线接触高副机构摩擦学设计与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
控制摩擦、减少磨损、改善润滑性能以及合理发挥材料的潜能等摩擦学研究在工程中具有重要意义。线接触高副机构由于接触区小、接触应力大等原因,其摩擦、磨损和润滑等问题一直被广大科研工作者所重视,国内外在相关领域的研究取得不少成果。但线接触高副机构的摩擦学研究很不平衡,目前在工程应用方面的研究主要集中在轮轨接触、滚动轴承和齿轮接触,而凸轮等线接触高副机构的摩擦学研究相对较少,对于机构摩擦接触的安定分析研究则更少。
     本文基于摩擦学基础理论的研究成果,结合常见的凸轮、齿轮等线接触高副机构的工作原理及其接触模型,利用接触疲劳、弹流润滑、磨损预测等摩擦学的基本原理和方法,对齿轮和凸轮等线接触高副机构的摩擦学设计和分析方法进行深入地探讨。同时基于弹塑性力学的安定极限分析模型,对齿轮接触的塑性变形失效准则进行探讨。取得的主要结果和结论如下:
     1.齿轮啮合过程中,齿面间存在一定的相对滑动。齿面间的滑动摩擦力对齿面接触疲劳强度计算有影响,引入摩擦效应因数,得到考虑齿间滑动摩擦的齿面接触疲劳强度计算模型。计算结果表明,齿间滑动摩擦对齿面接触疲劳强度的影响随润滑状况发生变化,一般可达6%。设计过程中为保证可靠的齿面接触疲劳强度,可适当加大齿面接触疲劳的许用安全系数,或直接采用本文推导的校核模型计算。
     2.直动滚子盘形凸轮机构容易出现疲劳点蚀和磨损失效,须校核凸轮的接触应力。凸轮的压力角和凸轮实际廓线曲率半径是凸轮转角的函数,且凸轮压力角和凸轮廓线曲率半径的计算需多次对运动规律方程求导。给出凸轮接触应力计算模型和基于MATLAB的相应计算程序,可满足工程实际对凸轮接触应力的计算要求。
     3.基于凸轮的接触强度条件,结合凸轮的传动条件,讨论了接触应力、许用压力角、基圆半径以及偏心距等之间的关系,给出满足接触强度条件的直动滚子凸轮设计模型。
     4.通过计算直动滚子盘形凸轮机构最小油膜厚度和膜厚比,可判别凸轮机构的润滑状态,从而可判断凸轮出现磨损的可能性。凸轮润滑涉及接触表面粗糙度、润滑油和凸轮材料性能、凸轮传动系统的运动规律和凸轮结构参数等诸多因素,且各因素在凸轮运转过程中不断变化,通过逐点分布计算的方法将凸轮廓线上的动态润滑转化成准稳态问题。给出MATLAB编制凸轮最小油膜的计算程序,可得凸轮最小油膜厚度随凸轮转角变化的情况,从而判断凸轮廓线各点的润滑状态。
     5.基于平底盘形凸轮弹流润滑理论的最小油膜厚度计算模型,讨论了凸轮廓线最小曲率半径、基圆半径、从动件运动规律和最小油膜厚度之间的关系,给出基于弹流润滑理论的平底直动盘形凸轮机构的设计模型,该模型可按照给定的凸轮润滑状态确定最优的凸轮基圆半径。算例表明,可通过合理选择最佳的凸轮基圆半径和轮廓形状、或选用合理的润滑油和添加剂、或以最经济的加工方法改善凸轮和从动件的表面质量等措施改善凸轮润滑效果。
     6.针对粘着磨损是平底直动盘形凸轮的主要失效形式之一,考虑润滑状况对凸轮磨损的影响,基于弹流润滑理论给出凸轮润滑的膜厚比,建立膜厚比与粘着磨损系数关系的简化模型,从而给出平底凸轮粘着磨损与弹流润滑的耦合计算模型。算例表明,该模型可近似求解平底凸轮各点的磨损状况。
     7.在齿轮初始啮合阶段齿面将发生微小的塑性变形,在接触应力的作用下轮齿内部产生相应的残余应力,残余应力有利于提高齿轮抵抗接触应力的能力。考虑残余应力的影响,基于安定下限定理,导出齿轮材料的接触安定极限,讨论该值作为判断齿面塑性变形失效的许用值与相应的弹性极限作为许用值相比,可提高50%的材料利用率。
Tribology research involving friction control, wear reduction, improvement of lubrication property, reasonable play of materials potential and so on has important significance in engineering. Due to small contact area, big contact stress etc. in the line-contact higher pair mechanisms, the issues related to its friction, wear and lubrication have been always paid high attention by scientific researchers. Many research achievements have been reached in relative field nationally and internationally. However, the tribological research on line-contact higher pair mechanisms is very unbalanced. Currently, the studies on tribology engineering application mainly focus on the wheel-rail contact, rolling bearing and gear contact. However, the tribological researches on the line-contact higher pair mechanisms such as cam are relatively few. Moreover, the shakedown analysis on the mechanical frictional contact pair is much less.
     Based on the basic tribology theory, combining the operating principle and the contact model of common line-contact higher pair mechanisms such as cam, gear etc. and using the basic principles and methods for contact fatigue, elastohydrodynamic lubrication and wear prediction, the tribological design and analysis methods for gear and cam in line-contact higher pair mechanisms are deeply discussed in this paper. Meanwhile the plastic deformation failure criteria of gear are discussed based on the shakedown limit analysis model of plastoelasticity mechanics. The main results and conclusions obtained are as follows:
     1. There is relative sliding between the tooth surfaces during the gear engagement. Sliding friction between the tooth surfaces has an affect on the calculation of tooth surface contact fatigue strength. The calculation model for the tooth surface contact fatigue strength, which considers the sliding friction, can be obtained by introducing the friction effect factor. The calculated results show that the influence of the sliding friction between gears on the tooth surface contact fatigue strength varies with the change of lubrication conditions and the average value is about 6%. To ensure reliable tooth surface contact fatigue strength in gear design, the allowable safety coefficient for the tooth surface contact fatigue can be appropriately increased or it can be directly calculated with the checking model by text derivation.
     2. Straight moving roller disc cam is prone to fatigue pitting and wear failure, so the contact stress of the cam must be checked. The pressure angle and the actual contour curvature radius of the cam are the function of cam rotation angle. The calculation of pressure angle and contour curvature radius of the cam should be performed by deriving the equation of motion rule repeatedly. With the provision of the calculation model for cam contact stress and the corresponding calculation program based on MATLAB, the requirements for calculating the cam contact stress can be met in engineering practically.
     3. According to the contact strength requirement of cam and in combination with the cam transmission condition, the relationship between contact stress, allowable pressure angle, base circle radius and eccentricity, etc. is discussed and the design model of straight moving roller cam meeting the contact strength requirement is provided.
     4. Through calculating the minimal oil film thickness and the ratio of roughness depth to film thickness of the straight moving roller disc cam, the lubrication status of cam mechanism can be estimated, thus the possibility of cam wear can be judged. Cam lubrication relates to the roughness of contact surface, the properties of lubrication oil and cam materials, the movement rule of cam driving system, the cam parameters and so on. All factors aforementioned constantly change during the operation of cam. The problem of dynamic lubrication on the cam contour is converted into quasi-steady problem through the method of point-by-point distribution calculation. With the provision of calculation program for the minimal cam oil film thickness based on MATLAB, the variation of the minimal cam oil film thickness with the change of cam rotation angle can be known. Therefore, the lubrication status of various points on the cam contour can be learnt.
     5. Based on the calculation model for the minimal oil film thickness of flat-bottomed disc cam, the relationship between the minimum cam contour curvature radius, the base circle radius, the motion rule of followers and the minimal oil film thickness is discussed. The design model of straight moving flat-bottomed disc cam is provided based on the theory of elasto-hydrodynamic lubrication, which can determine the optimal base circle radius of cam according to the given cam lubrication status. Calculation examples show that the lubrication effect of cam can be improved by reasonably selecting the best cam base circle radius and contour shape, or choosing reasonable lubrication oil and additives, or improving the surface quality of the cam and followers in most economical processing methods.
     6. Since the adhesion wear is one of the major failure modes of the straight moving flat-bottomed follower disc cam, considering the affect of lubrication conditions on the cam wear, the simplified relationship model between the film thickness ratio and the adhesion wear coefficient is established based on the film thickness ratio of cam lubrication derived from the elasto-hydrodynamic lubrication theory. Thus the coupling calculation model for the adhesion wear of flat-bottomed follower disc cam and the elasto-hydrodynamic lubrication is provided. Calculation examples show that this model can approximately estimate the wear conditions of various contour points on the flat-bottomed follower disc cam.
     7. Tiny plastic deformation will occur on the tooth surface in initial gear engagement stage. The corresponding residual stress is produced inside the gear teeth under the action of the contact stress, which is helpful to improve the resistance of the gear to the contact stress. Considering the influence of the residual stress, the contact shakedown limit of gear material is derived based on lower bound shakedown theorems. It is indicated that the utilization ratio of gear material can be improved by about 50% in case this shakedown limit is used as the allowable value of tooth surface plastic deformation failure rather than elastic limit.
引文
[1]Jost HP et al. Lubrication (Tribology), Education and Research:Dep.of Education and Science-A report on the present position and industry's needs, Her Majesty's Stationery Office,1966;关于英国润滑教育与研究的现状和工业需要的报告.上海:上海交通大学,1979
    [2]温诗铸,黄平.摩擦学原理.第三版.北京:清华大学出版社,2008
    [3]葛中民,候虞铿,温诗铸.耐磨损设计.北京:机械工业出版社,1991
    [4]Stachowiak GW and Batchelor AW. Engineering tribology (2nd Ed.). Boston: Butterworth-Heinemann,2001:571-592
    [5]Hertz H. Uber Die Berhrung Faster Elastischer Korper. J Reine and Angewandte Mathematic,1882,(92):156-171
    [6]Muskhelishvili VL. The Fundamental Feneral Problem of the Theory of Elasticity. Moscow,1949:32-45
    [7]Galin LA. Contact Problem in the Theory of Elasticity. Moscow,1953:78-93
    [8]Gladwell GML. Contact Problem in the Classical Theory of Elasticity. Alphen annden Rijn:Sijthoff and Noordhoff,1980:250-259
    [9]Johnson KL. Contact Problem. Cambridge University Press,1985:116-123
    [10]Soda N, Kimura Y and Tanaka A. Wear of Some F.C.C. Metals During Unlubricated Sliding Part I:Effects of Load, Velocity and Atmospheric Pressure. Wear, 1975,(33):1-16
    [11]Kimura Y. Mechanisms of Wear-the Present State of Our Understanding. Transactions JSLE,1983(28):709-714
    [12]Stachowiak G, Batchelor A. Engineering tribology.3th edition. Elsevier/Butterworth-Heinemann.2006:595-620
    [13]张嗣伟.基础摩擦学.东营:石油大学出版社,2001
    [14]Suh NP and Sin HC. On Prediction of Wear Coefficients in Sliding Wear. ASLE Transactions,1983 (26):360-366
    [15]Dubourg MC, Kalker JJ. Crack Behaviour under Rolling Contact Fatigue. Proceeding of the International Conference on Rail Quality and Maintenance for Modern Railway Operation. The Netherlands, June 1992:373-384
    [16]Bold AF, Brown MW Allen RJ. Shear Mode Crack Growth and Rolling Contact Fatigue. Wear,1991(144):307-317
    [17]Johnson KL, The strength of surfaces in rolling contact. Proceedings of the Institution of Mechanical Engineers,1989(203):151-632
    [18]Kapoor A. A re-evaluation of the life to rupture of ductile metals by cyclic plastic strain. Fatigue Fracture Eng Mater Struct,1994(17):201-219
    [19]Ekberg A, Sotkovszki P. Anisotropy and rolling contact fatigue of railway wheels. International Journal of Fatigue,2001(23):29-43
    [20]Ringsberg JW. Life prediction of rolling contact fatigue crack initiation. International Journal of Fatigue,2001(23):575-586
    [21]Ringsberg JW, Loo-Morrey M, Josefson BL, Kapoor A. Prediction of fatigue crack initiation of rolling contact fatigue. International Journal of Fatigue,2000(2):205-215
    [22]Bower AF. The influence of crack face friction and trapped fluid on surface initiated rolling contact fatigue cracks. ASME Journal of Tribology,1988(110):704-711
    [23]Grohmann HD, Hempelmann K. A new type of RCF experimental investigations and theoretical modeling. Wear,2002(253):67-74
    [24]Dubourg MC, Villechaise B. Stress intensity factors in a bent crack:a mode. European Journal of Mechanics,1992(11):169-179
    [25]Olzak M, Stupnicki J, Wojcik R. Investigation of crack propagation during contact by a finite element method. Wear,1999(146):229-240
    [26]Ekberg A. Rolling contact fatigue of railway wheels-a parametric study. Wear, 1997(211):280-288
    [27]庄力健.1070钢滚动接触疲劳寿命预测.浙江工业大学硕士学位论文,2007
    [28]Ringsberg JW, Loo-Morrey M, Josefson B, Kapoor A, Beynon JH. Prediction of fatigue crack initiation for rolling contact fatigue. International Journal of Fatigue, 2000(22):205-215
    [29]Chaboche JL, Nouailhas D. Constitutive modeling of ratchetting effects-Part: Experimental facts and properties of the classical models. ASME Journal of Engineering Materials and Technology 1989(111):384-392
    [30]Jonas W, Ringsberg JW. Life prediction of rolling contact fatigue crack initiation. International Journal of Fatigue,2001(23):575-586
    [31]Ekberg A, Biarnelled H, Lunden R. A fatigue life model for general rolling contact with application to wheel/rail damage. Fatigue & fracture of engineering materials & structures,1995(10):1189-1199
    [32]Michael RU. Approximate stresses in 2-D flat elastic contact fretting problems. International Journal of Fatigue,1999(21):167-172
    [33]Flasker J, Fajdiga G, Glodez S, Hellen TK. Numerical Simulation of surface pitting due to contact loading. International Journal of Fatigue,2001(23):599-605
    [34]Makoto A, Tadao M. Boundary element analysis of surface initiated rolling contact fatigue cracks in wheel/rail contact systems. Proc. The 5th international Conference on Contact Mechanics and Wear of Rail/Wheel Systems, Japan,2000:161-166
    [35]Stanislaw B, Michael WB. Modelling the three dimensional behaviour of shallow rolling contact fatigue cracks in rails. Proc. The 5th International Conference on Contact Mechanics and Wear of Rail/Wheel systems, Japan,2000:9-16
    [36]Olzak M, Stupnicki J, Wijcik R. Investigation of crack propagation during contact by a finite element method. Wear,1991(146):229-240
    [37]Bogdanski S, Olzak M, Stupnicki J. Numerical stress analysis of rail rolling contact fatigue cracks. Wear,1996(191):14-24
    [38]Kapoor A, Franklin FJ. Tribological layers and the wear of ductile materials. Wear, 2000(245):204-215
    [39]Chue CH, Chung HH, Lin JF. The effects of strain hardened layer on pitting formation during rolling contact. Wear,2001 (249):109-116
    [40]Glodez S, Winter H, Stuwe HP. A fracture mechanics model for the wear of gear flanks by pitting. Wear,1997(41):41-48
    [41]杜李峰.齿轮接触疲劳试验中若干关键技术的研究.浙江大学硕士学位论文,2008
    [42]DIN 51354, FZG gear test rig, German Standard,1990
    [43]ISO 6336, Calculation of load capacity of spur and helical gears,1996
    [44]GB/T 3480,渐开线圆柱齿轮承载能力计算方法,1997
    [45]Blake JW, Cheng HS. A surface pitting life model for spur gears. ASME Journal of Tribology,1991(113):712-718
    [46]Glodez S, Ren Z, Flasker J. Simulation of surface pitting due tu contact loading. International Journal for Numerical Methods in Engineering,1998(43):33-50
    [47]Flodin A, Andersson S. A simplified model for wear prediction in helical gears. Wear, 2001(249):285-292
    [48]Ding Y, Rieger NF. Spalling formation mechanism for gears. Wear, 2003(254):1307-1317
    [49]Guagliano M, Piazza A, Vergani L. A weight-functions based approach to predict rolling contact fatigue sub-surface crack propagation in gears. Proceedings of ASME DETC2003, Chicago,2003
    [50]Aslantas K, Tasgetiren S. A study of spur gear pitting formation and life prediction. Wear,2004(257):1167-1175
    [51]Albrecht C. Transmission design using finite element method analysis techniques. J Am Helicopter Soc,1988(33):3-14
    [52]Blarasin A, Guagliano M, Vergani L. Fatigue crack growth predictions in specimens similar to spur gear teeth. Fatigue Fract Engng Mater Struct,1997(20):1171-1182
    [53]Lewicki DG, Sane AD, Drago RJ, et al. Three-dimensional gear crack propagation studies. NASA/TM,1998-208827/ARL-TR-1833
    [54]Spievak LE, Wawrzynek PA, Ingraffea AR, et al. Simulating fatigue crack growth in spiral bevel gears. Engineering Fracture Mechanics,2001(68):53-76
    [55]Sfakiotakis VG, Katsareas DE, Anifantis NK. Boundary element analysis of gear teeth faracture. Engineering Analysis with Boundary Elements,1997(20):169-175
    [56]Chen DH, Tanaka M. Novikov gear tooth stress analysis using the three dimensional boundary element methods. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers,1997(63):2859-2864
    [57]沈伟,徐辅仁.齿间摩擦对齿轮轮齿表面接触疲劳强度的影响.机床与液压,2001(6):70-73
    [58]邓效忠,方宗德,杨宏斌.准双曲面齿轮齿面接触应力过程计算.中国机械工程,2001(12):1362-1364
    [59]徐颖强,吕国志.航空齿轮接触疲劳裂纹萌生寿命预测方法的研究.西北工业大学学报,2003(4):473-476
    [60]高创宽,周谋,亓秀梅.齿面摩擦力对齿轮接触应力的影响.机械强度,2003(6):642-645
    [61]李永东,张男,张丙喜等.某型坦克齿轮接触疲劳强度可靠性的Monte Carlo数值模拟.机械强度,2006(1):46-50
    [62]陈赛克,王毅.基于精确模型的齿轮接触疲劳寿命有限元分析.机械传动,2007(2):81-82
    [63]金学松,沈志云.轮轨滚动接触疲劳问题研究的最新进展.铁道学报,2001(2):92-108
    [64]Kalker JJ. Three dimensional elastic bodies in rolling contact. Kluwer Academic Publishers, The Netherland,1990:137-184
    [65]Matsumoto A, et al. Experimental Research in the contact mechanics of full scale wheel on test stand. Wear,1996(191):101-106
    [66]Wang G, Knothe K. The influence of inertial forces on steady state rolling contact. Acta. Mechanica,1989:221-232
    [67]Hou K, et al. Wear and friction of wheel rail materials for high adhesion locomotives. Proc. Of 12th International Wheelset Congress, Qingdao, China,1998:21-52
    [68]Kalker JJ. Modification of the two-body contact conditions to account for the third body. Wear,1992(187):183-189
    [69]杨翊仁,张继业,金学松.轮轨水介质接触的完全数值分析方法.铁道学报,1998(4):31-36
    [70]张军,吴昌华.轮轨接触的弹塑性分析.铁道学报,2000(3):16-20
    [71]Olzak M, Stupnicki J, Wijcik R. Numerical analysis of 3D cracks propagating in rail-wheel contact zone. Proceeding of the International Conference on Rail Quality and Maintenance for Modern Railway Operation, The Netherlands,1992:385-393
    [72]Dubourg MC, Kalker JJ. Crack behavior under rolling contact fatigue. Proceeding of the International Conference on Rail Quality and Maintenance for Modern Railway Operation, The Netherlands,1992:373-384
    [73]Kabo E, Ekberg A. Fatigue initiation in railway wheels on the influence of defects. Proceeding of the 5th International Conference on Contact Mechanics and Wear of Wheel/Rail System, Japan,2000:17-22
    [74]Daves W, Fischer FD, Fischer J. Modelling of the wheel-rail contact taking into account micro-structure and material behavior of the contacting materials. Proceeding of the 5th International Conference on Contact Mechanics and Wear of Wheel/Rail System, Japan, 2000:136-141
    [75]Kalker JJ. Design aspects of rail/wheel contact mechanics, Contact Mechanics and Wear of Rail/Wheel Systems. University of Waterloo Press,1993:600
    [76]Smallwood R, Sinclair JC, Sawley KJ. An optimization technique to minimize rail contact stress. Wear,1991(144):373-384
    [77]Matsumoto A, Sato Y, et al. Compatibility of curving performance and hunting stability of rail bogie. Vehicle System Dynamics Supplement,1999(33):740-748
    [78]Gupta V, Hahn GT, et al. Thermal-mechanical modeling of the rolling-plus-sliding with frictional heating of a locomotive wheel. Transactions of the ASME,1995(117):418-419
    [79]沈志云.低动力作用货车转向架动力性能的研究.西南交通大学学报,1991(1):5-13
    [80]Fhilippov G, Sinelnikov V. Metallurgical processes of rail steel production and properties of railroad rails. Proceeding of IHHA 99, Moscow,1999:255-257
    [81]Cannon DF, Pradier H. Rail rolling contact fatigue research by the European Rail Research Institute. Wear,1996(191):1-13
    [82]Ishida M, Abe N. Experimental study on rolling contact fatigue from the aspect of residual stress. Wear,1996(191):65-71
    [83]Kapoor A, Franklin FJ, et al. Surface roughness and plastic flow in rail wheel contact. Proceeding of the 5th International Conference on Contact Mechanics and Wear of Wheel/Rail System, Japan,2000:321-328
    [84]Beynon JH, Garnham JE, Sawley KJ. Rolling contact fatigue of three pearlitic rail steels. Wear,1996(192):94-111
    [85]Shen ZY, Hedrick JK, Elkins JA. A comparison of alternative creep-force models for rail vehicle dynamic analysis. Proc 8th IAVSD Symp, Cambridge,1984:591-605
    [86]陈厚嫦.高速轮轨滚动接触问题的研究.铁道科学院博士学位论文,1997
    [87]张炎,孔祥安,金学松.轨头内弹塑性接触应力场与工矿参数.铁道学报,1999(5):33-36
    [88]刘启跃,王夏秋,金雪岩.铁路车轮踏面的摩擦学设计方法.机械设计,1998(7):21-35
    [89]张军,仲政.机车车辆轮轨接触问题的数值模拟.同济大学学报,2006(9):1231-1236
    [90]金学松,张继业,温泽峰等.轮轨滚动接触疲劳现象分析.机械强度,2002(2):250-257
    [91]赵传国.滚动轴承失效分析概论.轴承,1996(1):39-46
    [92]Tallian TE. Simplified contact fatigue life prediction model-part I:Review of the Published Models. Trans of ASME, J. of Trib,1992(114):207-213
    [93]Zaretsky EV, Poplawski JV, Peters SM. Comparision of life theories for rolling element bearing. Tribology Transaction,1996(2):237-248
    [94]Lundberg G, Palmgren A. Dynamic capacity of rolling bearings. Acta Polytech Mechanical Engineering Series, Royal Swedish Academy of Engineering Sciences, Stockholm, Sweeden,1947(3)
    [95]Harris TA, Yu WK. Lundberg-Palmgren fatigue theory. Considerations of failure stress and stressed volume. Journal of Tribology Transaction of ASME,1999(121):85-89
    [96]万长森.滚动轴承的分析方法.北京:机械工业出版社,1985
    [97]Ioannides E, Harris TA. A new fatigue life model for rolling bearing. Journal of Tribology of ASME,1985(107):367-378
    [98]Tallian TE. Simplified contact fatigue life prediction model - part Ⅰ:review of the published models. Journal of Tribology,1992(114):207-213
    [99]李兴林.滚动轴承材料进步及延寿技术.轴承,1995(11):2-9
    [100]Poplawski JV, Peters SM, Zaretsky EV. Effect of roller profile on cylindrical roller bearing life prediction-part Ⅰ:Comparision of bearing life theories. Tribology Transaction,2001(44):339-350
    [101]Tallian TE. Data-fitted bearing life prediction model-partⅣ:Model implementation for current engineering use. Tribology Transaction,1996(39):957-963
    [102]Yu W, Harris TA. A new stress-based fatigue life model for ball bearings. Tribology Transaction,2001(44):11-18
    [103]Keer LM, Bryant MD. A pitting model for rolling contact fatigue. Journal of Tribology of ASME,1983(105):198-205
    [104]Salehizadeh H, Saka N. Crack propagation in rolling line contact. Journal of Tribology of ASME,1992(114):690-697
    [105]Hoeprich MR. Rolling element bearing fatigue damage propagation. Journal of Tribology of ASME,1992(114):328-333
    [106]Ray A, Tangirala S. Stochastic Modeling of fatigue crack dynamics for on-line failure prognostics. IEEE Transaction on Control Systems Technology,1998(4):443-451
    [107]Li Y, Billington S, Zhang C, et al. Dynamic prognostic prediction of defect propagation on rolling element bearing. ASME/STLE Tribology Conference, Toronto, Ontario, Canada,1998:26-28
    [108]Cheng WQ, Cheng HS. Semi-anslytical modeling of crack initiation dominant contact fatigue life for roller bearings. Journal of Tribology of ASME,1997(119):233-240
    [109]Baillie DC, Mathew JA. Comparison of auto regressive modeling techniques for fault diagnosis of rolling element bearing. Mechanical Systems and Signal Processing, 1996(10):1-17
    [110]Williams T, Ribadeneira X, Billingto S. Rolling element bearing diagnostics in run-to-failure life time testing. Mechanical systems and signal processing, 2001(115):979-993
    [111]罗继伟,张俊杰.圆锥滚子接触应力数值求解..轴承,2004(9):1-3
    [112]马国华,胡桂兰.滚动轴承弹性接触问题的数值计算.轴承,2005(1):1-3
    [113]樊莉,谭南林,沈栋平.基于显式动力学的滚动轴承接触应力有限元分析.北京交通大学学报,2006(4):109-112
    [114]Thomas HR, Hoerch UA. Stresses due to the pressure of one elastic solid on another, University of Illinois Engineering Experiment Station, Bulletin 212:July 15,1930
    [115]Talbourdet GJ. A progress report on the surface endurance limits of materials. ASM Conference on Mechanical Wear, M.I.T.,1950:289
    [116]Morrison RA. Load/Life curves for gear and cam materials. Machine Design, 1968(40):102-108
    [117]Cram WD. Practical approach to cam design. Machine Design,1956:92-103
    [118]Chen FY. A text book on mechanics and design of cam mechanisms. Pergamon Press, 1982
    [119]Mehenny DS, Taylor CM. Analysis of the influence of cam surface waviness on the lubrication of an automotive cam and flat faced follower. in:Tribology Research:From Model Experiment to Industrial Problem, Elsevier,2001
    [120]Bell JC, Davies PJ, Fu WB. Prediction of automotive valve train wear patterns with simple mathematical models. in:Proceedings of 12th Leeds-Lyon Symposium, Lyon, France,1985:323-335
    [121]Cheng W, Cheng HS, Yasuda Y. Wear and life prediction of cam roller follower, SAE 940822(1994):101-107
    [122]Hugnell A, Andersson S. Simulating follower wear in a cam-follower contact. Wear, 1994(179):101-107
    [123]David W, Broberg PE. FEA and FMA reveal weak spots in rotary kiln designs. World Cement,1995,26(5):70-75
    [124]肖友刚,陈志刚,袁英才.斜压状态下回转窑托轮接触疲劳寿命预测.兰州理工大学学报,2007,33(4):165-167
    [125]沈意平,李学军,刘德顺.大型回转窑支撑滚圈的有限元动力特性分析.机械科学与技术,2007,26(9):1155-1158
    [126]Petrusevich AI. Fundamental conclusions from the contact-hydrodynamic theory of lubrication. Izv. Akad. Nauk. SSSR(OTN),1951(2):209-223
    [127]Stephenson RR and Osterle JF. A direct solution of the elastohydrodynamic lubrication problem. Trans. ASLE,1962,5(4):365-374
    [128]Hamrock BJ and Jacobson BO. Elastohydrodynamic lubrication of line contacts. Trans. SSLE,1984,27(4):275-287
    [129]Cheng HS, Sternlicht B. A numerical solution for the pressure, temperature, and film thickness between two infinitively long, lubricated rolling and sliding cylinders, under heavy loads. Trans. ASME J. Basic Eng.,1965(87):695-707
    [130]Ghosh MK, Hamrock BJ. Thermal elastohydrodynamic lubrication of line contacts. ASLE Trans.1985,28(2):159-171
    [131]Yang P, Wen S. A forward iterative numerical method for steady-state elastohydrodynamically lubricated line contacts. Tribology International, 1990,23(1):17-22
    [132]高创宽.渐开线齿轮传动的混合弹流润滑研究.太原理工大学博士学位论文,2005
    [133]Dowson D, Higginson GR. A numerical solution to the elastohydrodynamic problem. J. Mech. Eng. Sci.1959,1 (1):6-15
    [134]Dowson D, Higginson GR. New roller bearing lubrication of rollers. Proc. Roy. Soc. 262A,1961:57-69
    [135]Archard GD, Gair FC and Hirst W. The EHL of rollers. Proc. Roy. Soc., London, Science A,1961,262:51-59
    [136]Holt CA, Evans HP and Snidle RW. Solution of the non-Newtonian elastohydrodynamic problem for circular contacts based on a flow continuity method. Proc. Instn. Mech. Eng.,1996,210:247-258
    [137]Taylor C, O'Callghan JF. A numerical solution of the EHL problem using finite elements. J. Mech. Eng. Science,1972,14(4):229-237
    [138]Rohde SM and Oh KP. A unified treatment of thick and thin elastohydrodynamic problems by using higher order element method. Proc. Roy. Soc., London, A343:315-327
    [139]杨沛然,温诗铸.用残量法求弹流问题的完全数值解.第一届清华大学摩擦学学术会议论文,1986
    [140]小野京右.EHL的数值解法.日本润滑学会,第二十二回东京讲习会,1977
    [141]Houpert LG and Hamrock BJ. Fast approach for calculating film thickness and pressures in elastohydrodynamically lubricated contacts at high loads. Trans. ASME, J. of Tribology,1986,108(3):411-420
    [142]Wolff R and Kubo A. The application of Newton-Raphson method to thermal elastohydrodynamic lubrication of line contacts. Trans. ASME, J. of Tribology, 1994,116:733-740
    [143]Lubrecht AA, Napel WET and Bosina R. Multigrid, an alternative method for calculating film thickness and pressure profiles in elastohydrodynamically lubricated line contacts. Trans. ASME, J. of Tribology,1986,108:551-556
    [144]Chang L, Conry TF and Cusano C. An efficient robust, multi-level computational algorithm for elastohydrodynamic lubrication of line contacts. Trans. ASME, J. of Tribology,1989,111:193-202
    [145]Ehret P, Dowson D, Tylor CM and Wang D. Analysis of isothermal elastohydrodynamic point contacts lubricated by Newtonian fluids using multigrid methods. Proc. Instn. Mech. Eng.,1997,211:493-505
    [146]Venner CH. Higher order multilevel solvers for EHL line and point contact problem. Trans. ASME, J. of Tribology,1994,116:741-750
    [147]黄平,温诗铸.多重网格法求解线接触弹流问题.清华大学学报,1992,32(5):26-34
    [148]Wang J, Qu SY and Yang PR. Simplified multigrid technique for the numerical solution to the steady-state and transient EHL line contacts and the arbitrary entrainment EHL point contacts. Tribology International,2001,34:191-202
    [149]Herrebrugh K. Solving the incompressible and isothermal problem in elastohydrodynamic lubrication through an integral equation. J. of Lubrication Technology, Trans. ASME, Series F,1968,90(1):262-270
    [150]Chow LSH, Cheng HS. The effect of surface roughness on the average film thickness between lubricated rollers. Trans. ASME, J. of Lubrication Technology, 1976,98:117-124
    [151]Tallian TE, McCool JI and Sibley LB. Practical elastohydrodynamic lubrication in rolling contact. Proc. Inst. Mech. Eng., London,1965/1966,180:169-184
    [152]Christensen H. Stochastic models for hydrodynamic lubrication of rough surfaces. Proc. Inst. Mech. Eng.,1969/1970,184(55):1013-1026
    [153]Patir N and Cheng HS. An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. Trans. ASME, J. of Lubrication Technology,1978,100:12-17
    [154]Sadeghi F and Sui PC. Compressible elastohydrodynamic lubrication of rough surfaces. ASME Journal of Tribology,1989,111(1):56-62
    [155]Wang JM and Li BL. The effects of rheological characteristics of lubricant and surface roughness on the load capacity of a hydrodynamic slider bearing. Wear, 1991,146(1):165-177
    [156]Sui PC and Sadeghi F. Non-Newtonian thermal elastohydrodynamic lubrication. ASME, Journal of Tribology,1991,113:390-397
    [157]Sharf KJH, Holt CA, Evans HP and Snidle RW. Simplified analysis of non-Newtonian effects in a circular elastohydrodynamic contact and comparison with experiment. Tribology Transactions,1999,42:39-45
    [158]Kim HJ, Ehret P, Dowson D and Taylor CM. Thermal elastohydrodynamic analysis of circular contacts, part II:non-Newtonian model. Proc. Instn. Mech. Eng., Part J, 2001,215(4):339-352
    [159]Martin HM. Lubrication of gear teeth. Engineering(London),1916,102:119-121
    [160]Grubin AN. Fundamentals of the hydrodynamic theory of lubrication of heavily loaded cylindrical surfaces. Maschgiz, Moscow,1949, No.30; Investigation of the contact of machine components, Research Institute for Technical and Mechanical Engineering Book,1949.(Dept. of Science and Industry Translation No.377)
    [161]Blok H, Discussion Gear Lubrication Symposium, Part Ⅰ, The Lubrication of gears. Journal of the Institute of Petroleum,1952,38:673-683
    [162]Dowson D and Higginson GR. A numerical solution to the elastohydrodynamics problems. J. of Mechanical Engineering Science,1959,1 (1):6-15
    [163]Herrebrugh K. Solving the incompressible and isothermal problem in elastohydrodynamic lubrication through an integral equation. J. of Lubrication Technology, Trans. ASME, Series F,1968,90(1):262-270
    [164]Hamrock BJ and Jacobson BB. Elastohydrodynamic lubrication of line contacts. ASLE Transactions,1984,27(4):275-287
    [165]张鹏顺.线接触弹流油膜厚度计算的一个统一公式和修正的润滑状态图.摩擦学第三届全国学术交流会论文集流体润滑部分(Ⅱ),1982
    [166]杨沛然,温诗铸.线接触弹流问题一种新的解算方法及更准确的油膜公式.清华大学科学报告,1988,23(1):35-38
    [167]Greenwood JK and Kauzlarich JJ. Inlet shear heating in elastohydrodynamic lubrication. Trans. ASME J. Lubrication Technology,1973,95(4):417-426
    [168]Murch LE and Wilson WRD. A thermal elastohydrodynamic inlet zone analysis. ASME, Journal of Lubrication Technology,1975,97(2):212-216
    [169]Blok H. Theory of thermo-elastohydrodynamic lubrication for high speed roller bearings. Proceedings of the 5th Leeds-Lyon Symposium in Tribology,1978:135-144
    [170]Wang S, Cusano C and Conry TF. Thermal analysis of elastohydrodynamic lubrication of line contacts using the Ree-Eyring fluid model. ASME Journal of Tribology, 1991,113(2):232-244
    [171]McEwen E. The effect of variation of viscosity with pressure on the load carrying capacity of oil films between gear teeth. J. Inst. Petrol.,1952,38:646
    [172]Adkins RW and Radzimovsky El. Lubrication phenomena in spur gears:capacity, film thickness variation and efficiency. Trans. ASME, J. of Basic Engineering, 1965,87:655-665
    [173]Dowson D and Higginson GR. A theory of involute gear lubrication. Proceedings of Institute of Petroleum, Gear Lubrication Symposium, Part Ⅱ,1966:8-15
    [174]Gu A. Elastohydrodynamic lubrication of involute gears. Trans. ASME, J. of Mechanical Engineering for Industry,1973:1164-1170
    [175]Vichard JP. Transient effects in the lubrication of Hertzian contacts. J. of Mechanical Engineering Science,1971,13(3):173-189
    [176]Wang KL and Cheng HS. A numerical solution to the dynamic load, film thickness and surface temperature in spur gears, Part I:analysis. Trans. ASME, J. of Mechanical Design,1981,103:177-187
    [177]Oh KP. The numerical solution of dynamically loaded elastohydrodynamic contact as a non-linear complementarily problem. Trans. ASME, J. of Tribology,1984,106:88-95
    [178]Larsson R. Transient non-Newtonian elastohydrodynamic lubrication analysis of an involute spur gear. Wear,1997,207(11):67-73
    [179]Snidle RW, Evans HP and Alanou MP. Gearing tribology. Proceedings of 29'h Leeds-Lyon Symposium on Tribology, Leeds, UK,2003:575-588
    [180]严升明.非稳态痰流润滑理论及其应用的研究.中国矿业大学硕士学位论文,1984
    [181]张和豪,华东耘,林宁.齿轮传动系统的动态—瞬态弹性流体动力润滑.第四届全国齿轮强度与试验学术会议,1991,21:213
    [182]华东耘.系统弹流动力学-系统动力学瞬态弹性流体动力润滑.上海工业大学博士学位论文,1990
    [183]卢立新,蔡莹,张和豪.齿轮瞬态弹流润滑的计算分析.机械传动,1997,21(2):17-20
    [184]章易程,梅雪松,陶涛,邓文和,李蔚.直齿轮啮合弹性流体动力润滑的非稳态效应的研究.机械工程学报,2000,36(1):32-35
    [185]冯桂萍.基于齿面粗糙度的齿轮传动热弹流润滑研究.太原理工大学硕士学位论文,2005
    [186]王发辉.基于理想模型的齿轮传动弹性流体动力润滑研究.南昌大学硕士学位论文,2008
    [187]Holland J. Instationary EHD Lubricants(in German). Konstruktion,1978,30:363-369
    [188]俞海清,艾晓岚.对Holland凸轮挺柱副非稳态弹流润滑膜厚计算方法的实用性探讨.内燃机学报,1990,8(2):137-142
    [189]Dowson D, Taylor CM and Zhu G. A transient elastohydrodynamic lubrication analysis of a cam and follower. J. Appl. Physics,1992,25:313-320
    [190]Houpert L and Hamrock BJ. Fast Approach for Calculating Film Thickness and Pressures in Elastohydrodynamically Lubricated Contacts at High Loads. Trans. ASME, Journal of Tribology,1986,108:411-420.
    [191]Jang S. Transient elastohydrodynamic lubrication film thickness in sliding and rolling line contacts. Journal of Mechanical Science and Technology,2008,22:946-956.
    [192]Wang J, Yang P. A numerical analysis for TEHL of Eccentric-Tappet pair subjected to transient load. ASME Journal of Tribology,2003,125:770-779
    [193]胡首立,刘鸣,吴琼.基于摩擦学的凸轮设计方.机床与液压,2008,5:295-297
    [194]井卫东,李阳星.基于弹流润滑理论的凸轮设计.煤矿机械,2004,8:24-25
    [195]Oh KP and Goenka PK. The elastohydrodynamic solution of a journal bearing under dynamic loading. ASME Journal of Tribology,1985,107:389-395
    [196]Fantino B. Viscosity effects on the dynamic characteristics of an elastic engine. SAE 852074(SP-640)
    [197]Xu H. A new approach to the solution of elastohydrodynamic lubrication of crankshaft bearings. Proceedings of the Institute of Mechanical Engineers,1990,204(C):187-197
    [198]Yutaka Okamoto. A study for wear and fatigue of engine bearings on rig test by using elastohydrodynamic lubrication analysis. SAE 1999-01-0287
    [199]Mian AO, Merritt D and Wang D. The effect of crankshaft flexibility on the EHL of connecting rod bearings. SAE 2002-01-0295
    [200]Takeshi Katagiri, Parametric study for design factors on engine bearings by using TEHL analysis. SAE 2002-01-0298
    [201]Sun J, Gui CL and Li ZY. Influence of journal misalignment caused by shaft deformation under rotational load on performance of journal bearing. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2005,219(4):275-283
    [202]Tonn W. Beitrag zur Kenntnis des Verschlei vorganges beim Kurzversuch. Ztsch. F. Metallkunde.1986,29(6):196-198.
    [203]Holm R. Electrical contacts. Stockholm, H. Gerbers,1946, P.398
    [204]Burwell JT and Strung CD. On the Empirical Law of Adhesive Wear. J. Appl. Phys., 1952,23(1):18-28.
    [205]Archard JF. Contact and Rubbing of Flat Surface. J. Appl. Phis.,1953,24:981-988
    [206]Rabinowicz E. Friction and Wear of Materials. Wiley, London,1965:32-41
    [207]Suh NP. An Overview of the Delamination Theory of Wear. Wear,1977,44 (1):1-16
    [208]Jacobson S, Wallen P, Hogmark S. Fundamental aspects of abrasive wear studied by a new numerical simulation model. in:K.C. Ludema (Ed.), Proceedings of the International Conference on Wear of Materials, (1987), pp.595-606.
    [209]Nicholls JR and Stephenson DJ. Monte carlo modeling of erosion processes. Wear,1995, 186-187:64-77
    [210]Jiang JR, Sheng FH, Ren FS. Modeling of two-body abrasive wear under multiple contact conditions. Wear,1998,217(1):35-45
    [212]Kapoor A, Franklin FJ. Tribological layers and the wear of ductile materials. Wear, 2000,245:204-215
    [213]Franklin FJ, Widiyarta I, Kapoor A. Computer simulation of wear and rolling contact fatigue. Wear,2001,250-251:949-955
    [214]Flasker J, Fajdiga Q Glodez S, et al. Numerical simulation of surface pitting due to contact loading. International Journal of Fatigue,2001,23(7):599-605
    [215]O'Neil DA, Wayne SF. Numerical simulation of fracture in coated brittle materials subjected to tribo-contact. J. Eng. Mater. Technol.(Trans ASME),1994,116(4):471-478
    [216]Chue CH, Chung HH, Lin JF, et al. The effects of strain hardened layer on pitting formation during rolling contact. Wear,2001,249:109-116
    [217]Zhang B, Xie YB, Two body micro-cutting wear model, Part Ⅰ:Two-dimensional roughness model. Wear,1989,129(1):37-48
    [218]林刚,谢敬佩,杨茹萍等.疲劳磨损和压碎磨损的应力计算.洛阳工学院学报,1994,15(3):13-18
    [219]吴国清,方亮,邢建东等.磨料尺寸对磨料磨损过程影响的随机模拟.西安交通大学学报,2001,35(5):527-531
    [220]王新华,张嗣伟等.基于分形理论的磨粒磨损类型.润滑与密封,2002,(3):2-4
    [221]严立,徐久军.磨损问题的仿真求解研究.摩擦学学报,1999,19(1):50-55
    [222]Flodin A, Andersson S. Simulation of mild wear in spur gear. Wear,1997,207:16-23
    [223]Lundvall O, Stromberg N, Klarbring A. A flexible multi-body approach for frictional contact in spur gear. J. Sound Vib.,2004,278(3):479-499
    [224]Bajpai P, Kahraman A, Anderson NE. A surface wear prediction methodology for parallel-axis gear pairs. Journal of Tribology,2004,126(3):597-605
    [225]Yuksel C, Kahraman A. Dynamic tooth loads of planetary gear sets having tooth profile wear. Mechanism and Machine Theory,2004,39:695-715
    [226]Ding HL, Kahraman A. Interactions between nonlinear spur gear dynamics and surface wear. Journal of Sound and Vibration,2007,307:662-679
    [227]Dhanasekaran S, Gnanamoorthy R. Gear tooth wear in sintered spur gears under dry running conditions. Wear,2008,265:81-87
    [228]Bell JC, Davies PJ, Fu WB. Prediction of automotive valve train wear patterns with simple mathematical models. Proceedings of 12th Leeds-Lyon Symposium, Lyon, France,1985:323-335
    [229]Fries RH, Rogers CA. Predictions of cam wear profiles. Tribology Series, 1989,14:101-109
    [230]Hugnell A, Andersson S. Simulating follower wear in a cam-follower contact. Wear, 1994,179:101-107
    [231]Nayak N, Lakshminarayanan PA, Gajendra Babu MK, et al. Prediction of cam follower wear in diesel engines. Wear,2006,260:181-192
    [232]江亲瑜,孙晓云,李宝良.直动滚子从动件盘形凸轮传动系统磨损的数值仿真.机械工程学报,2000(10):86-90
    [233]江亲瑜.齿轮抗磨损强度计算方法研究.润滑与密封,2000(6):5-8
    [234]潘尔顺,王殊轶,杨文通.齿轮啮合过程的应力、磨损的计算机模拟.上海交通大学学报,2000(3):415-418
    [235]左玉梅,王守尊.基于Matlab/Simulink的内燃机凸轮挺柱磨损数值计算的仿真研究.海军工程大学学报,2005(2):75-78
    [236]王淑仁,闫玉涛,殷伟俐等.齿轮啮合摩擦疲劳磨损的计算模型.东北大学学报,2008(8):1164-1167
    [237]Hill R. The mathematical theory of plasticity. Oxford Univ. Press, London,1950
    [238]Matsumoto Y, Magda D, Hoeppner DW, Kim TY. Effect of machining processes on the fatigue strength of hardened AISI 4340 steel. ASME J. Eng. Ind,1991,113:154-159
    [239]Bleich H. Uber die bemessung statish unbestimmter stahl tragwerke unter der beriicksichtigung des elastisch-plastischen verhaltens des baustoffes. Der Bauingenieur, 1932,13:261-267
    [240]Melan E. Der Spannungszustand eines "Mises-Hencky'schen" Kontinuums bei veranderlicher Belastung. Sitzungsberichte der Akademie der Wissenschaften in Wien, Abteilung Ⅱa,1938,147:73-87.
    [241]Koiter WT. A New General Theorem on Shakedown of Elastic-Plastic Structures. Proc. Koninkl. Ned. Ak. Wetenschap,1956, B59:24-34.
    [242]Gokhfeld DA, Cherniavsky DF. Limit Analysis of Structures at Thermal Cycling. Sijthoff and Noordhoof, The Netherlands,1980.
    [243]Zarka J, Casier J. Elastic-plastic response of a structure to cyclic loading:practical rules. Mechanics Today, Edited by S. Nemat-Nasser, Vol.6, Pergamon Press,1979:93-198
    [244]Weichert D, Gross-Weege J. The numerical assessment of elastic-plastic sheets under varable mechanical and thermal loads using a simplified two-surface yield condition. Int. J. Mech. Sci.,1988,30:757-767
    [245]Maier G. Shakedown theory in perfect elasto-plasticity with associated and nonassociated flow-laws:a finite element linear programming approach. Meccanica, 1969,4:250-260
    [246]Hung HD and Palgen L. Shakedown analysis by finite element method, presented at CANCAM 79, Universite de Sherbrooke, Canada,1979:101-102
    [247]Konig JA. On Upper Bounds to Shakedown Loads. ZAMM,1979,59:349-354
    [248]Johnson KL. A shakedown limit in rolling contact. Proceedings 4th US National Congress of Applied Mechanics, ASME,1962b:288-295
    [249]Ham G, Rubin CA, Hahn GT, Bhargava V. Elasto-plastic finite element analysis of repeated two-dimensional rolling sliding contacts. J. Tribol.,1988,110:44-49
    [250]Kulkarni S, Hahn GT, Rubin CA, Bhargava V. Elasto-plastic finite element analysis of three-dimensional pure rolling contact above the shakedown limit. Trans ASME, J. Appl, Mech.,1991,58:347-353.
    [251]Ponter ARS, Hearle AD, Johnson KL. Application of the kinematical shakedown theorem to rolling and sliding contact point. J. Mech. Phys. Solids 1985,33:339-362.
    [252]Bower AF and Johnson KL. Plastic Flow and Shakedown of the Rail Surface in Repeated Wheel-Rail Contact. Wear,1991,144:1-18
    [253]Johnson KL. The application of shakedown principles in rolling and sliding contact. Eur. J. Mech., A/Solids 1992,11:155-172.
    [254]Wong SK, Kapoor A and Williams JA. Shakedown limits on coated and engineered surfaces. Wear,1997,203:162-170.
    [255]Dyson IN, Williams JA and Kapoor A. The effect of surface hardening on the elastic shakedown of elliptic contacts. Proc of the IMechE, Part F,1999,213:287-298.
    [256]Williams JA, Dyson IN and Kapoor A. Repeated loading, residual stresses, shakedown and tribology. J. Mater. Res.,1999,14:1548-1559.
    [257]Yu M, Moren B and Keer LM. A direct analysis of 3-D elastic-plastic rolling contact. ASME J. of Tribology,1995,117:234-243
    [258]李蹊,沈亚鹏.关于弹塑性接触安定性研究的一种新方法.机械强度,1990,2:14-18
    [259]刘启跃,金雪岩,王夏秋.轮轨塑性变形与安定状态的关系研究.西南交通大学学报,1999,34:223-239
    [260]徐颖强,闫福生,吕国志,刘更.循环接触下安定状态问题的研究.固体力学学报,2004,1:101-103
    [261]原园,徐颖强,吕国志.应变强化模型的安定准则研究.固体力学学报,2007,3:229-234
    [262]原园,徐颖强,吕国志.齿轮接触安定分析.机械强度,2007,6:1017-1021
    [263]Konig JA. A method of shakedown analysis of frames and arches. Int. J. Solids & Structures,1971,7:327-344
    [264]Alwis WAM and Grundy P. On the carrying capacity of rectangular plates under moving loads. Int. J. Mech. Sci.,1985,27:187-197
    [265]刘应华,岑章志.带缺陷压力容器的极限与安全分析.工程力学,1997,1:503-508
    [266]Bower AF and Johnson KL. Plastic flow and shakedown of the rail surface in repeated wheel-rail contact. Wear,1991,144:1-18
    [267]Bohmer A, Ertz M and Knothe K. Shakedown limit of rail surfaces including material hardening and thermal stresses. Fatigue and Fracture of Engineering Materials and Structures,2003,26:985-998
    [268]Kapoor A, Franklin FJ, Wong SK and Ishida M. Surface roughness and plastic flow in rail wheel contact. Wear,2002,253:257-264
    [269]Bocciarelli M, Cocchetti G and Maier G. Shakedown analysis of train wheels by Fourier series and nonlinear programming. Eng. Structure,2003,26:455-470
    [270]Ringsberg JW, Franklin FJ, Josefson BL, Kapoor A and Nielsen CO. Fatigue evaluation of surface coated railway rails using shakedown theory, finite element calculations, and lab and field trials. Int. J. of Fatigue,2005,27:680-694
    [271]王步康,董光能,刘永红,谢友柏.钢轨短波长波浪形磨损的安定性分析.摩擦学学报,2004,1:70-73
    [272]Ishibashi A, Ueno T and Tanaka S. Surface durability of spur gears at Hertzian stresses over shakedown limit. J. Eng. Ind., ASME Trans.,1974,96:359-372
    [273]Kapoor A, Morales-Espejel GE, Olver AV. A shakedown analysis of simple spur gears. Tribology Transactions,2002,45:103-109
    [274]徐颖强,吕国志.航空齿轮接触疲劳裂纹萌生寿命预测方法的研究.西北工业大学学报,2003,4:473-476
    [275]张嗣伟.关于我国摩擦学发展方向的探讨.摩擦学学报,2001,21(5):321-323
    [276]Hua DY. A multi-scale system analysis and verification for improved contact fatigue life cycle of a cam-roller system. Journal of Tribology,2007,129:321-325
    [277]Bhushan B. Modern Tribology Handbook. CRC Press LLC,2001
    [278]Glodez S, Ren Z. Modelling of crack growth under cyclic contact loading. Theoretical and Applied Fracture Mechanics,1998,30:159-173
    [279]机械设计手册编委会.机械设计手册(第5卷).机械工业出版社,2004
    [280]黄锡恺,郑文纬.机械原理.北京:高等教育出版社,1993
    [281]Rothbart HA. Cam Design Handbook. McGraw-HILL,2004
    [282]吴雁平.对心滚子移动从动件盘形凸轮机构的接触应力.机械传动,2005(4):66~68
    [283]罗庆生,韩宝玲.基于挤压应力条件的凸轮基圆半径的设计理论与方法.机械设计,2000(6):33~35
    [284]胡家秀,谈向群.机械设计基础.北京:机械工业出版社,2006:3-63
    [285]刘远伟.基于接触强度的最小尺寸凸轮机构设计.机械设计,1997(10):10-13
    [286]史玉忠.按许用压力角确定凸轮机构基本尺寸的正确方法.内蒙古煤炭经济,2007,1: 65-67
    [287]沈伟,徐辅仁.齿间摩擦对齿轮轮齿表面接触疲劳强度的影响.机床与液压,2001(1):70-73
    [288]李秀莲.基于摩擦的斜齿轮齿面接触疲劳强度计算.农业机械学报,2005(4):123-124
    [289]宋红光.直齿轮轮齿间摩擦系数的计算.现代制造工程,2003(12):97-98
    [290]Vaishya M, Houser DR. Modeling and Analysis of Sliding Friction in Gear Dynamics. ASME 8th International Power Transmission and Gearing Conference, Step.10-13, 2000, Baltimore
    [291]Stachowiak GW, Batchelor AW. Engineering Tribology.2nd ed. Butterworth-Heinemann, 2001
    [292]林子光.弹流理论及其应用.天津:天津科学技术出版社,1994
    [293]葛中民,候虞铿,温诗铸.耐磨损设计.北京:机械工业出版社,1991
    [294]Deschler D, Wittmann D.The cam conception for flat follower taking into account the elasto-hydrodynamics lubrication condition. M.T.Z.,1978(3):123-127
    [295]王守宇.平底直动从动件盘形凸轮的最小曲率半径.西安公路学院学报,1994(3):145-148
    [296]Czichos H. A system approach to the science and technology of friction. Lubrication and Wear,1978
    [297]Lee SC and Ren N. The sub-surface stress field created by three-dimensional rough bodies in contact with traction. Tribol. Trans.,1994,37:615-621
    [298]Nayak N, Lakshminarayanan PA, Gajendra Babu MK, Dani AD. Predictions of cam follower wear in diesel engines. Wear,2006,260:181-192
    [299]Chen FY. Mechanica and design of cam mechanisms. Pergamon, New York,1982: Chaps.12 and 14
    [300]陈钢,刘应华.结构塑性极限与安定分析理论及工程方法.北京:科学出版社,2006
    [301]王仁,黄文彬,黄筑平.塑性力学引论.北京:北京大学出版社,1992
    [302]Williams JA. The influence of repeated loading, residual stresses and shakedown on the behavior of tribological contacts. Tribology International,2005,38:786-797

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700