高速永磁电机定子损耗和温升研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速永磁电机由于具有转速高、体积小、功率密度大、高效节能等优点,在高速磨床、高速飞轮储能系统及污水处理等领域得到越来越广泛的应用。然而由于高速和高频带来的损耗、温升及散热问题也变得越来越严重,因此为了保证高速永磁电机安全可靠的运行,必须对如何降低电机损耗和温升及改善通风冷却效果等问题进行深入的研究。本文针对高速永磁电机设计中的关键问题,采用磁场、流体场和温度场相结合的分析方法对高速电机的损耗、温升和散热问题进行了研究,主要研究内容如下:
     (1)针对高速永磁电机高频供电时,定子绕组电流和铁心中磁通交变频率增高导致铁耗增加的特点,通过实际测量有取向电工钢片不同频率和不同轧制方向的铁心损耗,对实验数据进行回归分析从而确定铁耗计算模型中磁滞和涡流损耗系数。然后通过有限元分析,根据定子铁心不同区域磁场的变化规律,综合考虑电机中交变与旋转磁场的影响,对一台额定转速为60000r/min的高速永磁电机的铁耗进行了分析计算,并与实验结果进行了比较。结果表明,考虑旋转磁场及谐波磁场分量影响时的铁心损耗更接近实际测量值。
     (2)考虑到高速电机高频运行时由于集肤效应对绕组附加铜耗的影响,进行了高速永磁电机定子绕组附加铜耗的计算。基于电磁场理论分析了影响高频附加损耗的相关因素,采用场路耦合有限元法分析了高频附加损耗与转速之间的关系,通过损耗分离方法将高频附加损耗从电机总损耗中分离出来,并将计算结果与实验分离值相对比,验证了高频附加损耗分析方法的正确性和有效性。
     (3)根据高速永磁电机通风系统的特点,基于流体力学理论建立电机轴向系统流体场数学模型,计算了高速电机轴向通风沟内冷却气体的流速,并在此基础上,分别采用热路法与流体场结合的方法和基于流固耦合场的分析方法计算了高速永磁电机的温升。与实验结果的对比表明,采用热路法与流体场结合的温升计算方法虽然没有流固耦合的分析方法准确,但是由于其计算工作量小并结合了流体场的分析结果,因此计算结果比传统的等效热路法要准确并具有实际应用价值;而采用基于流固耦合计算永磁电机的温度场分析结果则更接近实测值。
     (4)针对高速永磁电机的结构特点,对一台12槽高速永磁电机的冷却系统进行了研究,分别建立了油冷及空冷和水冷相结合的混合冷却的三维流体场模型,并通过流固耦合法进行了温度场计算。
The high speed permanent magnet (PM) machine has been widely investigated since it has high speed, small size, high power density and high efficiency. The application areas for this machine include high-speed grinding machine, high-speed energy storage flywheel, and sewage treatment and so on. However, due to the high loss and small size, the heat dissipation difficulty becomes a serious problem. To ensure safe and reliable operation of high speed PM machine, it is necessary to study the methods to reduce the losses and improve the ventilation effect. This thesis is focused on the key problem in machine design. The problems of loss, temperature rise and ventilation are researched based on the analysis of electromagnetic field, equivalent heat circuit, fluid field and temperature field. The main contents are listed as follows:
     (1) The core loss increases along with the alternate frequency of the magnetic field. Therefore, the accurate calculation of core loss is more important to the high speed machines. In this thesis, the coefficients of hysteretic loss and eddy-current losses in core losses calculation model are determined by the loss experiments of oriented electrical sheet in different rolling direction for different frequency. Based on the finite element analysis of magnetic field in the stator core, considering the influence of alternating and rotating magnetic field, the core losses of a 60000r/min high speed PM machine are analyzed and compared with the tested result. The comparative study shows that the calculated core losses considering the influence of rotating magnetic field as well as the harmonic magnetic field are closer to the experimental results.
     (2) The additional winding losses produced by the high-frequency skin effect in high speed machine are investigated. The winding additional loss is calculated. The related factors affecting the additional winding losses are analyzed based on the theory of electromagnetic field. Through field-circuit coupled finite element analysis, the relationship between high-frequency loss and rotor speed is established and the additional winding losses are separated from the total losses. The comparison of the calculated value with the experimental result shows the validity and feasibility of the proposed copper loss calculation method for the high speed PM machine.
     (3) According to the characteristics of axial ventilation system, the calculation model of high speed PM machine is established on the basis of the fluid field analysis. The fluid velocity of cooling gas in the axial ventilation duct is computed. The temperature field is calculated by using the combination method of equivalent heat circuit and fluid field solution with fluid-solid field coupled analysis method respectively. The comparison of the calculated value with the experimental result shows that the combination method of equivalent heat circuit with fluid field analysis is not accurate enough, but it is simple and easily computed. Compared with the conventional equivalent heat circuit method, the combination method is more accurate. The calculated temperature rise by the fluid-solid coupled method is closer to the experimental result.
     (4) The ventilation system of 12-slot high speed PM machine is investigated. The three-dimensional fluid field models with oil cooling and mixture cooling of air and water are established. The temperature field of high speed PM machine with different cooling medium is calculated by using the fluid-solid coupling analysis.
引文
[1] Young-Kwan Kim, Moon-Chang Choi, Kwang-Ha Suh et al. High-Speed Induction Motor Development for Small Centrifugal Compressor. International Conference on Electrical Machines and Systems. Shenyang. 2001:891~894.
    [2] Wen L.Soong, Gerald B.Kliman, Roger N.Johnson, Raymond A.White et al. Novel High-Speed Induction Motor for a Commercial Centrifugal Compressor. IEEE Transactions on Industry Applications. 2000, 36(3):706~712.
    [3] Heath Hofmann, Seth R. Sanders. High-Speed Synchronous Reluctance Machine with Minimized Rotor Losses. IEEE Transactions on Industry Applications. 2000, 36(2):531~539.
    [4] Tapani Jokinen, Antero Arkkio. High-Speed AC Motors. Proceedings of the Third International Conference on Electrical Machines. Xi'an. 1999:21~24.
    [5]张长栓.热牵伸辊用高速永磁同步电动机的研制.中小型电机, 2000, 27(4):27~28.
    [6] L.Morel, H.Fayard, R.Vives Fos et al. Study of Ultra High Speed Switched Reluctance Motor Drive. Thirty-fifth IAS Meeting and World Conference on Industrial Applications of Electrical Energy. Roma. 2000:87~92.
    [7] Chudi P., Malmquist A. A hybrid drive for the car of the future. ABB Review, 1993.
    [8] Lagerstrom G.Malmquist A.Advanced hybrid propulsion system for Volvo ECT.Volvo Technology Report No.2 1995.
    [9]吴靖,江昊.分布式发电系统的应用及前景.农村电气化, 2003,7:19-20.
    [10]徐建中.分布式供电和冷热电联产的前景.节能与环保. 2002,3:12-14.
    [11]杜建一,王云,徐建中.分布式能源系统与微型燃气轮机的发展与应用.工程物理学报,2004, 25(5):786-788.
    [12]靳智平.微型燃气轮机发电在我国的应用前景.电力学报. 2004, 19(2): 95-97.
    [13]王凤翔.高速电机的设计特点及相关技术研究.沈阳工业大学学报, 2006, 28(3): 258-264.
    [14]王继强.高速永磁电机的机械和电磁特性研究: (博士学位论文).沈阳:沈阳工业大学,2007.
    [15]谢德馨.用有限元法计算矩形槽内载流导体的集肤效应.哈尔滨电工学院学报.1981,4(1):7-23
    [16]石东平,唐祖义.趋肤效应的理论研究与解析计算.重庆文理学院学报.2009,28(5):18-21.
    [17] Lahteenmaki J. Design and Voltage Supply of High Speed Induction Machines. Ph.D.Dissertation. Helsinki: Acta Polytechnica Scandinavica, 2002.
    [18] BOGLIETTI A, LAZZARI M, PASTORELLI M. A simplified method for the iron losses prediction in soft magnetic materials with arbitrary voltage supply [C] // IEEE-IAS Annual Meeting .Italy: Academic Press, 2000: 269-276.
    [19] Zahawi B A T Al, B P James, Starr F, High speed turbo alternator for domestic combined heat and power unit, IEEE Trans. On EDM, 1997 I: 215~218.
    [20] ZHU J G, RAMSDEN V S. Improved formulations for rotational core losses in rotating electrical machines [J]. IEEE Transactions on Magnetics, 1998, 34 (7): 2234-2242.
    [21] Offringa L J J, Blokland A J. High-speed permanent magnet generator withpower electronic converter for gas turbine power plants[C]. IMARE Conference,The Institute of Marine Engineers, London, September 1998.
    [22] Pullen K R. The design and development of a small gas turbine and high speed generator. Ph. D. Dissertation, Imperial Collagem University of London, 1991.
    [23] James B P, Zahawei B A T Al. A high speed alternator for a small scale gas turbine CHP unit. Electrical Mochines and Drives, Conference Publication, No. 412, September 11~13, 1995.
    [24] Chalmers B J, Spooner E, et al. Compact permanent–magnet machines”, Electrical Machines and Power Systems, 1989, 25: 635~648.
    [25] Etemad, M R., Feaocchl, A, Hall J and Pullen K. An evaluation of high speed generators. Proceedings of the 27th ISATA symposium, Aachen, Germany, 1994 I: 629~637.
    [26] Ionel, D.M. and Popescu, M. and McGilp, M.I. and Miller, T.J.E. and Dellinger, S.J. and Heideman, R.J. (2007) Computation of core losses in electrical machines using improved models for laminated steel. IEEE Transactions on Industry Applications 43(6):pp. 1554-1564.
    [27] Diop, A., Schr?der, U. 1998. Experimental losses determination of high speed synchronous machines 70 kW– 45 000 rpm with magnetic bearings. Proceedings of International Conference in Electrical Machines– ICEM’98, Vol. 3, 2-4 September 1998, pp. 2106-2110.
    [28]崔杨,胡虔生,黄允凯.任意频率正弦波条件下铁磁材料损耗计算.微电机[J], 2007, 40 (8): 1-3.
    [29]江善林,邹继斌.考虑旋转磁通和趋肤效应的变系数铁耗计算模型[J].中国电机工程学报, 2011, 31(3): 104-110.
    [30] Boglietti A, Ferraris P, Lazzari M. About the Design of Very High Frequency Induction Motors for Spindle Applications[J]. Electric Machines and Power Systems, 1997, 25: 387~409.
    [31] Boglietti A, Ferraris P, Lazzari M. Test Procedure for Very High Speed Spindle Motors[c]. Conf. Rec. IEEE- IAS’90. Seattle, USA, 1990: 102~108.
    [32] Polinder H, Hoeijamakers M J. Effect of a shielding cylinder on the rotor losses in a rectifier-loaded PM machines. IEEE 2000: 163-170.
    [33] Polinder H. On the losses in a high–speed permanent magnet generator with rectifier with special attention to the effect of a damper cylinder, PhD dissertation, Delft University of Technology, 1998(Eburon P&L, Delft, 1998.
    [34] Kamerbeek, F.A. The loss in the copper damper cylinder of a high speed generator exited with permanent magnets. MSC thesis, Department of Electrical Engineering, Eindhoven University of Technology, 1995.
    [35] Suleinman Abu Sharkh, Neamat Taghizadeh Irenji, Martyn Harrris,“Effect of power factor on rotor losses in high-speed PM alternators.The Ninth International Conference on Electrical Machines and Drives, 1999: 346-350.
    [36] S.M. Abu Sharkh, M.R.Harris. N Taghizadeh Irenji, Calculation of rotor eddy-current loss in high-speed PM alternators. 1-3 September, EMD 97, 1997: 170-174.
    [37] Arkadan A A, Vyas R, Vaidya J G, JJShah M. Effect of toothless stator design on core and stator conductors eddy current losses in permanent magnet generators. IEEE Transactions on Energy Conversion, 1992, 7: 231-237.
    [38] Takahashi, I., Koganezawa, T., Su, G., Ohyama, K. 1994. A super high speed PM motor drive system by a quasi-current source inverter. IEEE Transactions on Industry Applications, Vol. 30, No. 3, May/June 1994, pp. 683-690.
    [39] Lahteenmaki J. Design and Voltage Supply of High Speed Induction Machines. Acta Polytechnica Scandinavica, Electrical Engineering Series, No. 90, Espoo 2002, 140p.
    [40] Sarri J. Thermal modeling of high speed machines. Acta Polytechnica Scandinavica Electical Engineering Serious, No. 82, Helsinki, Finland, 82p, 1995.
    [41] Co Huynh, Liping Zheng, and Dipjyoti Acharya.Losses in high speed permanent magnet machines used in micro turbine applications.Power for Land, Sea and Air GT2008 June 9-13, 2008, Berlin, Germany.
    [42] Luomi,J.,Zwyssig,C., Looser, A., Kolar, J.W. 2009. Efficiency optimization of a 100W 500000-r/min permanent-magnet machine including air-friction losses. IEEE Transactions on Industry Applications, Vol. 45, No. 4, July/August 2009, pp. 1368-1377.
    [43]李和明,李俊卿.电机中温度计算方法及其应用综述.华北电力大学学报.2005,32(1):1-5.
    [44] Yangsoo Lee, Song Yop Hahn, S.K. Kauh. Thermal Analysis of Induction Motor with Forced Cooling Channels. IEEE Transactions on Magnetic. 2000, 36(4-1):1398~1402.
    [45] Juha Saari.Thermal analysis of high-speed induction machines. Electrical Engineering Series No. 90. Helsinki 1998. 73 p. Published by the Finnish Academy of Technology.
    [46] Guo Y, Zhu J G, Wu W. Thermal analysis of soft magnetic composite motors using a hybrid model with distributed heat sources. IEEE Trans. on Magnetics, 2005, 41(6): 2124-2128.
    [47]李德基,白亚民.用热路法计算汽轮发电机定子槽部三维温度场[J].中国电机工程学报, 1986, 6(6): 36-44.
    [48]方日杰,赖烈恩,陈秀平.用热网络法计算大型水轮发电机定子温度场,大电机技术,1989,(1):25-29.
    [49] C.E. Tindall, S. Brankin. Loss-at-Source Thermal Modeling in Salient-Pole Alternators Using 3-Dimentional Finite Difference Techniques. IEEE Transaction on Magnetic. 1988, 24(1):278~281.
    [50]徐松,顾国彪.50WM蒸发冷却汽轮发电机瞬态负序能力的计算仿真研究.大电机技术.1994,(2):13-16.
    [51] Gerlando A D, Perini R. Analytical evaluation of the stator winding temperature field of water-cooled induction motors for pumping drives. ICEM, Espoo, 2000: 130-134.
    [52]张大为,汤蕴璆等.大型水轮发电机定子最热段三维温度场的有限元计算.哈尔滨电工学院学报.1992, (3).
    [53]陈琳,刘长虹,姚若萍.流场分析轴向通风电机的转子温度.大电机技术.2005,(4):12-15.
    [54]王红宇,苏鹏声,王祥衍.采用热路方法和三维有限元方法计算三峡水轮发电机三维热网络热阻参数的研究.大电机技术,2007(1):11-18.
    [55]李伟力,付敏,周封.基于流体相似理论和三维有限元法计算大中型异步电动机的定子三维温度场[J].中国电机工程学报, 2000, 20(5): 14-18.
    [56]李伟力,周峰,侯云鹏等.大型水轮发电机转子温度场的有限元计算及相关因素的分析.中国电机工程学报, 2002,22(10): 85-90.
    [57] Li Weili, Ding Shuye, Jin Huiyong. Numerical calculation of large synchronous generator stator temperature fields based on coupled fields [J]. Proceeding of the CSEE, 2005, 25(13):129-139 (in Chinese).
    [58]周峰,熊斌,李伟力等.大型电机定子三维流体场计算及其对温度场分布的影响.中国电机工程学报, 2005,25(24):128-132.
    [59]靳慧勇,李伟力,马贤好等.大型空冷汽轮发电机定子内流体速度与流体温度数值计算与分析.中国电机工程学报,2006,26(16):168-173.
    [60]李伟力,靳慧勇,丁树业等.大型同步发电机定子多元流场与表面散热系数数值计算与分析.中国电机工程学报, 2005,25(23):138-143.
    [61] GoTT B E B.Advance in turbo-generator technology. IEEE Electrical Insulation Magazine, 1996, 12(4): 28-38.
    [62] G.Lagerstrom, A.Malmquist. Advanced Hybrid Propulsion System for Volvo ECT. Volvo Technology Report No.2 1995.
    [63] Jarczynski E, Wetzel T, Fealey J. Evolution of air-cooled turbin erator design. IEEE Trans. on Energy Conversion, 2003, 20: 117-123.
    [64] Shanel M, Pickering S J, Lampard D. Conjugate heat transfer analysis of a salient pole rotor in an air cooled synchronous generator. IEEE International Electric Machines and Drives Conference, Madision Wisconsin, 2003: 737-741.
    [65] Pickering S J, Lampard D, Shanel M. Ventilation and heat transfer in a symmetrically ventilated salient pole synchronous machine.International Conference on Power Electronics, Machines and Drives, Stevenage, 2002: 462-467.
    [66]李广德,张伟红.空冷汽轮发电机的通风系统设计.大电机技术, 1998, (4):12-15.
    [67]倪大军,大型发电机主要冷却方式及特点.东方电气评论.2006,20(1):31-37.
    [68]袁达夫,梁波.大型水轮发电机冷却方式.大电机技术.2008(1):1-6.
    [69]韩伟,雷彬.电机类装置冷却方式综述.装备制造技术.2009(9):116-118.
    [70]阮琳.大型发电机冷却方式的发展与特点.电气时代.2001(6):38-40.
    [71]温嘉斌,孟大伟,鲁长滨.大型水轮发电机通风发热综合计算[J].中国电机工程学报,2000,20(11): 6-9.
    [72]姚若萍,饶芳权.蒸发冷却水轮发电机定子温度场研究[J].中国电机工程学报, 2003,23(6):87-90.
    [73]黄允凯.铁磁材料损耗及高速软磁复合材料电机的研究: (博士学位论文).东南大学,2007.
    [74]黄平林.旋转电机铁心损耗的分析: (博士学位论文).东南大学,2007.
    [75]余莉,胡虔生,易龙芳.高速永磁无刷直流电机铁耗的分析和计算.电机与控制应用[J]. 2007,34(4):10-15.
    [76] Bertotti G. General properties of power losses in soft ferromagnetic materials [J].IEEE Transactions on Magnetics, 1988, 24 (1): 621-630.
    [77] ZHU Z Q, NG K, HOWE D. Design and analysis of high-speed brushless permanent magnet motors [C] // The Eighth International Conference on Electrical Machines and Drives. Cambridge: IEE, 1997:381-385.
    [78]黄允凯,胡虔生,朱建国.永磁无刷直流电机铁耗计算方法.电机与控制应用[J], 2007,34(4): 6-9.
    [79]黄平林,胡虔生,崔扬等.PWM逆变器供电下电机铁心损耗的解析计算.中国电机工程学报[J],2007, 22(12): 19-23.
    [80] C. P. Steinmetz,“On the law of hysteresis (originally published in 1892),”Proc. AIEE, Vol. 72, no. 2, pp. 196–221, Feb. 1984.
    [81] H. Jordan, Die ferromagnetischen konstanten fur schwache wechselfelder [M], Elektr. Nach. Techn. 1924.
    [82] ATALLAH K, ZHU Z Q, HOWE D. An improved method for predicting iron losses in brushless permanent magnet DC drives [J] IEEE Transactions on Magnetics, September, 1992, 28(5): 2997-2999.
    [83] Masato Enokizono, Hiroyasu Shimoji, Toyomi Horibe. Loss evaluation motor by using magnetic hysteresis E&S Model [J].IEEE Transactions On Magnetics, 2002, 38(5):2379-2381.
    [84] Preish F. Uber die magnetische nachwirkung [J]. Zeitschrift Fur Physik, 1935(94):277-302.
    [85] Hans Hauser. Energrtic Model of ferromagnetic hysteresis: isotropic magnetization [J].Journal of applied physics, 2004, 96(5):2753-2767.
    [86] Vatcht Vorptran, A Fractal Model of Anomalous Losses in Ferromagnetic Materials [J]. IEEE/IEE Proceedings-A, Vol.140, No.4, Jul.1993, 1277-1283.
    [87] Giorgio Bertotti, General Properties of Power Losses in Soft Ferromagnetic Materials[J].IEEE Transactions on Magnetics.Vol.24,No.1,Jan.1987,621-630.
    [88] Zhu Z Q, Ng K, Howe D. Design and Analysis of High-speed Brushless Permanent Magnet Motors [C]. Eighth International Conference on Electrical Machines and Drives, 1997, 381-385.
    [89] Yu Li, Hu Qiansheng, Cui Yang, et al. Analysis and calculation of the Iron losses of high speed permanent motor [J]. Small & Special Electrical Machines, 2008, (03): 11-13.
    [90] Boglietti A, Lazzari M, Pastorelli M. A simplified method for the iron losses prediction in soft magnetic materials with arbitrary voltage supply [C]. IEEE-IAS Annual Meeting 2000, 1: 269-276.
    [91] Xu Yunlong, Wang Fengxiang. Experiment study on magnetizing and loss characteristics of electrical strip for different frequencies. ICEMS, Wuhan, 2008:156-159.
    [92]王继强,王凤翔.高速永磁发电机的设计与电磁性能分析[J].中国电机工程学报, 2008, 28 (20): 105-110.
    [93] WANG Fengxiang, ZONG Ming, ZHENG Wenpeng, et al. Design features of high speed PM machines[C] //The 6th International Conference on Electrical Machines and Systems. Beijing: Wanguo Academic Press, 2003: 66-70.
    [94] Gerlando A D,Perini.Evaluation of the effects of the voltage hamonics on the extra iron losses in the inverter fed electromagnetic devices[J].IEEE Transactions on Energy Conversion,1999,14(1):57-65.
    [95]方瑞明,王榕.基于谐波分析法的高速变频电机铁耗计算方法[J].电机与控制学报,2004,8(1):25-27.
    [96] ZHU J G, RAMSDEN V S. Improved formulations for rotational core losses in rotating electrical machines [J]. IEEE Transactions on Magnetics, 1998, 34 (7): 2234-2242.
    [97] STUMBERGER B, HAMLER A, GORICAN V, et al. Accuracy of iron loss estimation in induction motors by using different iron loss models [J]. Journal of Magnetism and Magnetic Materials, 2003, 24(7): 272-276.
    [98] Wang Fengxiang, Zhang Dianhai, Kong Xiaoguang, et al. Study on air friction loss of high speed PM machines. ICIT, Churchill, VIC, 2009:1-4.
    [99]汤蕴璆.电机内的电磁场[M].北京:科学出版社,2000.
    [100]吴新振,王祥珩.异步电机双笼转子导条集肤效应的计算[J].中国电机工程学报,2003, 23(3): 116-120.
    [101] Aglen O. Loss calculation and thermal analysis of a high-speed Generator [C]. Proceedings of IEMDC 2003, 1117-1125, 2003.
    [102] Co Huynh, Liping Zheng, and Dipjyoti Acharya. Losses in high speed permanent magnetmachines used in micro turbine applications. ASME Turbo Expo 2008, Berlin, Germany.
    [103]邢军强,王凤翔,张殿海,孔晓光高速永磁电机转子空气摩擦损耗的分析与计算.中国电机工程学报,2010,30(27) :14-19.
    [104]邢军强.高速永磁电机转子损耗及通风散热研究: (博士学位论文).沈阳工业大学,2011.
    [105]杨松,柳长江,基于fluent的大中型永磁电机端部流场和温度场计算.船电技术,2009,(10):25-28.
    [106]王福军.计算流体动力学分析:CFD软件原理与应用[M],北京:清华大学出版社,2004.
    [107] Shanel M, Pickering S J, Lampard D, et al. Application of computational fluid dynamics to the cooling of salient pole electrical machines [C]. Proceedings of ICEM, 2000: 338-342.
    [108]张东.大型水轮发电机综合物理场的数值计算[J].哈尔滨理工大学硕士论文,2003
    [109]栾茹,傅德平,唐龙尧.新型浸润式蒸发冷却电机定子三维温度场的研究[J].中国电机工程学报, 2004,24(8):205-209.
    [110] Rajaopal M S, Seetharamu K N. Finite element analysis of radial cooled rotating electrical machines [J]. International Journal of Numerical Methods for Heat & Fluid Flow, 1999, 9(1): 18-38.
    [111]金煦,袁益超,刘幸拯等.大型空冷汽轮发电机冷却技术的现状与分析.大电机技术,2004, (4): 33-37.
    [112]顾国彪.蒸发冷却技术的发展与应用.电器工业,2003(1):5-8.
    [113]温嘉斌,孟大伟,周美兰等.大型水轮发电机通风发热场模型研究及通风结构优化计算.电工技术学报,2000, 15(6): 1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700