 3D has been simulated in computer and investigated by using Fluent. The speed distributing principle and influencing factor of liquid velocity field in wedge zone was researched. Secondary the trace of single abrasive、group of abrasive and the effect of trace by different released position were research. Finally the distribution of abrasive by machining time and in different position of wedge were also researched.
     (4) Based on the size ratio of characteristic particle size to the thickness between grinding wheel and workpiece, the material removal mechanisms for abrasive jet machining with cylindrical grinding wheel as restraint were investigated. It can be suggested that the material removal mechanisms combined with two-body lapping and three-body erosion. According to the probability statistics method, the number of particles which can remove material actually was established. The model of material removal ratio was established according to the model of material removal by single abrasive and the number of useful abrasive. Experiments were performed on the cylindrical grinder for material removal of abrasive jet machining experiment, and the material removal rate model was found to give a good confirmation of the experimental results.
     (5) The microscopic morphology surface of abrasive jet machining process with cylindrical wheel as restrain was analyzed. The peak removal mechanism and homogenizing theory of workpiece surface were investigated. Experiments were performed on cylindrical grinder MB1332A and workpiece material 45. The mocro-parameters and microscopic morphology of workpiece surfaces before and after finishing process were measured respectively. The experimental results showing that the machined surfaces change from continuous and parallel micro-groove and plough to randomly discontinuous micro-pit can be observed with machining time increasing. Furthermore, the new process method can obviously diminish roughness values and cause the surfaces to be smooth.
     (6) The outline of the workpiece surface before and after abrasive jet machining process was evaluated by auto correlation function (ACF)、power spectral density (PSD)、cross correlation function (CCF) and Fourier.
     (7) The machined surface of abrasive jet machining with cylindrical grinding wheel as restraint was evaluated by physical performance. And the effect of frictional behaviour、wear behaviour、corrosion resistance and metallurgical structure of the workpiece surface were researched before and after abrasive jet machining process. Fractal dimension was used to analyse the workpiece surface as a assistant parameter.
     (8) From the contrast of pressure field、velocity field and surface quality between the wedge contact zone of plane grinding and cylindrical grinding, the difference between the plane surface and cylindrical surface was expounded. The method can be used to machine the surface of plane workpiece.
     (9) The research work was summarized and exploring suggestion was proposed.
引文
1. T.R.Loveless,R.Ewilliams,K.P.Rajurkar. A study of effects abrasive-flow finishing on various machined surfaces [J]. Journal of Materials Processing Technology 47(1994)133-151.
    2. Rajendra,K.Jain,V.K.jain. Specific energy and temperature determination in abrasive flow machining process [J]. International Journal of Machine Tools & Manufacture 41(2000)1689-1704.
    3. K.Suzuki,Development of a New Mechanochemical Polishing Method with a Polishing Film for Ceramic Round Bars [J],1991,Annals of The CIRP,pp.339-342
    4. Rajendra K.Jain,Vijay K.Jain,P.M.Dixit. Modeling of material removal and surface roughness in abrasive flow machining process [J]. International Journal of Machine Tools & Manufacture 39(1999) 1903-1923.
    5. V.K.Jain,S.G.Adsul. Experimental investigations into abrasive flow machining [J]. International Journal of Machine Tools & Manufacture [J] 40 (2000) 1003-1021.
    6. Rajendra Kumar Jain, Vijay Kumar Jain. Optimum selection of machining conditions in abrasive flow machining using neural network [J]. Journal of Materials Processing Technology 108 (2000)62-67.
    7. G.Burkhard,F.Rehsteiner. High Efficiency Abrasive Tool for Honing [J],2002, Annals of the CIRP, pp.323-327
    8. C.J.Evans,E.paul,D.Dornfeld,D.A.Lucca,etc,Material Removal Mechanisms in Lapping and Polishing [J].2003, Annals of the CIRP, pp.128-149
    9. M.R.Schumack,Jin-Bok Chung,W.W.Schuitz etc.Analysis of Flow Under a Grinding Wheel [J]. Transactions of the ASME 1991 MAY,VOL.113,190-197.
    10. P.Hryniewicz,A.Z.Szeri. Application of Lubrication Theory to Fluid Flow in Grinding: Part 1 Flow Between Smooth Surfaces [J]. Transactions of the ASME 2001 January, Vol.123,94-100.
    11. P.Hryniewicz, A.Z.Szeri. Application of Lubrication Theory to Fluid Flow in Grinding: Part Ⅱ-Flow Between Smooth Surfaces [J]. Transactions of the ASME 2001 January,Vol.123,101-107.
    12. Chang Chong-Ching,An application of lubrication theory to predict useful flow-rate of coolants on grinding porous media [J]. Tribology International. Vol.30.No.8. pp.575-581.1997.
    13. Bo Zhang, Akira Nakajima, Hydrodynamic Fluid Pressure in Grinding Zone During Grinding With Metal-Bonded Diamond Wheels [J]. Journal of Tribology.Vol.122.No.7. pp.603-608.2000.
    14. 史兴宽.硬脆材料超光滑表面磨削技术的现状及发展趋势[J],机械科学与技术,1997,16(5):883-887
    15. B.K.A.Ngoi,P.S.Sreejith.Ductile Regime Finish Machining, A Review.Int J.Adv. Manuf.Technol.2000,16:547-550
    16. Y.Namaba,R.Wada.Ultra Precision Surface Grinder Having a Glass-Ceramic Spindle of Zerothermal Expansion. Annals of the CIRP.1989(38)331-334
    18. 袁立伟,任成祖,舒展ELID超精密镜面磨削钝化膜状态变化的研究.航空精密制造技术[J].2006,42(1):5-8.
    19. 杨建东,田春林.高速研磨技术[M].北京:国防工业出版社.2003,16-19.
    20. J.Gormley,M.Manfra and A.Calawa, Hydroplane polishing of semiconductor crystals,Rev.Sci.Instrum,1991,52(8):1256-1259.
    21. 刘向阳.光学材料超光滑表面抛光的研究[D].长春,吉林大学博士学位论文,2003.
    22. 刘薇娜.冰盘纳米抛光金属材料的研究[D].长春,吉林大学博士学位论文,2004.
    23. Liu Xiangyang,Wang Lijiang. A New Method of Getting Super--smooth Surface with Angstrom Dimension on Optical Material, Proceedings of SPIE [J] Vol.4231(2000):504-508.
    24. Liu Xiangyang,Wang Lijiang.Experiment Study on Cryogenic Polishing Glass Surface without Abrasive.5th International Conference on Progress of Machining Technology. September,2000:431-434.
    25. Liu Weina,Wang Lijiang,Liu Xiangyang. The Academic Discuss of the Surface Roughness of Ice Grinding Tool When Polished in Low Temperature; ISTM/2001, 4thInternational Symposium on Test and Measurement, Shanghai, June 1-3,2001:1049-1052.
    26. S.R.Wilson et al. Surface Figuring Using Neutral Ion Beams. Proc. SPIE.1988 (966). 74-81.
    27. Jeong-Du Kim,Min-Seong Choi. Simulation for the prediction of surface-accuracy in magnetic abrasive machining [J], Journal of Materials Processing Technology,1995,53(6):630-642.
    28. L.N.Allen et al. Demonstration of an Ion figuring Process. SPIE.1990 (1333).22-33.
    29. L.D.Bolllinger and C.B.Zarowin.Rapid,Nonmechanical, Damage-free Figuring of Optical Surface Using Plasmsa-assisted Chemical Etching(PACE). Part I Experimental Results. Proc.SPIE.1988(966).82-90
    30. 赵松楠,吕海兵等.C02激光器在光学元件表面处理中的应用,激光与光电子学进展[J].2006,43(3):43-47.
    31. F.Engineer,C.Guo,S.Malkin, Experimental Measurement of Fluid Flow Through the Grinding Zone [J]. Journal of Engineering for Industry,1992, Vol.114.No.2.pp.61-66.
    32. Dietz R W. Bowl Feed Technique for Producing Supersmooth Optical Surface. ApplOpt,1966,5(5):4448-4451
    33. R.W.Dietz and J.M.Bennett. Bowl Feed and Technique for Super smooth Optical Surface.Opt.1999,(5):881-885.
    34. Yuling,Kailiang Zhang,Fang Wang,Weiguo Di.Investigation on the final polishing slurry and technique of silicon substrate in ULSI [J]. Microelectronic Engineering.2003 (66):438-444.
    35. Y.Namba and H.Tsuwa.Ultra finishing of Sapphire single crystal.Annals of the CIRP.1977(26).325-329.
    36. Frederick M, First U S. High-efficiency Deep Grinding Machine[J], American Mechanist,1993,(4):85-88.
    37. J.Wingerden,H.J.Frankena and B.A.Zwan.Production and Measurement of Superpolished Surface.Opt.Eng.1992,(35).1086-1092.
    38. Chang Geeng-Wei,Yan Biing-Hwa,Hsu Rong-Tzong. Study on Cylindrical Magnetic Abrasive Finishing Using Unbonded Magnetic Abrasives[J]. International Journal of Machine Tools and Manufacture,2002,45(5):575-583.
    39. T.Shinmura,K.Takazawa,E.Hatano and T. Aizawa,Study on Magnetic-Abrasive Process-Application to Edge Finishing,Bull. Japan Soc.of Prec.Eng.1985,19 (3) 278-281.
    40. H.Yamaguchi,T.Shinmura and T.Kaneko,Development of a Internal Finishing Process Applying Magnetic Abrasive Finishing by Use of Pole Rotation System, Int.J.Japan Soc.Prec.Eng.1996,30, (4):367-382
    41. Jacobs S D,Yang Fuqian,Fess EM,Feingold J B. Magnetorheological Finishing of IR Materials. Proc SPIE 1997,3134:258-269.
    42. Kordonski W I,Golini in D.Fundamentals of magnetorheological fluid utilizetion in high precision finishing [J]. Jourual of Intelligent Material Systems and Structures,2001,10(9):358-361.
    43. P.A.ldebert,N.Baffiet,N.Gharbi,J. Livage.Layered Structure of Vanadium Pantoxide gels. Mater.Res.BULL.1981(16):669-676.
    44. Shaohui Yin,Takeo Shinmura.A comparative study:polishing characteristics and its mechanisms of three vibration modes in vibration-assisted magnetic abrasive polishing [J]. International Journal of Machine Tool&Manufacture 2004(44):383-390.
    45. I.Lerche,E.K.Paleologos.Control Function Measures for Hydrodynamic Problems[J].Mathematical Geology.2002,34 (3):246-355
    46. C.Guo,S.Malkin, Analysis of Fluid Flow Through the Grinding Zone[J]. Journal of Engineering for Industry.Vol.114.No.11.pp.427-434.1992.
    47. R.E.Williams,K.P.Rajurkar, Stochastic Modeling and Analysis of Abrasive Flow Machining[J]. Journal of Engineering for Industry.1992,Vol.114. No.2.pp.74-81.
    48. K.S.Tan. The slurry erosion behavior of high velocity oxy-fuel(HVOF)sprayed aluminum bronze coating[J].Wear.2003,255:195-203.
    49. Osama Ashour,Dawn Kinder,and Victor Giurgiutiu,Manufacturing and characterization of magnetorheological fluids,SPIE,1997,3040:174-184.
    50. 潘胜,吴建耀,胡林.磁流变液的屈服应力与温度效应[J].功能材料,1997,28(2):264-266.
    51. Sunil Jha,V.K.Jain.Design and development of the magnetorheological abras-ive fowfinish (MRAFF) process[J]. International Journal of Machine Tools&Man-ufacture 2004,(44):1019-1029.
    52. 彭小强,戴一帆,李圣怡.磁流变抛光的材料去除数学模型[J].机械工程学报.2000(4):67-70.
    53. Shorey A B.Understanding the mechanism of glass removal in magnetorheological finishing(MRF).LLE Review,2001.
    54. 袁哲俊,王先逵.精密和超精密加工技术[M].北京:机械工业出版社,1999
    55. 王贵成,张银喜.精密与特种加工[M].武汉:武汉理工大学出版社,2001
    56. Jeong-Du Kim. Motion analysis of powder particles in EEM using cylindrical polyurethane wheel[J]. International Journal of Machine Tools & Manufacture 42 (2002)21-28.
    57. 杨世春.表面质量与光整技术[M].北京:机械工业出版社,2000
    58. N. Umehara, R.Komanduri. Magnetic fluid grinding of HIP-Si3N4 rollers [J]. Wear 192(1995):85-93
    59. Yaw-Terng Su,Shuh-Yi Wang,Ping-Yi Chao,et al. Investigation of elastic emission machining process:lubrication effects[J]. Precision Engineering 17:164-172,1995
    60. Jeong-Du Kim. Motion analysis of powder particles in EEM using cylindrical polyurethane wheel [J]. International Journal of Machine Tools & Manufacture 42 (2002)21-28
    61. Rajendra K. Jain, V.K. Jain. Stochastic simulation of active grain density in abrasive flow machining [J]. Journal of Materials Processing Technology 152 (2004) 17-22
    62. V.K. Jain, S.G. Adsul. Experimental investigations into abrasive flow machining[J], International Journal of Machine Tools & Manufacture 40 (2000) 1003-1021
    63. Rajendra K. Jain, Vijay K. Jain. Modeling of material removal and surface roughness in abrasive flow machining process[J], International Journal of Machine Tools & Manufacture 39(1999) 1903-1923
    64. Hee-Won Jeong,Tetsuya Aoki, Takeshi Hatsuzawa. High-effiency fixed abrasive polishing method for quartz crystal blanks[J], International Journal of Machine Tools & Manufacture 44 (2004) 167-173
    65. Dong-Sam Park, Myeong-Woo Cho, Honghee Lee. Micro-grooving of glass using micro-abrasive jet machining[J], Journal of Materials Processing Technology 146 (2004) 234-240
    66. Kah Fai Leong, Chee Kai Chua, Gim Siong Chua. Abrasive jet deburring of jewellery models built by stereolithography apparatus (SLA) [J], Journal of Materials Processing Technology 83 (1998) 36-47
    67. Y. Uehara, M. Wakuda, Y. Yamauchi. Tribological properties of dimpled silicon nitride under oil lubrication [J]. Journal of the European Ceramic Society 24 (2004) 369-373
    68. Ming Chen, Koji Kato., Koshi Adachi. Friction and wear of self-mated SiC and Si3N4 sliding in water[J], Wear 250 (2001) 246-255
    69. 吴子牛.计算流体力学基本原理[M],北京:科学出版,2001,35-118
    70. 陈伯贤,裘祖干,张慧生.流体润滑理论及其应用[M],北京:机械工业出版,1991
    71. 巩亚东.超高速磨削砂轮气流场的基础研究[D],东北大学博士学位论文,2004
    72. 陆君安,尚涛,谢进.偏微分方程的MATLAB解法[M],武汉:武汉大学出版社,2001
    73. John H. Mathews, Kurtis D. Fink数值方法(MATLAB版)[M],北京:电子工业出版社,2002
    74. E Brinksmeier, E Minke. High-performance Surface Grinding-The Influence of Coolant on the Abrasive Process[J], Annals of the CIRP,1993,42(1):367-370.
    75. Malkin S, Guo C. Effectiveness of Cooling in Grinding[J], Presented at CIRP Annual Convention. STCG, Enschede,1998.
    76. Brinkmeier,Minke.High-Performance Surface Grinding-The Influence of Coolant on the Abrasive Process[J], Annals of the CIRP,1993,42(1):367-370.
    77. Brinksmeier E, Heinzel M. Friction, Cooling and Lubrication in Grinding[J], Annals of the CIRP,1999,48(2):1-18.
    78. Howes T D. Assessment of the Cooling and Lubricative Properties of Grinding Fluids[J], Annals of the CIRP,1990,39(1):313-316.
    79. Ganesan M, Guo C, Malkin S. Measurement of Hydrodynamic Forces in Grinding[J], Transactions of NAMRI/SME,1995,(23):103-107.
    80. Schumack M R, Chung J B, Schultz W W. Analysis of Fluids Flow Under a Grinding Wheel[J], ASME Jounal of Engineering for Industry,1991, (113):190-197.
    81. Khudobin I L. The Damping Action Coolants in Grinding[J], Sov. Eng. Res.,1981, 61(5):51-53.
    82. Guo C, Malkin S. Analysis of Fluids Flow Through the Grinding Zone[J], ASME Jounal of Engineering for Industry,1992, (104):427-434.
    83. Chang C C, Wang S ZH, Szeri A Z. On the Mechanism of Fluids Transport Across the Grinding Zone[J], Jounal of Manufactring Science and Engineering,1996,118(3): 71-75.
    84. 陈伯贤,裘祖干,张慧生.流体润滑理论及其应用[M],北京:机械工业出版,1991,15-20.
    85. 苏煜城,吴启光.偏微分方程数值解法[M],北京:气象出版社,1989
    86. 周桂如,马骥,全永听.流体润滑理论[M],杭州:浙江大学出版社,1987
    87. 梁冰.固液两相流泵的边界层理论及其应用[M],北京:科学出版社,2003
    88. Hryniewicz, A.Z.Szeri and S.Jahanmir. Application of Lubrication Theory to Fluid Flow in Grinding:Part I-Flow Between Smooth Surfaces[J]. Transaction of the ASME, Vol.123,2001,94-100.
    89. Bo Zhang, Akira Nakajima. Hydrodynamic Fluid Pressure in Grinding Zone During Grinding With Metal-Bonded Diamond Wheels[J], Journal of Tribology, July 2000, Vol. 122,603-608
    90. P. Hryniewicz,A. Z. Szeri. Application of Lubrication Theory to Fluid Flow in Grinding: Part Ⅱ-Influence of Wheel and Workpiece Roughness[J], Tribology JANUARY 2001, Vol.123,101-107
    91. Jeong-Du Kim. Motion analysis of powder particles in EEM using cylindrical polyurethane wheel [J], International Journal of Machine Tools & Manufacture 42 (2002)21-28
    92. P Hryniewicz, A Z Szeri, S Jahanmir. Application of Lubrication Theory to Fluid Flow in Grinding:Part 2-Influence of Wheel and Workpiece Roughness [J], Transactions of the ASME,2001,123(1):101-107.
    93. M R Schumack, Jin-Bok Chung, W W Schultz. Analysis of Fluid flow Under a Grinding Wheel [J],Transactions of the ASME,1991,113(5):190-197.
    94. Klocke F, Briksmeier E. High-speed grinding-fundamentals and state of the art in Europe, Japan and the USA [J], Annals of the CIRP.1997,46(2):715-724
    95. 葛培琪,刘镇昌,隋庆华.磨削加工时冷却液的流体动压效应[J],润滑与密封,2000,(3):26-28.
    96. P Hryniewicz, A Z Szeri, S Jahanmir. Application of Lubrication Theory to Fluid Flow in Grinding:Part 1-Flow Between Smooth Surfaces[J], Transactions of the ASME.2001,123(1):94-100.
    97. Katsushi Furutani, Nguyen Trong Hieu, Noriyuki Ohgur. Automatic compensation for grinding wheel wear by pressure based in-process measurement in wet grinding[J], Precision Engineering 27 (2003) 9-13
    98. 徐华舫.空气动力学基础[M],北京:北京航空学院版社,1986,7-11
    99. S. Ebbrell, N.H. Woolley, Y.D. Tridimas. The effects of cutting fluid application methods on the grinding process[J], International Journal of Machine Tools & Manufacture 40 (2000) 209-223
    100. Sun-Kyu Lee, Yuji Miyamoto, Tsunemoto. E.ects of minimizing hydrodynamic pressure in ultra-precision mirror grinding[J], International Journal of Machine Tools & Manufacture 44 (2004) 1031-1036
    101. K.Ramesh,S.H.Yeo,Z.W.Zhong. Coolant shoe development for high efficiency grinding[J] Journal Materials Processing Technology[J],2004,114(4):240-245
    102. Yaw-Terng Su), Yui-Chen Kao. An experimental study on machining rate distribution of hydrodynamic polishing process[J], Wear,1999.,224(1):95-105
    103. M. Talia, H. Lankarani, J.E. Talia. New experimental technique for the study and analysis of solid particle erosion mechanisms[J], Wear,1999,225(12):1070-1077
    104. Jae-Mo Lee, Won-Hyuk Jin, Dae-Eun Kim. Application of single asperity abrasion process for surface micro-machining[J], Wear 251 (2001) 1133-1143
    105. Rajendra K. Jain, V.K. Jain. Specific energy and temperature determination in abrasive flow machining process[J], International Journal of Machine Tools & Manufacture 41 (2001)1689-1704
    106. Y.P.Chang, M.Hanshimura and D.A.Dornfeld. An Investigation of Material Removal Mechanisms in Lapping With Grain Size Transition[J]. Journal of Manufacturing Science and Engineering,2000, Vol.122,413-419.
    107. M.A. Verspui, G. de With, A. Corbijn. Simulation model for the erosion of brittle materials[J], Wear 233-235 1999 436-443
    108.蔡光起,巩亚东,宋贵亮译.磨削技术理论与应用[M].沈阳:东北大学出版社,2002:35-36.
    109. K. Bose, R.J.K. Wood. Influence of load and speed on rolling micro-abrasion of CVD diamond and other hard coatings[J], Diamond and Related Materials 12 (2003) 753-756
    110. K. BARCOVA, M. MASHLAN and P. MARTINEC. Mossbauer Study of the Thermal Behaviour of Garnets Used in High-Energy Water Jet Technologies[J], Hyperfine Interactions 139/140:463-469,2002.
    111. W. Che, A-F. Bastawros. Mechanistic Understanding of Material Detachment During Micro-Scale Polishing[J], Journal of Manufacturing Science and Engineering, NOVEMBER 2003, Vol.125:731-735
    112. I.Finnie. Some observations on the erosion of ductile metals [J], Wear,1972,19 (1):81-90.
    113. Mohamed Hashish:A Model for Abrasive-Waterjet Machining [J], Journal of Engineering Materials and Technology,1989,111(2):154-162.
    114. I.Finnie, On the formation of surface ripples during erosion [J] Wear,1965,8(1) 60-69.
    115. I.Finnie and D. H. McFadden, On the velocity dependence of the erosion of ductile metals by solid particles at low angles of incidence [J] Wear,1978,48(1) 181-190.
    116. Chang Y P,Hanshimura M, Dornfeld D A. An investigation of material removal mechanisms in lapping with grain size transition. [J] Journal of Manufacturing Science and Engineering,2000,122(6):413-419
    117. BuijsM, Korpel-van Houten. Three-body abrasion of brittle materials as studied by lapping [J].Wear,1993.166(4):237-245
    118. Chauhan R, Ahn Y, Chandrasekar S, et al. Role of I ndentation fracture in free abrasive machining of ceramics [J]. Wear,1993,162 (4):246-257
    119.赵恒华,蔡光起,李长河,等.高效深磨中磨削温度和表面烧伤研究[J].中国机械工程,2004,15(22):2048-2052.
    120.李伯奎,刘远伟.表面粗糙度理论发展研究[J],2004,38(4):63-67
    121.梁嵘,李达成,曹芒.表面微观形貌测量及其参数评定的发展趋势[J],光学技术,1998,6:66-68.
    122. Buijs, M., and Korpel-van Houten, K..Three-Body Abrasion of Brittle Materials as Studied by Lapping[J]. Wear,1993,166, pp.237-245.
    123. R. Chauhan, Y. Ahn, S.Chandrasekar,et al. Role of Indentation fracture in free abrasive machining of ceramics[J]. Wear,162-164 (1993)246-257.
    124. Yutaka Hasegawa,Sasuke Miyazima. Polishing rate for (100) and (110) surfaces[J], Physical A,1996,233(8):663-671
    125. Yaw-Terng Su, Yui-Chen Kao. An experimental study on machining rate distribution of hydrodynamic polishing process[J], Wear,1999,224(3):95-105
    126. Jongwon Seok, Cyriaque P. Sukam, Andrew T. Kim. Material removal model for chemical-mechanical polishing considering wafer flexibility and edge effects[J], Wear, 2004,257 (8):496-508
    127.李伯奎,刘远伟.表面粗糙度理论发展研究[J],2004,38(4):63-67
    128.梁嵘,李达成,曹芒.表面微观形貌测量及其参数评定的发展趋势[J],光学技术,1998,6:66-68
    129.李丽伟,董申,程凯.表面微观形貌定量表征中几种新方法的应用[J],中国机械工程,2002,13(19):1702-1705
    130.陈艺,岳梅,焦明华.采用计算机数据处理的表面形貌分析方法及应用[J],淮南矿业学院学报,1995,15(3):60-63
    131.汪慰军,吴昭同,陈历喜.基于分形的表面形貌特征描述与评定参数的研究[J],计量学报,1998,19(2):147-151
    132.王飞,罗志增.基于功率谱的表面EMG信号运动模式识别[J],杭州电子科技大学学报,2005,25(2):37-40
    133.李伯奎.传统机械加工表面形貌评定的缺陷及发展方向[J],淮阴工学院学报,2002,11(3):63-65
    134. Feng Liu, Yadong Gong, Yuqiao Shan, etal The Correlation and Spectrum Research on Cylindrical Surface Lapping Machined with Abrasive Jet Finishing Restricted by Grinding Wheel [J]. Key Engineering Materials,2009, Vol.389-390:pp 320-325.
    135. I Sherrington and E H Smith:The Significance of surface topography in engineering. Prec Eng,1986,8(2):276-386
    136. K Mitsui:In-process sensors for surface roughness and their applications. Prec Eng, 1986,8(4)
    137. Karl HGuenther, Peter G wierer:Surface roughness measurements of low-scatter mirrors and roughness standards. Appl Opt,1984,23(21):3820-3835
    138. Bharat Bhushan, James C Wyant and Chris L Koliopoulos:Measurement of Surface topography of magnetic tapes by Mirau interferometry, Appl Opt, 1985,24(10):1489-1497
    139. Tsuguo Kohno, Norimitsu Ozawa:High precision optical surface sensor. Appl Opt, 1988,27(1):103-108
    140. M J Downs, W H McGivern and H J Ferguson:Optical system for measurement the profile of super-smooth surface. Prec Eng,1985,7(4):211-215
    141. V.K. Jain, S.G. Adsul. Experimental investigations into abrasive flow machining(AFM)[J], International Journal of Machine Tools & Manufacture,2000,40 (9):1003-1021
    142.葛世荣,陈国安.磨合表面形貌变化的特征粗糙度参数表征[J],中国矿业大学学报,1999,28(3):204-208.
    143.金鑫,张之敬.基于制造特性的微小型构件表面形貌数值模型[J],北京理工大学学报,2005,25(3):189-193.
    144.汪慰军,吴昭同,陈历喜.表面形貌特征描述与评定参数的研究[J],计量学报,1998,19(2):147-151.
    145. Basil A Omar, Alan J Holloway and David C Emmony:Differential phase quadrature surface profiling interfer-ometer. Appl Opt,1990,29(31):4715-4719
    146. Chin Y Poon, Bharat Bhushan:Comparison of surface measurements by stylus profiler, AFM and non-contac toptical profiler[J]. Wear,1995,190:76-88
    147.蒋庄德,王海容,陈伟.分数布朗运动应用于机械加工表面形貌的评定[J],现代计量测试,1997,6:15-19
    148.王飞,罗志增.基于功率谱的表面EMG信号运动模式识别[J],杭州电子科技大学学报,2005,25(2):37-40
    149.金鑫,张之敬.基于制造特性的微小型构件表面形貌数值模型[J],北京理工大学学报,2005,25(3):189-193
    150.葛世荣,陈国安.磨合表面形貌变化的特征粗糙度参数表征[J],中国矿业大学学报,1999,28(3):204-208
    151.马争,桂长林.评定磨合表面的最佳形貌参数[J],摩擦学学报,1995,1995,15(4):133-137
    152.刘晓军,肖少军,谢铁邦.曲面表面粗糙度、波度及形状误差综合测量与分析的研究[J],1997,31(3):33-36
    153.李成贵,董申.三维表面微观形貌的表征参数和方法[J],宇航计测技术,1999,19(6):33-32
    154.梁洁,李尚平.用STM对高速磨削表面微观形貌的研究[J],金刚石与磨料磨具工程,2001,3:7-10
    155. D.Arola,M.Ramulu. Material removal in abrasive waterjet machining of metals surface integrity and texture[J],Wear,1997,210(6):50-58
    156. S. Paul,A.M. Hoogstrate, C.A. van Luttervelt. Analytical and experimental modelling of the abrasive water jet cutting of ductile materials[J], Journal of Materials Processing Technology,1998,73 (3):189-199
    157. F.L. Chen, J. Wang, E. Lemma. Striation formation mechanisms on the jet cutting surface [J], Journal of Materials Processing Technology,2003,141 (4):213-218
    158. Y. Uehara,M. Wakuda, Y. Yamauchi. Tribological properties of dimpled silicon nitride under oil lubrication[J], Journal of the European Ceramic Society,2004,24 (5):369-373
    159. M. Kantha Babu, O.V. Krishnaiah Chetty. A study on recycling of abrasives in abrasive water jet machining[J], Wear,2003,254 (9):763-773
    160.周熙熙,阎秋生.磨料喷射加工加工特性研究[J],机械研究与应用,2003,16(3):30-32
    161.张滢,王维.虚拟数控车削表面形貌的仿真与表面粗糙度预测[J],现代制造工程,2005,7:24-26
    162.于思远,林彬,林滨.工程陶瓷超精密磨削表面质量的研究[J],金刚石与磨料磨具工程,2002,5:12-19
    163.周锦进,翟小兵,庞桂兵.脉冲电化学光整加工表面微观形貌的研究[J],农业机械学报,2004,35(3):150-153
    164.蒋书文,姜斌,李燕.磨损表面形貌的三维分形维数计算[J],摩擦学学报,2003,23(6):433-436
    165.王安良,杨春信.评价机械加工表面形貌的小波变换方法[J],机械工程学报,2001,37(8):65-70
    166. Baogui Shi, J. L. Sullivan, M. A. Wild. Study of Generation Mechanism of Three-Body Particles in Linear Tape Recording[J], Journal of Tribology,2005,127(2):155-163
    167.常海波,徐洮,李红轩.用等离子体增强化学气相沉积技术制备类金刚石碳薄膜的摩擦磨损性能研究[J],摩擦学学报,2005,25(4):298-302.
    168. T.K.Puthanangady,S.Malkin. Experimental investigation of the superfinishing process[J],Wear,1995,185(2):173-182
    169. R.Balasubbramaniam,J.Krishnan,N.Ramakrishnan. Astudy on the shape of the surface generated by abrasive jet machining[J], Journal of Materials Processing Technology,2002,121 (1):102-106
    170. Jourani, M. Dursapt, H. Hamdi. Effect of the belt grinding on the surface texture: Modeling of the contact and abrasive wear[J], Wear,2005,259 (11):1137-1143
    171. Keyurkumar, J. Patel. Quantitative evaluation of abrasive contamination in ductile material during abrasive water jet machining and minimizing with a nozzle head oscillation technique[J], International Journal of Machine Tools & Manufacture, 2004,44(6):1125-1132
    172. Jeong-Du Kim, Min-Seong Choi. Simulation for the prediction of surface-accuracy in magnetic abrasive machining[J], Journal of Materials Processing Technology, 1995,53(6):630-642
    173.杨卓娟,韩志武,任露泉.激光处理凹坑形仿生非光滑表面试件的高温摩擦磨损特性研究[J],摩擦学学报,2005,25(4):374-378
    174.张永振,邱明,上官宝.高速干摩擦条件下铝基复合材料的摩擦磨损行为研究[J],摩擦学学报,2005,25(4):343-347
    175.刘枫,巩亚东,蔡光起,等.砂轮约束磨粒喷射加工表面自相关性及功率谱分析[J].东北大学学报(自然科学版),2007,vol.28(11):1632-1635.
    176.丁厚福,崔方明,杜晓东.成分和组织对衬板钢在腐蚀料浆环境下的冲击磨损性能与机理的影响[J],摩擦学学报,摩擦学学报,2005,25(4):222-225
    177.郭亮,丁厚福,严小冲.低碳高合金钢和高锰钢冲击腐蚀磨损特性研究[J],兵器材料科学与工程,2005,28(2):12-16
    178.李先芬,苏勇,陈翌庆.两种钢冲击腐蚀磨损性能的试验研究[J],兵器材料科学与工程,2003,26(3):18-21
    179.刘枫,单玉桥,巩亚东,蔡光起:砂轮约束磨粒喷射精密光整加工表面互相关性分析[J].金刚石与磨料磨具工程,Vol.161(5)(2007),p.53-57.
    180. Tan.T.N.Texture Edge Dtectio by Modeling Visual Cortical channels[J]. Pattern Recognition, Vol.9(1995),pp.1283-1298.
    181.田欣利,于爱兵,林彬.陶瓷磨削残余应力对表面性能的影响[J],机械科学与技术,2002,21(4):615-617
    182.刘菊东,王贵成,陈康敏,等.非淬硬钢磨削表面硬化层的试验研究[J],中国机械工程,2005,16(11):1013-1017
    183.孙月海,张新,郑惠江.蜗杆传动用摩擦副材料在滑动干摩擦条件下的摩擦磨损性能研究[J],摩擦学报,2005,25(3):279-282
    184.常海波,徐洮,李红轩.用等离子体增强化学气相沉积技术制备类金刚石碳薄膜的摩擦磨损性能研究[J],摩擦学学报,2005,25(4):298-302
    185.王宗英,肖楠,吕淑萍.40Cr钢表面改性处理及磨损性能研究[J],沈阳建筑大学学报(自然科学版),2005,21(3):281-284
    186.刘菊东,王贵成,陈康敏.65Mn钢磨削硬化层组织的研究[J],中国机械工程,2004,15(17):1073-1076
    187.冯宝富,马春容.淬硬轴承钢磨削后的表面硬度[J],辽宁石油化工大学学报,2005,25(2):41-44
    188.杨斌久,盖全芳,张玉峰.高速磨削加工的残余硬度[J],长春工业大学学报(自然科学版),2004,25(1):41-43
    189.邓守军,孙乐民,李占君PCrMo钢的摩擦磨损特性实验研究[J],润滑与密封,2005,4:84-85
    190.邢建东,高义民,张国赏.不锈钢与高碳钢的冲刷腐蚀磨损试验研究[J],西安交通大学学报,2004,38(5):469-473
    191.周上祺.X射线衍射分析原理、方法、应用[M].重庆:重庆大学出版社,1991.91-93
    192. SzymaniR,MoteJCD.The oretical and experimental analysiso fcircular sawtensioning[J],Wood Science and Technology,1979,13:211-237.
    193. SzymaniR,MoteJCD.Areview ofresidualstres and tensioning in circularsawa[J] WoodScience and Technology,1980,8:148-161.
    194.范雄.X射线金属学.北京:机械工业出版社,1981.30-75
    195.梅志,顾明元,吴人洁.金属基复合材料残余应力测量的新方法[J].宇航材料工艺,1996(6):38-44
    196. Gao Y K, Yao M, Shao P G. Relativity of fatigue limit of metal with their tensile property [J] Journal of mechanical Strength,2001,23(1):16.
    197. Majumdar,B-Bhushan.Fractal model of geometry in roughness characterization and contact mechanics of surfaces[J]:ASME of Tribology, Vol.112(1990), p.205-216.
    198. A.Majumdar,CL.Tien. Fractal characterization and simulation of rough surfaces[J]: Wear, Vol.136 (2) (2002), p.313-327.
    199. Majumdar A and Bhushan B. Role of fractal geometry in roughness characterzation and contact mechanics of surfaces[J]. Transactions of ASME, Jounal of Tribology.1990. 112:205212
    200. Vandenberg S, Osborne C F. Digital Image Processsing Techinques, Fractal Dimensionality and Scale space Applied to Surface Roughness[J]. Wear.1992. 159:1730
    201. Thomas A P, Thomas T R. Engineering Surface as Fractals-Fractal Aspect of Mateials [M]. Pittsburgh Society. USA.1986:7577
    202. Majumdar A and Tien C L. Fractal characterizaton and simulation of rough surfaces [J]. Wear.1990.136:313-327
    203. Majumdar A and Bhushan B. Fractal model of elastic-plastic contact between rough surfaces[J]. Transactions of ASME, Journal of Tribology.1991.113:1-11
    204. McCool J I. Comparision of models of the contact of rough surfaces[J]. Wear. 1986.107:37-60
    205. Bhushan B, Dugger M T. Real contact area measurements on magnetic rigid disks[J]. Wear.1990.137:4159
    206. Sayles R S, Thomas T R. Surface topography as a nonstationary random process[J]. Nature.1978.271:431434
    207. Williams J A, Hyncica A M. Mechanisms of Abrasive Wear in Lubricated Contacts [J]. Wear,1992,152:57-74.
    208.李西琴,陈历喜,汪慰军.用互相关函数判别零件表面形貌的特征[J],机械科学与技术,1998,17(1):49-51
    209 邢彦锋,张明,侯仰海.电化学机械光整加工表面相关性分析[J],山东理工大学学报:自然科学版,2003,17(3):23-26
    210. Feng Liu, Yadong Gong, Chang Ke, etal. Fractal Characterization and Simulation of Surface Microtopography Machined with Abrasive Jet Precision Finishing with Grinding Wheel as Restraint [J]. Key Engineering Materials,2008, Vol.375-376:pp 490-494.
    211. Williams J A, Hyncica A M. Mechanisms of Abrasive Wear in Lubricated Contacts [J]. Wear,1992,152:57-74.
    212.李先芬,苏勇,陈翌庆.两种钢冲击腐蚀磨损性能的试验研究[J],兵器材料科学与工程,2003,26(3):18-21.
    213..李惠芬,蒋向前,李柱.三维表面形貌的功能评定方法[J],宇航计测技术,2001,21(6):19-26.
    214.郝达兵,姜岩峰,黄庆安.各向异性腐蚀表面粗糙度的“应力模型”[J],光电子技术,2003,23(3):202-206.
    215.田欣利,于爱兵,林彬.陶瓷磨削残余应力对表面性能的影响[J],机械科学与技术,2002,21(4):615-617
    216.张永振,邱明,上官宝.高速干摩擦条件下铝基复合材料的摩擦磨损行为研究[J],摩擦学学报,2005,25(4):343-347
    217.孙月海,张新,郑惠江.蜗杆传动用摩擦副材料在滑动干摩擦条件下的摩擦磨损性能研究[J],摩擦学报,2005,25(3):279-282.
    218.李先芬,苏勇,陈翌庆.两种钢冲击腐蚀磨损性能的试验研究[J],兵器材料科学与工程,2003,26(3):18-21.
    219.李惠芬,蒋向前,李柱.三维表面形貌的功能评定方法[J],宇航计测技术,2001,21(6):19-26.
    220..郝达兵,姜岩峰,黄庆安.各向异性腐蚀表面粗糙度的“应力模型”[J],光电子技术,2003,23(3):202-206.
    221..车建明.炭纤维增强铜基复合材料摩擦磨损性能同其磨损表面形貌相关性研究[J],摩擦学学报,摩擦学学报,2004,24(2):144-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700