离心铸造自生颗粒增强铝基骤变梯度功能复合材料气缸套的制备技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出并试制了一种用于替代传统铁质水冷薄壁汽缸套材料的新型、轻质自生颗粒增强铝基骤变梯度功能复合材料。该骤变梯度复合材料筒状零件采用离心铸造工艺制备,从结构上分为内外两层,内层富含增强颗粒,具有高硬度、优良的耐磨性能、良好的热传导性能以及热稳定性,外层没有或存在少量增强颗粒,具有较高的拉伸强度以及良好的机械加工性能,从内壁到外壁,具有组织与性能的骤变功能梯度特征。为了达到这一目的,本文以自生颗粒选择、材料成分研究、离心成形工艺研究、试制气缸套毛坯、毛坯力学与热物理性能研究为主线,对这一设想进行了系统研究。
     离心铸造初晶Si颗粒单独增强和初晶Si、Mg2Si混合增强两种梯度复合材料组织与性能的对比发现,以Al-19Si合金为基体,采用热模离心铸造工艺,可以制备出单独初晶Si颗粒增强的渐变梯度复合材料;而以Al-19Si-5Mg合金为基体,采用相同的工艺参数,可以制备出初晶Si、Mg2Si颗粒混合增强的Al基骤变梯度复合材料。通过对离心场中颗粒的受力与运动关系的分析以及两种梯度复合材料的磨损性能研究发现,在初晶Si与Mg2Si混合颗粒增强材料中,初晶Si颗粒起提高材料耐磨性的作用,Mg2Si颗粒除起提高耐磨性的作用外,主要还起在离心力下推动初晶Si颗粒快速偏聚的作用。
     通过对材料成分的进一步研究发现,Mg2Si的形貌是形成初晶Si与Mg2Si颗粒增强骤变梯度复合材料的又一关键因素。只有块状或颗粒状的初晶Mg2Si相,才具有较大的向心运动速度,从而能够推动初晶Si颗粒一起向内壁偏移。而团簇状或网状的共晶Mg2Si组织不能够产生离心偏移或具有很小的离心偏移速度。因此,只有能够形成大量块状的初晶Mg2Si颗粒的Al-Si-Mg三元系合金才能通过离心铸造形成自生初晶Si与Mg2Si混合增强的骤变梯度功能复合材料。满足这一要求的合理合金成分是,Mg高于4wt%,Si高于19wt%。
     对离心成形工艺的研究发现,初晶Si与Mg2Si向内层的严重偏聚增大了工艺难度,容易在铸件增强层与非增强层之间形成缩孔和气孔。对缩孔形成的机制分析发现,铸型的冷却与颗粒向内层偏移结果导致在铸件厚度方向上形成固态——液态——半固态——固态这一双向凝固特征,内外两层之间的液体最后凝固形成缩孔。对气孔的形成过程分析发现,凝固过程中,铝熔体中过饱和气体的析出主要在660℃以下,而此时内层已经聚集了大量的增强颗粒,处于固相率很高的半固态或固态状态,从而导致气体从内壁溢出受阻,并最终在增强层以及界面处形成宏观气孔。为了控制缩孔和气孔,并形成骤变梯度功能复合材料,合理的离心成形工艺参数是:浇注温度—660~670℃;模具预热温度—200~300℃;喷水时间—60s;浇注方式—外端口、低速(100~150r/min)侧浇。得到的铸件,气孔基本消除;缩孔明显减小,并形成在铸件外端口。这样,可以通过车削加工将缩孔区域去除而不影响剩余铸件的使用。
     根据某型号水冷薄壁气缸套零件的尺寸,试制了气缸套毛坯,并对其进行T6热处理和车削加工。车削加工证明,铸件的内层具有高硬度、高耐磨性的特点,而外层具有良好的车削加工性能。
     不同热处理态下的组织演变特征显示,铸态下,增强区域颗粒细小,其中初晶Si的粒径在60μm以下,初晶Mg2Si颗粒粒径在25μm以下,均呈现不规则多边形状。非增强区域主要是α相、共晶Si与共晶Mg2Si,其中共晶Si呈现条状,共晶Mg2Si呈现网状和团簇状;经过T6热处理,初晶Si与Mg2Si颗粒发生圆润化,铸态下的多边形棱角消失,颗粒与基体的结合紧密。对于共晶组织,固溶以后,铸态下的条状共晶Si发生部分熔断,时效以后,形成短棒状;网状和团簇状的共晶Mg2Si固溶后,组织发生了明显的溶解,形成了大量的剩余点球状增强相,这些点球状的未溶解Mg2Si分布均匀,呈弥散状;时效以后,固溶处理中未溶解的点球状Mg2Si发生了明显的长大与粘连现象。
     毛坯的力学性能显示,固溶处理后,材料的硬度、拉伸强度与延伸率均处于最优状态,分别达到HRB70左右(非增强层)和HRB90左右(增强层)、210MPa和1.15%。而耐磨性却是时效后最好,该状态下,增强区域的磨损量仅有0.009g。造成这种结果的原因,主要是固溶过程中共晶Mg2Si未完全溶解,形成剩余增强相,而时效后,剩余增强相发生长大与粘连,形成了两种增强相、多种粒径增强颗粒共存的、类似于混凝土结构的“沙—石”增强机制,这种增强机制,有利于提高材料的耐磨性能。线膨胀系数测定结果显示,时效后铸件增强层的线膨胀系数为:18.9×10-6/℃(20~100℃)、19.61×10-6/℃(20~200℃)和20.48×10-6/℃(20~300℃),均优于相同温度区间的ZL109合金。对拉伸断口的分析发现,裂纹首先产生在颗粒增强区域,并以脆性的解理断裂为主。在拉应力与剪应力作用下,裂纹从增强区域向非增强区域延伸,导致非增强层粗大的α相发生滑移断裂。对磨损面的扫描电镜形貌分析发现,增强层以初晶Si与Mg2Si颗粒的疲劳磨损与磨粒磨损为主。
     对比这种骤变梯度功能复合材料与某型号铸铁气缸套零件发现,该材料的部分性能已经接近某型号铸铁气缸套零件的要求。因此具有替代传统铁质气缸套材料的潜质。
A kind of original discontinuous function gradient composites (FGM) used in substituting the conventional thin wall cast iron cylinder liner was proposed and trial-produced by the centrifugal casting process. There are two layers in the radial wall of the tubes. The reinforcement layer in the inner layer with the large number of in-situ reinforcement particles, and that has the high hardness, the fine wear-resisting performance, the good heat conduction performance as well as the thermostability. The un-reinforcement layer in the outer layer without the particles or a little of particles, that has the high tensile-strengthen as well as the good machine-finishing performance. The structure and properties present the discontinuous gradient distribution and change from the inner to outer layer. In order to get the target, electing in-situ particles, designing material composition, establishing centrifugal casting parameter, fabricating rough shell, testing properties were systematically investigating, respectively.
     The structure and properties of only the primary Si and the primary Si, Mg2Si jointly reinforced Al based gradient function composites show that, the only primary Si particles reinforced continuous gradient function composites can be fabricated by hot mould centrifugal casting, but the primary Si and Mg2Si particles jointly reinforced discontinuous gradient function composites can be obtained by the same process. The stress and movement velocity of the particles in the centrifugal field shows that the primary Mg2Si particles have the higher centripetal moving velocity than the primary Si particles. During centripetal moving, the Mg2Si particles would impact and then drive the primary Si moving together towards to the inner layer, and form the discontinuous gradient function composites. Wearing properityies of two kinds of composites show that the primary Si is the main facter to increase the wear-resistance of composites, and the primary Mg2Si is the secondary reinforcement particles to exploit enough the wear-resistance of the primary Si particles.
     Studying on the material composition shows that the pattern of the Mg2Si is the alternative key factor forming the discontinuous gradient function composites by centrifugal casting. Only the massive primary Mg2Si has the higher centripetal velocity and may drive the primary Si to move together towards to the inner layer. The nodular and network eutectic Mg2Si does not shift or has very fine centripetal velocity. So only the Al-Si-Mg alloys that can form a lagge number of massive primary Mg2Si may fabricate the primary Si and Mg2Si jointly reinforced Al based discontinuous gradient function composites by centrifugal casting. And the reasonable alloying composition that satisfying the mention above is Mg≥4wt% and Si≥19wt%.
     The primary Si and Mg2Si segregating aggregation in the inner layer increases the processing difficulty and results the shrinkage cavity and blow hole forming in the face of the inner and outer layer in the process of centrifugal casting. Forming mechanics of shrinkage cavity shows that a freezing character of solid—liquid—semi-solid—solid was formed from the ectotheca to the inwall of tubes in centrifugal casting. So the liquid between the two layers freezes in the time of freezing terminal, and it results to the shrinkage cavity forming in the interface of the two layers. The blow hole forming process shows that, the supersaturation gas in the Al fused mass was separated out under the 660℃that a number of primary particles have already aggregated in the inner layer.
     So the gas with the smaller density is trapped in the interface and inner layer during outflowing from the inwall.The appropriate processing parameters are that: point of pouring is 660~670℃, the preheating temperature of the mold is 200~300℃, the spraying time is 60s, pouring procedure is controlled in the low velocity (100~150r/min), side pouring in the outer port. When these processing parameters are adopted the blow hole is reduced or vanish, and the shrinkage cavity is reduce and controlled in the outer port of the tubes that does not effect the residual tubes after the shrinkage cavity is removed by turning.
     The cylinder liner semifinished materials were produced according to some model water cooling thin wall cylinder liner components size, and then some of them was carried on the T6 heat treatment and turning. The turning processing proof that, the inner layer of the tubes is hard and owns the fine wear-resisting properties, and the outer layer has the good turning workability.
     The organization evolving characteristics of the different heat treatment condition demonstrate that, as casting, the primary Si and Mg2Si particles is tiny, and the size of the former is under 60μm,the latter is under 25μm .Both of them present the irregular multilateral shape, and has the union gap with the substrate between. The eutectic Si is tiny bangding, and the eutectic Mg2Si is clustering and network. After heat-treating, the primary Si and Mg2Si were dissolved in the edge angle and formed the rounded particles, and the gap between the particles and matrix vanishes. To the eutectic Si and Mg2Si during solution heat-treating, the former was dissolved and formed the short stick, and the latter was dissolved mainly and formed the tiny tubercles dispersing distribution among the Al matrix. And after aging heat-treating, the un-dissolved eutectic Si and Mg2Si grow up again that the size is over 5μm.
     The mechanical properties show that, the hardness, specific elongation and tensile-strength of the solution heat-treated condition are the best, and reach individual HRB70 (un-reinforcement layer) and HRB90 (reinforcement layer), 1.15% and 210MPa. But to wear-resisting property, the reinforcement layer of the artificial aging blank is the best and the wearing capacity is only 0.009g. The growed-up eutectic phase after artificial aging together with the two primary particles form the four grades reinforcement particles, and reinforcement model is similar to“sand-stone”of the concrete. The model is good at increasing the wear-resisting properties, but decreases the tensile-strength. The linear expansion factor of the artificial aging blank is 18.9×10-6/℃(20~100℃),19.61×10-6/℃(20~200℃) and 20.48×10-6/℃(20~300℃), and those are better than ZL109 alloys.
     The results of contrasting with the some cast iron cylinder liner show that the mechanical and thermophysics properties of the composites have already approached or reached application-required properties. So the composites own the possibility as the substituting materials of the conventional cast iron cylinder liner.
引文
[1] A. Mortensen, S. Suresh.Functionally Graded Metals and Metal-Ceramic Composites Part I[J]. International Materials Reviews.1995,40(6):239-265.
    [2] M. Koizumi.FGM activities in Japan[J].Composites Part B.1997,28B:1-4.
    [3]郑子樵,梁叔全.梯度功能材料的研究与展望[J].材料科学与工程学报.1992,10(1):1-6.
    [4]李智慧,何小凤,李运刚.功能梯度材料的研究现状[J].河北理工大学学报.2007,29(1):45-51.
    [5]张雷,周科朝,李志友,张晓泳.功能梯度材料的制备技术[J].粉末冶金材料科学与工程.2003,8(1):48-56.
    [6] W. R, K. A. . 1990.Overall view of the P/M fabrication of functionally gradient materials[C].Proc First Int Symposium on Functionally Gradient Materials.1990,107-113
    [7] T. W. Clyne, P. J. Withers.The Metal Matrix Composites in Industry: An Introduction and a Survey[M].UK:Cambridge:Cambridge University Press,1993,
    [8] S. J, V. M.Self-propagating High Temperature Synthesis [J].J Master.1992,27(23):6249-6252.
    [9]王开.功能梯度复合材料制动盘设计及制备成形工艺、组织与性能研究[D].Thesis.重庆大学博士学位论文,2008,10-12
    [10]吴人洁主编.复合材料[M].天津大学出版社,2000,
    [11]刘萍.Mg2Si增强过共晶Al-Si合金及其自生复合材料的研究[D].Thesis.江西理工大学硕士学位论文,2005,2
    [12]赖华清,范宏训,徐祥.过共晶铝硅合金的研究及应用[J].汽车工艺与材料.2001,(10):21-23.
    [13]金燕鸣,周泽华,张发英.过共晶铝硅合金组织对切削加工性能的影响[J].机械工程学报.1998,34(1):1-5.
    [14]韩娜.Bi合金化过共晶Al-Si合金的研究[D].Thesis.山东大学硕士学位论文,2007,3-4
    [15]黄洁蓉.主编.铸造手册[M].1999,52.
    [16]王祝堂,田荣璋.铝合金及其加工手册[M].长沙:中南工业大学出版社,1989,75-82.
    [17] L.F.蒙多尔福主编,王祝堂等译.铝合金的组织与性能[M].北京:冶金工业出版社,1988,313-319,504-509.
    [18]蒋益民,陈刚,蒋宗宇.低温铸造法制备过共晶铝硅合金坯料的研究[J].铸造.2003,52(2):32-36.
    [19]王强,王春江,庞雪君,赫冀成.利用强磁场控制过共晶铝硅合金的凝固组织[J].材料研究学报.2004,18(6):568-575.
    [20]王德仁,毛卫民,李树索,钟雪友.Al-24Si%Si合金半固态等温搅拌时的微观组织[J].北京科技大学学报.1998,20(4):337-339.
    [21]毛卫民,李树索,赵爱民,崔成林,钟雪友.电磁搅拌对过共晶Al-Si合金初生Si分布的影响[J].金属学报.2001,37(7):781-784.
    [22]毛卫民,李树索,赵爱民,崔成林,钟雪友.电磁搅拌对过共晶Al-Si合金初生Si长大过程和形貌的影响[J].材料科学与工艺.2001,9(2):117-121.
    [23]刘昌明,何乃军.过共晶铝硅合金半固态挤压铸造近终成形技术研究[J].金属成形工艺.2000,18(1):35-41.
    [24]晋芳伟,任忠鸣,任维丽,邓康,钟云波,余建波.强磁场下过共晶铝硅合金凝固过程中初晶硅的迁移行为[J].中国有色金属学报.2007,17(2):313-319.
    [25]晋芳伟,任忠鸣,任维丽,邓康,钟云波.梯度强磁场下Al-18%Si合金中初晶硅的细化[J].金属学报.2007,43(5):521-528.
    [26] R. Zhang, Q. Cao, S. Pang, Y. Wei,L. Liu.Dissolution kinetics of primary silicon in hypereutectic Al-Si melt[J].Science and Technology of Advanced Materials 2001,2:3-5.
    [27] C. L. Xu, H. Y. Wang, C. Liu, Q. C. Jiang.Growth of octahedral primary silicon in cast hypereutectic Al-Si alloys[J].Journal of Crystal Growth.2006,291:540-547.
    [28] P. J. WARD, H. V. ATKINSONt, P. R. G. ANDERSON, L. G. ELIAS, B. GARCIA, L. KAHLEN, J.-M. RODRIGUEZ-IBABE.SEMI-SOLID PROCESSING OF NOVEL MMCs BASED ON HYPEREUTECTIC ALUMINIUM-SILICON ALLOYS[J].Acta Materialia.1996,44(5):1717-1727.
    [29] R.-y. Wang, W.-h. Lu, L.M. Hogan.Growth morphology of primary silicon in cast Al-Si alloys and the mechanism of concentric growth[J].Journal of Crystal Growth.1999,207:43-54.
    [30] N. U.nlu, A. Genc, M. L. Ovec, N. Eruslu , F. H. Froes.Characterization investigations of melt-spun ternary Al–xSi–3.3Fe (x510, 20 wt.%) alloys[J].Journal of Alloys and Compounds 2001,322:249–256.
    [31] S. P. Nikanorov, M. P. Volkov, V. N. Gurin, Y. A. Burenkov, L. I. Derkachenko, B. K. Kardashev, L. L. Regel, W. R. Wilcox.Structural and mechanical properties of Al-Si alloys obtained by fast cooling of a levitated melt[J].Materials Science and Engineering A.2005,390:63–69.
    [32] D. Lu, Y. Jiang, G. Guan, R. Zhou, Z. Li, R. Zhou.Refinement of primary Si in hypereutectic Al-Si alloy by electromagnetic stirring[J].Journal of Materials Processing Technology.2007,189:13–18.
    [33] T.-S. Kim, B.-T. Lee, C. R. Lee, B.-S. Chun.Microstructure of rapidly solidified Al-20Si alloy powders[J].Materials Science and Engineering A.2001,304-306:617–620.
    [34] F. C. R. Hernandez, J. H. Sokolowski.Comparison among chemical and electromagneticstirring and vibration melt treatments for Al-Si hypereutectic alloys[J].Journal of Alloys and Compounds.2006,426:205–212.
    [35] T. Haga, H. Inui, H. Watari, S. Kumai.Casting of Al-Si hypereutectic aluminum alloy strip using an unequal diameter twin roll caster[J].Journal of Materials Processing Technology.2007,191:238-241.
    [36] C. H. Chiang, C. Y.A. , Tsao.Si coarsening of spray-formed high loading hypereutectic Al-Si alloys in the semisolid state[J].Materials Science and Engineering A.2005,396:263-270.
    [37] V. O. Abramov, O. V. Abramov, B. B. Straumal, W. Gust.Hypereutectic Al-Si based alloys with a thixotropic microstructure produced by ultrasonic treatment[J].Materials & Design.1997,18(4): 323-326.
    [38]王超,管仁国,尚剑洪,胡芳友,崔建忠.新型倾斜板技术半固态铸造Al-20Si合金[J].特种铸造及有色合金.2006,26(7):428-430.
    [39]李树索,赵爱民,毛卫民,钟雪友,韩雅芳.半固态过共晶Al-Si合金显微组织中近球形α相形成机理的研究[J].金属学报.2000,36(5):545-549.
    [40]张金山,许春香,韩富银.新型高效过共晶铝硅合金变质剂[J].铸造设备研究.2002,(1):23-26.
    [41]姚书芳,毛卫民,赵爱民,钟雪友.过共晶铝硅合金细化变质剂的研究[J].特种铸造及有色合金.2000,(5):1-3.
    [42]王泽华,毛协民,张金龙,欧阳志英.Sr-PM复合变质过共晶铝硅合金[J].种铸造及有色合金.2005,25(4):241-242.
    [43]唐多光,毛协民,张金龙,徐张翼,沈友良.一种过共晶铝硅合金的绿色长效变质剂[J].铸造.2002,51(10):652-653.
    [44]孙淑红,张家涛,彭著刚,王.凯,樊刚.变质处理及成分对大过共晶铝硅合金耐磨性的影响[J].云南冶金.2004,33(6):36-38.
    [45]孙德宝,李克,王俊,周尧和.镧、钇稀土在过共晶铝硅合金中的作用[J].上海交通大学学报.1999,53(7):794-798.
    [46]上海大学.一种过共晶铝硅合金变质精炼剂[P].中国,CN1242082,2006.02.15.
    [47]柳连舜,徐小飞.过共晶铝硅合金的细化变质处理[J].轻金属.1996,(3):55-57.
    [48]廖恒成,丁毅,孙国雄.Sr对近共晶Al-Si合金中α枝晶生长行为的影响[J].金属学报.2002,38(3):245-249.
    [49]车泽宏,李亚国.CeO2在过共晶Al-Si合金中变质机理的研究[J].特种铸造及有色合金.2002,(6):41-43.
    [50] H. Yi, D. Zhang, T. Sakata, H. Mori.M icrostructures and La-rich compounds in a Cu-containing hypereutectic Al-Si alloy[J].Journal of Alloys and Compounds. 2003, 354:159-164.
    [51] C. L. Xu, H. Y. Wang, Y. F. Yang, H.-Y. Wang, Q. C. Jiang.Effect of La2O3 in the Al-P-Ti-TiC-La2O3 modifier on primary silicon in hypereutectic Al-Si alloys[J].Journal of Alloys and Compounds 2006,421:128–132.
    [52] C. L. Xu, Q. C. Jiang, Y. F. Yang, H. Y. Wang, J. G. Wang. Effect of Nd on primary silicon and eutectic silicon in hypereutectic Al-Si alloy[J].Journal of Alloys and Compounds 2006,422:L1-L4.
    [53] G. Timmermans, L. Froyen.Fretting wear behaviour of hypereutectic PM Al-Si in oil environment[J].Wear.1999,230:105–117.
    [54] Q. C. Jiang, C. L. Xu, M. Lu, H. Y. Wang.Effect of new Al-P-Ti-TiC-Y modifier on primary silicon in hypereutectic Al-Si alloys[J].Materials Letters.2005,59:624-628.
    [55] N. B., D. Z., H. Melgarejo, O. M. Suárez.Functionally graded aluminum matrix composites produced by centrifugal casting[J].Materials Characterization.2005,55(2):167-171.
    [56] R. Sharma, Anesh, D. K. Dwivedi.Solutionizing temperature and abrasive wear behaviour of cast Al-Si-Mg alloys[J]. Materials and Design 2007,28:1975-1981.
    [57] R. D. Ott, C. A. Blue, M. L. Santella, P. J. Blau.The influence of a heat treatment on the tribological performance of a high wear resistant high Si Al-Si alloy weld overlay[J].Wear.2001,251 868-874.
    [58] J. Liu, Y. K. Chou.On temperatures and tool wear in machining hypereutectic Al-Si alloys with vortex-tube cooling[J].International Journal of Machine Tools & Manufacture.2007,47:635-645.
    [59] K.B.Shah, S. Kumar, D.K.Dwivedi.Aging temperature and abrasive wear behaviour of cast Al-(4%,12%,20%)Si-0.3% Mg alloys[J].Materials and Design 2007,28:1968–1974.
    [60]王渠东,丁文江,金泽俊.离心铸造铝硅合金初晶自生复合材料的研究[J].特种铸造及有色合金(增刊).1999,(1):9-11.
    [61]谭银元.离心铸造过共晶Al-Si合金自生梯度复合材料及其阻尼性能[J].中国有色金属学报.2002,12(2):353-357.
    [62]谭银元.离心铸造Al-16wt%Si合金自生梯度复合材料[J].复合材料学报.2002,19(5):17-51.
    [63]徐自立,林汉同.离心铸造铝基自生梯度功能材料的热物性能[J].特种铸造及有色合金.2001,(4):15-18.
    [64]徐自立.离心铸造过共晶Al-Si合金自生梯度功能复合材料的研究[J].航空工程.2001,(5):24-26.
    [65]刘向阳.电磁分离法制备Al-Si合金自生梯度功能复合材料[D].Thesis.上海交通大学硕士学位论文,2005,10-14
    [66]宋长江,许振明,刘向阳,梁高飞,李建国.电磁分离技术制备过共晶Al-Si合金自生功能梯度材料[J].上海交通大学学报.2005,39(7):1090-1093.
    [67]李克,王俊,周.鸣,张雪萍,孙宝德,周尧和.过共晶铝硅自生梯度复合材料的组织与性能[J].中目有色金属学报.2002,12(3):521-523.
    [68] C. Song, Z. Xu, X. Liu, G. Liang, J. Li.In situ multi-layer functionally graded materials by Electromagnetic Separation method[J].Materials Science and Engineering A 2005,393:164-169.
    [69]臧树俊,周琦,马勤,安亮.金属间化合物Mg2Si研究进展[J].铸造技术.2006,27(8):866-867.
    [70]胡德林,张帆.三元合金相图[M].西安:西北工业大学出版社,1995,
    [71]熊伟,秦晓英,王莉.金属间化合物Mg2Si的研究进展[J].材料导报.2005,19(6):4-6.
    [72] K. A. Yasakau, M. L. Zheludkevich, S. V. Lamaka, M. G. S. Ferreira.Role of intermetallic phases in localized corrosion of AA5083[J].Electrochimica Acta.2007,52:7651-7659.
    [73] J. Wloka, G. B¨urklin, S. Virtanen.Influence of second phase particles on initial electrochemical properties of AA7010-T76[J].Electrochimica Acta.2007,
    [74] Q. Wang, Y. Wei, W. Chen, Y. Zhu, C. Ma, W. Ding.In situ surface composites of (Mg2Si+Si)/ZA27 fabricated by centrifugal casting[J].Materials Letters.2003,57:3851-3858.
    [75] L. Wang, X. Y. Qin, W. Xiong, X. G. Zhu.Fabrication and mechanical properties of bulk nanocrystalline intermetallic Mg2Si[J].Materials Science and Engineering A.2007,459:216-222.
    [76] I. Ozdemira, I. Hamanaka, M. Hirose, Y. Tsunekawa, M. O. T.In situ formation of Al-Si-Mg based composite coating by different reactive thermal spray processes[J].Surface & Coatings Technology.2005,200:1155-1161.
    [77] L.-H. Liao, H.-W. Wang, X.-F. Li, N.-H. Ma.Research on the dislocation damping of Mg2Si/Mg–9Al composite materials[J].Materials Letters.2007,61:2518-2522.
    [78] C. D. Lee.Damping properties on age hardening of Al–7Si–0.3Mg alloy during T6 treatment[J].Materials Science and Engineering A.2005,394:112-116.
    [79] H. Jones.Some effects of solidification kinetics on microstructure formation in aluminium-base alloys[J].Materials Science and Engineering A.2005,413-414:165-173.
    [80] L. Hong, Z. Gang, L. Chun—ming, Z. Liang.Efects of magnesium content on phase constituents of A1--M g--Si--Cu alloys[J].Trans.Nonferrous Met.Soc.China.2006,16:376-381.
    [81] A. Atanassov, M. Baleva.On the band diagram of Mg2Si/Si heterojunction as deduced from optical constants dispersions[J].Thin Solid Films.2007,515:3046-3051.
    [82] F. Vermolen, K. Vuik, S. v. d. Zwaag.A mathematical model for the dissolution kinetics of Mg2Si-phases in Al–Mg–Si alloys during homogenisation under industrial conditions[J].Materials Science and Engineering A.1998,254:13-32.
    [83] D. Tamura, R. Nagai, K. Sugimoto, H. Udono, I. Kikuma, H. Tajima, I. J. Ohsugi.Melt growthand characterization of Mg2Si bulk crystals[J].Thin Solid Films.2007,515:8272-8276.
    [84] Y. L. Liu, S. B. Kang, H. W. Kim.The complex microstructures in an as-cast Al–Mg–Si alloy[J].Materials Letters.1999,41:267-272.
    [85]赵字光,秦庆东,丛培军.原位Mg2Si/AI复合材料的变质与半固态组织演变[J].特种铸造及有色合金.2007,27(3):235-238.
    [86]张健,王玉庆,杨滨,周本濂.原位内生AI/Mg2Si/Si复合材料铸态组织研究[J].复合材料学报.1999,16(4):30-34.
    [87]刘政,林继兴.复合变质对Mg2Si/A1复合材料组织的影响[J].轻金属.2007,(1):50-53.
    [88]刘萍,刘政,胥锴.自生Mg2Si颗粒增强过共晶A1.18%Si合金的热处理工艺研究[J].轻合金加工技术.2005,33(2):36-40.
    [89] S. Spigarelli, E. Evangelista, S. Cucchieri.Analysis of the creep response of an Al-17Si-4Cu-0.55Mg alloy[J].Materials Science and Engineering A.2004,387-389:702-705.
    [90] Q. D. Qin, Y. G. Zhao, K. Xiu, W. Zhou, Y. H. Liang.Microstructure evolution of in situ Mg2Si/Al–Si–Cu composite in semisolid remelting processing[J].Materials Science and Engineering A.2005,407:196-200.
    [91] Q. D. Qin, Y. G. Zhao.Nonfaceted growth of intermetallic Mg2Si in Al melt during rapid solidification[J].Journal of Alloys and Compounds.2007,
    [92]艾秀兰,李英民.稀土元素对AI-Mg2Si合金组织及性能的影响[J].铸造.2005,54(3):238-241.
    [93]艾秀兰,李英民.磷元素对AI—Mg2Si合金显微组织的影响[J].大连铁道学院学报.2005,26(1):80-82.
    [94] Y. G. Zhao, Q. D. Qin, Y. Q. Zhao, Y. H. Liang, Q. C. Jiang.In situ Mg2Si/Al–Si composite modified by K2TiF6[J].Materials Letters.2004,58:2192-2194.
    [95] J. Zhang, Z. Fan, Y. Q. Wang, B. L. Zhou.MICROSTRUCTURAL EVOLUTION OF THE IN SITU Al-15wt.%Mg2Si COMPOSITE WITH EXTRA Si CONTENTS[J].Scripta mater.2000,42:1101-1106.
    [96] J. Zhang, Z. Fan, Y. Q. Wang, B. L. Zhou.Microstructural development of Al–15wt.%Mg2Si in situ composite with mischmetal addition[J].Materials Science and Engineering A.2000,281:104-112.
    [97] Q. D. Qin, Y. G. Zhao, W. Zhou and P. J. Cong.Effect of phosphorus on microstructure and growth manner of primary Mg2Si crystal in Mg2Si/Al composite[J].Materials Science and Engineering A.2007,447:186-191.
    [98] L. Heng—cheng, D. Yi and S. Guo—xiong.Effect of strontium on crystallization of Mg2Si phase in Al-Si-M g casting alloys[J].Trans.Nonferrous M et.Soc.China.2002,12(3):409-412.
    [99]赵宇光,秦庆东,路洪洲.富铈稀土变质对原位Mg2Si/Al—Si—Cu复合材料显微组织的影响[J].汽车工艺与材料.2004,(3):40-43.
    [100] A. Gaber, M. A. Gaffar, M. S. Mostafa and E. F. A. Zeid.Precipitation kinetics of Al–1.12 Mg2Si–0.35 Si and Al–1.07 Mg2Si–0.33 Cu alloys[J].Journal of Alloys and Compounds.2007,429:167-175.
    [101]杨淼,曹志强,陈东风,张婷.电磁搅拌对半固态AI一20%Mg2Si合金组织的影响[J].铸造.2007,56(1):79-82.
    [102]刘萍.冷却速度对Mg2Si增强过共昌AI-Si合金组织与性能的影响[J].铸造技术.2006,27(7):715-718.
    [103]李英民,艾秀兰.电磁搅拌对AI / Mg2Si复合材料宏观偏析的影响[J].铸造.2002,51(12):756-758.
    [104] S. Tomida, K. Nakata, S. Shibata, I. Zenkouji and S. Saji.Improvement in wear resistance of hyper-eutectic Al-Si cast alloy by laser surface remelting[J].Surface and Coatings Technology 2003,169 -170:468–471.
    [105] Q. D. Qin, Y. G. Zhao, C. Liu, P. J. Cong, W. Zhou and Y. H. Liang.Effect of holding temperature on semisolid microstructure of Mg2Si/Al composite[J].Journal of Alloys and Compounds.2006,416:143-147.
    [106] Q. D. Qin, Y. G. Zhao, Y. H. Liang and W. Zhou.Effects of melt superheating treatment on microstructure of Mg2Si/Al–Si–Cu composite[J].Journal of Alloys and Compounds.2005,399:106-109.
    [107] M. D. Nave, A. K. Dahle and D. H. StJohn.Halo formation in directional solidification[J].Acta Materialia.2002,50:2837-2849.
    [108] G. Svenningsen, M. H. Larsen, J. C. Walmsley, J. H. Nordlien and K. Nisancioglu.Effect of artificial aging on intergranular corrosion of extruded AlMgSi alloy with small Cu content[J].Corrosion Science.2006,48:1528-1543.
    [109] R. Hadian, M. Emamy, N. Varahram and N. Nemati.The effect of Li on the tensile properties of cast Al–Mg2Si metal matrix composite[J].Materials Science and Engineering A.2008,
    [110] C. Li, X. Liu and Y. Wu.Refinement and modification performance of Al–P master alloy on primary Mg2Si in Al–Mg–Si alloys[J].Journal of Alloys and Compounds.2007,
    [111] H. Ahlatci.Wear and corrosion behaviours of extruded Al–12Si–XMg alloys[J].Materials Letters.2008,
    [112] S. E. U. a, F. Louchet and A. Ghilarducci.Fracture behaviour of an Al–Mg–Si industrial alloy[J].Materials Science and Engineering A.2001,302:300-307.
    [113] M. A. Gaffar, A. Gaber, M. S. Mostafa and E. F. A. Zeid.The effect of Cu addition on the thermoelectric power and electrical resistivity of Al–Mg–Si balanced alloy: A correlationstudy[J].Materials Science and Engineering A.2007,465:274-282.
    [114]吉林大学.一种汽车制动盘用复合材料及其制备方法[P].中国:CN1492066,CN1492066,2003.
    [115] J. Zhang, Z. Fan, Y. Wang and B. Zhou.Hypereutectic aluminium alloy tubes with graded distribution of Mg Si particles prepared by centrifugal casting[J].Materials and Design.2000,21:149-153.
    [116] Q. D. Qin, Y. G. Zhao and W. Zhou.Dry sliding wear behavior of Mg2Si/Al composites against automobile friction material[J].Wear.2008,264:654-661.
    [117] Q. D. Qin, Y. G. Zhao and W. Zhou.Dry sliding wear behavior of Mg2Si/Al composites against automobile friction material[J].Wear.2007,
    [118] Q. D. Qin, Y. G. Zhao, P. J. Cong, W. Zhou and B. Xu.Semisolid microstructure of Mg2Si/Al composite by cooling slope cast and its evolution during partial remelting process[J].Materials Science and Engineering A.2007,444:99-103.
    [119] Q. D. Qin, Y. G. Zhao, P. J. Cong, Y. H. Liang and W. Zhou.Multi-layer functionally graded Mg2Si/Al composite produced by directional remelting and quenching process[J].Materials Science and Engineering A.2006,418:193-198.
    [120] Q. D. Qin, Y. G. Zhao, P. J. Cong, Y. H. Liang and W. Zhou.Functionally graded Mg2Si/Al composite produced by an electric arc remelting process[J].Journal of Alloys and Compounds.2006,420:121-125.
    [121] C.-J. Song, Z.-M. Xu and J.-G. Li.Fabrication of in situ Al/Mg2Si functionally graded materials by electromagnetic separation method[J].Composites: Part A.2007,38:423-433.
    [122] C.-J. Song, Z.-M. Xu, G. Liang and J.-G. Li.Study of in-situ Al/Mg2Si functionally graded materials by electromagnetic separation method[J].Materials Science and Engineering A.2006,424:6-16.
    [123]刘昌明,翟彦博,谢勇,王开.内层颗粒增强缸套及其制造方法[P].中国,2008.
    [124]刘昌明,翟彦博,王开,邹茂华,潘登量,何乃军.一种Al/Si-Mg2Si复合材料的活塞及制备方法[P].2008.
    [125]陈文周.离心铸造锌基自表面/梯度复合材料的研究[D].Thesis.上海交通大学硕士学位文,2001,
    [126]村田清,高田博隆,中田毅.铸物.1992,64(8):537.
    [127]村田清,高田博隆.铸物.1994,66(2):110.
    [128]张宝生,陈洪生,林柏年,安阁英.离心铸造制备A1-Fe系金属间化合物梯度功能材料的组织及耐磨性的研究[J].铸造.1994,(1):1-5.
    [129] Y. FUKUI, K. T. KASHIMA, C. B. P. NTON.Measurement of yong's moudlus and internalfriction by centrifugal method and friction of in-situ Al-Al3Ni functionally gradient material[J].J. M ater.Sc.1994,29:2281.
    [130] Y. Fukui.Fabrication of in-situ Al-Al3Ni functionally graded materials by centrifugal method[J].Light Metals.1994,44(11):622.
    [131]徐自立,杨光照,魏伯康,林汉同.离心铸造A1-10%Fe合金的梯度行为[J].热加工工艺.1994,(6):5-7.
    [132]杨光照,魏伯康,徐自立.离心铸造铝铁梯度功能材料的组织形态及控制[J].特种铸造及有色合金.1997,(2):11-14.
    [133]王渠东,陈勇军,陈文周,魏胤红,翟春泉,丁文江.离心铸造Zn-A1-Mg-Si合金及其自生表面复合材料[J].上海交通大学学报.2005,39(7):1109-1113.
    [134]王渠东,陈勇军,陈文周,魏胤红,翟春泉,丁文江.离心铸造Mg2Si和Si自生增强锌基复合材料的组织与性能[J].复合材料学报.2005,22(3):109-113.
    [135]潘新.离心成型制备AL2O3/Ni梯度复合材料[D].Thesis.东北大学硕士论文,2004,
    [136]张云电.薄壁缸套生产技术[M].北京:国防工业出版社,2000,
    [137]李梅广,孙宏飞,赵剑波,孔红杰.表面技术在内燃机气缸套中的新进展[J].农业装备与车辆工程.2005,(3):41-46.
    [138] A. S. Donald, U. S. a. t. N. G. C. Strasser Thomas Edwar Riverside,CA.FIBER REINFORCED CERAMIC MATRIX COMPOSITE CYLINDER HEAD AND CYLINDER HEAD LINER FOR AN INTERNAL COMBUSTION ENGINE[P].USA,5657729,
    [139] W. KOWBELL, J. C. WITHJZRS, F. DEMEREE and P. O. RANSONE.Low cost C/C composites for cylinder liners[J].1997.
    [140]马鸣图,沙维.汽车结构材料的研究进展及CAD/CAE/CAM对建立材料数据库的要求[M].北京:机械工业出版社,2000.
    [141]马鸣图,沙维.材料科学和工程研究进展[M].北京:机械工业出版社,2000.
    [142] K. Matsuura, M. Kudoh, H. Kinoshita, H. Takahashi.Precipitation of Si particles in a super-rapidly solidified Al-Si hypereutectic alloy[J].Materials Chemistry and Physics 2003,81:393-395.
    [143] C. F. Ferrarini, C. Bolfarini, C. S. Kiminami, W. J. B. F.Microstructure and mechanical properties of spray deposited hypoeutectic Al–Si alloy[J].Materials Science and Engineering A 2004,375-377:577-580.
    [144] T. K. Haa, W.-J. Parka, S. Ahna, Y. W. Changb.Fabrication of spray-formed hypereutectic Al–25Si alloy and its deformation behavior[J].Journal of Materials Processing Technology.2002,130-131:691-695.
    [145] F. Wang, Y. Ma, Z. Zhang, X. Cui, Y. Jin.A comparison of the sliding wear behavior of ahypereutectic Al–Si alloy prepared by spray-deposition and conventional casting methods[J].Wear.2004,256:342-345.
    [146] F. Wang, H. Liu, Y. Ma, Y. Jin.Effect of Si content on the dry sliding wear properties of spray-deposited Al–Si alloy[J].Materials and Design 2004,25:163–166.
    [147] K.Azetsu, T.Hayashi.Development of aluminium PM composites for cylinder liners[J].Powder Metall.2001,48(5).
    [148] A. R. Riahi, A. T. Alpas.The role of tribo-layers on the sliding wear behavior of graphitic aluminum matrix composites[J].Wear.2001,251:1396-1407.
    [149] S. W. Youna, C. G. Kangb, P. K. Seoa.Mechanical characteristics evaluation of hollow shape part with metal matrix composites fabricated by thixoforging process[J].Journal of Materials Processing Technology.2002,130-131:574-580.
    [150] G. Li.Experimental study of hybrid composite cylinders[J].Composite Structures. 2007, 78:170-181.
    [151] P. N. Bindumadhavan, T. K. Chia, M. Chandrasekaran, Heng Keng Wah a, L. N. Lam, O. Prabhakar.Effect of particle-porosity clusters on tribological behavior of cast aluminum alloy A356-SiCp metal matrix composites[J].Materials Science and Engineering A.2001,315:217-226.
    [152] M. Zhong, W. Liu, H. Zhang.Corrosion and wear resistance characteristics of NiCr coating by laser alloying with powder feeding on grey iron liner[J].Wear.2006,260:1349-1355.
    [153] S. Uozato, K. Nakata and M. Ushio.Evaluation of ferrous powder thermal spray coatings on diesel engine cylinder bores[J].Surface & Coatings Technology.2005,200:2580-2586.
    [154] D. K. Srivastava, A. K. Agarwal, J. Kumar.Effect of liner surface properties on wear and friction in a non-firing engine simulator[J].Materials and Design.2007,28:1632-1640.
    [155] W. Schneider.Highly stressed autumotive engines made of aluminium[J].Casting plant and technology.2006,(1):1-6.
    [156] W. J. Kim, S. H. Ahn, H. G. Kim, J. G. Kim, I. Ozdemir, Y. Tsunekawa.Corrosion performance of plasma-sprayed cast iron coatings on aluminum alloy for automotive components[J].Surface & Coatings Technology.2005,200:1162-1167.
    [157] S. Johansson, P. H. Nilsson, R. Ohlsson, C. Anderberg, B.-G. Rosenc.New cylinder liner surfaces for low oil consumption[J].Tribology International.2008,41:854-859.
    [158] A. Edrisy, T. Perry, Y. T. Cheng, A. T. Alpas.Wear of thermal spray deposited low carbon steel coatings on aluminum alloys[J].Wear.2001,251:1023-1033.
    [159] A. Edrisy, T. Perry, A. T. Alpas.Investigation of scuffing damage in aluminum engines with thermal spray coatings[J].Wear.2005,259:1056-1062.
    [160] L. Du, B. Xu, S. Dong, W. Zhang, J. Zhang, H. Yang, H. Wang.Sliding wear behavior of the supersonic plasma sprayed WC–Co coating in oil containing sand[J].Surface & Coatings Technology.2008,202:3709-3714.
    [161] E. Carrera, A. Rodr′?guez, J. Talamantes, S. Valtierra.Measurement of residual stresses in cast aluminium engine blocks[J].Journal of Materials Processing Technology.2007,189:206-210.
    [162] K. Bobzin, F. Ernst, K. Richardt, T. Schlaefer, C. Verpoort, G. Flores.Thermal spraying of cylinder bores with the Plasma Transferred Wire Arc process[J].Surface & Coatings Technology 202:4438-4443.
    [163]罗启全,铝合金熔炼与铸造[M],广州:广东科技出版社,2002:46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700