抽油泵柱塞表面激光合成TiC/NiCrBSi熔覆层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国内油田大部分进入高含水开发期,由于高含砂、高含水、高矿化度、高温蒸汽稠油开采、注聚合物开采及强腐蚀介质等因素的影响,抽油泵腐蚀磨损日趋严重,严重影响着油田开发。本文利用激光熔覆原位合成技术在抽油泵柱塞表面成功制备出TiC/NiCrBSi熔覆层,对熔覆层的微观组织、耐磨性、耐蚀性以及TiC与金属基体的界面性能进行了系统分析,研究了影响熔覆层组织和性能的主要因素。
     抽油泵柱塞表面失效的原因是多方面的。砂粒在抽油泵内的沉降,导致柱塞的划伤;高压差下含砂液体的水力切割;泵挂的加深,使柱塞与泵筒之间的摩擦力增大;非竖直的井身结构,加重柱塞和泵筒之间的局部腐蚀磨损;井下高温加剧了柱塞和泵筒腐蚀和结垢。柱塞表面的失效形式为磨粒磨损、腐蚀磨损、粘着磨损和腐蚀。其中磨粒磨损主要包括凿削磨损、冲刷磨损、碾磨磨损、划伤磨损和喷射磨损;腐蚀主要包括电偶腐蚀、均匀腐蚀和疲劳腐蚀。柱塞表面的失效以腐蚀磨粒磨损为主。
     分别向Ni35或Ni60中加入Ti粉和石墨粉,利用激光熔覆原位合成了TiC颗粒增强的NiCrBSi熔覆层,熔覆层与基体形成良好的冶金结合。从熔覆层的底部到顶部,TiC颗粒的体积分数依次升高;颗粒尺寸从纳米级逐步增大至微米级。熔覆层的硬度沿熔深方向由表及里呈下降趋势。TiC/Ni60熔覆层硬度明显高于TiC/Ni35熔覆层,TiC与(Fe,Ni)固溶体的结合界面洁净,无反应物和附着物,两相间共格性和相容性优良,TiC颗粒中存在大量位错,呈一定的方向分布。
     熔覆工艺是影响激光熔覆原位合成TiC/NiCrBSi熔覆层组织和性能的重要因素。研究表明,当预熔覆层厚度为1mm,扫描速度为150mm/min,激光扫描功率为3500W时,可获得表面平整,成型较好,稀释率较低,硬度较高的熔覆层。三层熔覆能有效降低母材金属对熔覆层的稀释率,增加熔覆层中TiC增强相的数量和尺寸,获得花瓣状和颗粒状的TiC,有利于获得硬度高而均匀的熔覆层。
     激光合成TiC/NiCrBSi熔覆层裂纹主要是由M23C6引起的熔覆层低塑性及残余内应力导致的脆性冷裂纹。通过减少粉末中的石墨含量进而降低熔覆层的含碳量,可以改善熔覆层组织,提高塑韧性,降低残余内应力,从而降低裂纹敏感性。
     对于熔覆层组织中陶瓷相偏聚的问题,通过向熔覆层中添加适量的Mo,使陶瓷相的偏聚现象明显减轻甚至消失。Mo可以改善TiC对NiCrBSi基体的界面润湿性,使TiC颗粒弥散分布于NiCrBSi固溶体中,有助于阻碍原位合成过程中TiC晶粒的聚集长大,从而细化TiC晶粒,改善熔覆层组织的均匀性,提高熔覆层硬度和耐磨性,降低摩擦系数。但添加过量的Mo,熔覆层硬度和耐磨性下降。
     向熔覆层中加入适量的稀土,可以改善熔覆层的耐磨耐蚀性。镧与熔池中的微量杂质形成组分复杂的微小化合物,作为非自发形核质点,对TiC和基体金属起到增加形核核心,细化晶粒和净化熔覆层组织的作用,提高了熔覆层的硬度和耐磨性,同时LaF3提高了熔覆层的电极电位,降低了腐蚀电流,改善了熔覆层的耐蚀性能。
     磨损试验表明,三层熔覆能够更好的发挥出TiC颗粒的增强作用,具有优良的耐磨损性能。TiC/Ni基熔覆层表层由于耐磨硬质点的存在,阻碍了磨痕的发展,其阻碍和钉扎行为在摩擦过程中发挥了强烈的阻磨作用,使熔覆层的磨损量大大降低。熔覆层基体的磨损机制主要是显微切削与粘着磨损。TiC/Ni基熔覆层耐磨性优于Ni60熔覆层。
     TiC/Ni基熔覆层与Ni60熔覆层相比较,前者具有较高的电极电位,后者具有较小的腐蚀电流;TiC/Ni基熔覆层能够提高碳钢基体的耐蚀性,其耐均匀腐蚀性劣于Ni60熔覆层,但耐局部腐蚀性能优于Ni60熔覆层。
     在腐蚀磨损试验中,TiC/Ni基熔覆层中的TiC颗粒发挥着增强和阻磨作用;腐蚀优先在晶界或相界处发生,削弱了TiC颗粒与基体的结合力,TiC颗粒在磨损作用下发生少量脱落,因此腐蚀加剧了磨损。腐蚀磨损形貌为切削犁沟和腐蚀坑。腐蚀磨损机制为腐蚀磨粒磨损。TiC/Ni基熔覆层的腐蚀磨损性能优于Ni60熔覆层,原因在于此工况条件下的腐蚀磨损以磨损为主,腐蚀为辅。
With most of the domestic oil field entering the high watery development period,corrosive wear of oil well pump is increasingly serious due to the effect of high content of sand,water and salinity,high temperature steam heavy oil mining,polymer injection and strong corrosion medium,which seriously affects the exploitation of oil fields.In this research,the Ni-based cladding layer reinforced by in-situ fabricated TiC by laser cladding on the surface of oil well pump plunger.The microstructure、wear and corrosion properties of the cladding layer were analyzed systematically as well as the interfacial properties between TiC and metal substrate and the main factors influencing microstructure and properties.
     The reasons of failure on the surface of oil pump plunger are various.Sand deposition in the pump will lead to the scratch of the surface of plunger; the liquid with sand under high pressure difference will cause the incising; the increased pump setting depth will result in the increase of friction force between the pump barrel and the plunger; the local corrosion and wear between the pump barrel and the plunger is more serious due to the non-vertical structure of the well; high temperature underground aggravates the corrosion and scaling of the pump barrel and the plunger.The failure mechanism of the plunger surface is abrasive wear,corrosion wear,sticking and corrosion.Abrasive wear mainly includes gouging abrasive wear,erosion wear,grinding wear and tear,scratches wear and jet wear.Corrosion mainly includes galvanic corrosion,uniform corrosion and fatigue corrosion.The main failure of the plunger surface is corrosion and abrasive wear.
     Through adding Ti and graphite powder to Ni35 or Ni60,the Ni-based cladding layer reinforced by in-situ TiC was prepared by laser cladding. The cladding layers have an excellent metallurgical bonding with the substrate.The volume fraction of TiC particles increases successively from the bottom to the top of the cladding layers,and the particle size changes gradually from the nanometer to micron level.The hardness of the cladding layer decreases from surface to substrate of the cladding layers,and the hardness of the TiC/Ni60-based cladding layer is much higher than that of TiC/Ni35.The bonding interface between TiC phase and the solid solution(Fe,Ni) is clean without reactants and attachments,and the coherency and compatibility of these two phases is excellent.There is a great deal of dislocation in TiC particles,which distributes in some direction.
     The laser cladding technology is also the important factor influencing the microstructure and properties of the Ni-based TiC composite cladding layer. The results show that the cladding layer with good appearance,low dilution rate and high hardness could be obtained when the thickness of the pre-coated powder is 1mm,scanning speed is 150mm/min and cladding power is 3500W. The laser cladding with three layers can effectively reduce the dilution rate of base metal to the cladding layers,increase the quantity and size of the TiC reinforcement in cladding layer,and get petal-shaped and granular TiC particles,which are beneficial to get the uniform cladding layer with high hardness.
     Cracks in TiC/NiCrBSi cladding layers are mainly cold brittle cracks resulted from low ductility of the cladding layer due to the existence of M23C6 phase and residual internal stress.Through decreasing the carbon content of the cladding layers by means of reducing the graphite content of the powder,the microstructures of the cladding layers can be improved,plasticity and toughness can be enhanced,and residual stress can be decreased,therefore,the cracking susceptibility can be reduced.
     As for the ceramic phase segregation in the microstructure of the cladding layer,this phenomenon can be obviously lightened and even disappear by adding Mo to the cladding layer.Mo can improve the interfacial wettability of TiC phase to Ni-base phase,which makes TiC particles dispersedly distribute in the Ni-based solid solution phase.This contributes to impeding the accumulation and growth of TiC during the process of in-situ fabrication,improving uniformity,rigidity,wear resistance,refining TiC grains,reducing friction coefficient.However,the hardness and wear resistance of cladding layer decrease with the addition of excessive Mo.
     The corrosion and wear resistance of cladding layer can be improved through adding appropriate content rare earth to the cladding layer. La and trace of impurities in the molten pool form the tiny compounds with complicated components,which can be considered as non-spontaneous nucleation particles.These particles contribute to increasing nucleation cores,refining grains and cleaning the structure of the cladding layers,and increase the hardness and wear resistance can be improved.Meanwhile electrode potential can be improved while corrosion current can be reduced by LaF3,The corrosion resistance of cladding layer can be improved.
     Wear test indicates that three-layer claddings make reinforcement performance of TiC particles more effective and have excellent wear resistance property. Wear-resistant hard particles on the surface of TiC/NiCrBSi cladding layers hinder the extension of the wear scar,and the hindering and pinning action prevent the wear seriously,so that the wear loss of TiC/NiCrBSi cladding layers decreases remarkably.The main wear mechanism of cladding layers matrix is microdissection and adhesive wear.Wear resistance of TiC/NiCrBSi cladding layers is better than that of Ni60 cladding layers with the reason of the former’s lower friction coefficient.
     Compared with Ni60 cladding layers,TiC/NiCrBSi cladding layers have higher electrode potential,but higher corrosion current.TiC/NiCrBSi cladding layers can improve the corrosion resistance of the carbon steel matrix,and have lower uniform corrosion resistance and higher local corrosion resistance than Ni60 cladding layers.
     During the experiment of corrosion wear,TiC particles in TiC/NiCrBSi cladding layers play the roles of enhancement and frictional resistance.Corrosion happens preferentially on grain or phase boundaries,and weakens the adhesive force between TiC particles and the matrix.As a result,corrosion aggravates the wear and TiC particles fall off more easily due to the wearing action.Corrosion wear morphology is cutting plough ditch and etch pits.The mechanism of corrosion wear is corrosion abrasive particle wear.It is because wear predominates over corrosion under this working condition that corrosion wear property of TiC/NiCrBSi cladding layers is better than that of Ni60 cladding layers.
引文
[1]徐滨士,朱韶华等编著.表面工程的理论与技术[M].北京:国防工业出版社,1999
    [2]孙希泰等编著.材料表面强化技术[M].北京:化学工业出版社,2005
    [3]王新洪,邹增大,曲仕尧.表面熔融凝固强化技术[M].北京:化学工业出版社,2005
    [4]吴玉萍.等离子弧熔覆Fe基合金+ TiC涂层中的陶瓷相行为与相结构[J].焊接学报.2001,22(6):89-91
    [5]王惜宝,王晓峰,贾风锁.等离子弧粉末堆焊条件下粉末颗粒的热行为I粉末颗粒与等离子弧之间的传热过程研究[J].焊接学报.2002,23(4):13-16
    [6] T.Watanabe,X.Wang,E.Pfender,J.Heberlein.Correlations between electrode phenomena and cladding layer properties in wire arc spraying[J].Thin Solid Films.1998,316(1-2):169-173
    [7] Zheng Chen,Y Zhou.Surface modification of resistance welding electrodes by electro-spark deposited composite cladding layers Part II.Metallurgical behavior during welding[J].Surface and cladding layers Technology.2006,201(6):2419-2430
    [8]杨尚磊,吕学勤,邹增大等.基于TiC-VC的抗磨粒磨损堆焊焊条[J].机械工程材料,2004,28(6):20-22
    [9] Takayuki Watanabe , Tadayuki Sato , Atsushi Nezu . Electrode phenomena investigation of wire arc spraying for preparation of Ti-A1 intermetallic compounds[J].Thin Solid Films.2002,407(1-2):98-103
    [10] Arvind A.garwal,Narendra B.Dahotre.Pulse electrode deposition of superhard boride cladding layers on ferrous alloy[J] . Surface and cladding layers Technology.1998,106(2-3):242-250
    [11] C.S.LIU,J.H.HUANG,S.YIN.The influence of composition and process parameters on the microstructure of TiC-Fe cladding layers obtained by reactiveflame spray process[J].JOURNAL OF MATERIALS SCIENCE.2002,37:5241-5245
    [12]朱子新,徐滨士,马世宁等.高速电弧喷涂Fe-Al/WC复合涂层的组织结构及其滑动磨损性能研究[J].中国表面工程.2003,62(5),15-19
    [13] HUIYUAN LIU,JIHUA HUANG.Reactive thermal spraying of TiC-Fe composite cladding layer by using asphalt as carbonaceous precursor[J].JOURNAL OF MATERIAIS SCIENCE.2005,40:4149-4151
    [14] B.Uyulgan,E.Dokumacia,E.Celika,et a1.Wear behavior of thermal flame sprayed FeCr cladding layers on plain carbon steel substrate[J].Journal of Materials Processing Technology.2007(Article in Press)
    [15] S.Harsha,D.K.Dwivedi,A.Agrawal.Influence of WC addition in Co-Cr-W-Ni-C flame sprayed cladding layers on microstructure , microhardness and wear behavior[J].Surface and cladding layers Technology.2007,201(12):5766-5775
    [16] M.P.Planche,H.Liao,B.Normand et a1.Relationships between NiCrBSi particle characteristics and corresponding cladding layer properties using different thermal spraying processes[J].Surface and cladding layers Technology.2005,200(7):2465-2473
    [17]刘长松,殷声.反应热喷涂的发展[J].材料保护.2000,33(1):83-85
    [18] HuiYuan Liu,JiHua Huang.Reactive flame spraying of TiC-Fe cermet cladding layer using asphalt as a carbonaceous precursor[J].Surface and cladding layers Technology.2006,200(18-19):5328-5333
    [19] G.Rtickert,B.Huneau,S.Marya.Optimizing the design of silica cladding layer for productivity gains during the TIG welding of 304L stainless steel[J].Materials &Design.2007,Article in Press
    [20] Soner Buytoz,Mustafa Ulutan,M.Mustafa Yildirim.Dry sliding wear behavior of TIG welding clad WC composite cladding layers[J] . Applied SurfaceScience.2005,252(5):1313-1323
    [21] S.Mridha,H.S.Ong,L.S.Poh,P.Cheang.Intermetallic cladding layersproduced by TIG surface melting[J] . Journal of Materials Processing Technology.2001,113(1-3):516-520
    [22] F.T.Cheng,K.H.Lo,H.C.Man.NiTi cladding on stainless steel by TIG surfacing process Part I.Cavitation erosion behavior[J].Surface and cladding layers Technology.2003,172(2):308-315
    [23]张传明,尚丽娟,胡南昌等.氩弧熔覆镍基自熔合金的工艺研究[J].沈阳工业大学学报,28(1):33-36,58
    [24]杨元修,康福仪.球铁表面氩弧重熔强化技术的研究[J].阀门,2001(3):16-18
    [25]宗培,王志国,仲晨华等.TIG熔修对焊接接头的金相组织及断裂韧性的影响[J].兵器材料科学与工程,2003,26(5):40-43
    [26]李冬霞,贾宝春,刘跃进等.高强钢TIG熔修焊缝裂纹的低温力学性能研究[J].郑州纺织工学院学报,2001,12(1):21-23
    [27]郝建军,马跃进,黄继华等.氩弧熔覆Ni60A耐磨层在农机刀具上的应用[J].农业工程学报,2005,21(11):73-76
    [28]刘喜明,连建设,关振中等.氩弧熔覆Ni35B+Co-WC层的组织、性能及强化机制[J].钢铁研究学报,1999,1l(5):42-46
    [29] V.Lopex , et a1 . Laser melting of plasma-sprayed alumina cladding laers[J].Materials Science and Engineering,2000,A172:189-195
    [30]张细菊,方军,史华忠等.钢表面激光熔覆TiCp/Fe基合金复合耐磨涂层[J].武汉冶金科技大学学报.1997,20(3):294-299
    [31] Godfrey C.Onwubolu,J.Paulo Davim,Carlos Oliveira,A.Cardoso.Prediction of clad angle in laser cladding by powder using response surface methodology and scatter search[J].Optics & Laser Technology.2007,39(6):1130-1134
    [32] Hamidreza Alemohammad,Shahrzad Esmaeili,Ehsan Toyserkani.Deposition of Co-Ti alloy on mild steel substrate using laser cladding [J].Materials Science and Engineering:A.2007,456(1-2):156-161
    [33] Particulate reinforced titanium matrix composites[J].Metal.1997,67(1):64-70(in Japanese)
    [34]梅志,顾明元,吴人洁.金属基复合材料界面表征及其进展[J].材料科学与工程.1996,14(3):1-5
    [35]冯可芹,杨屹,王一三等.铁基复合材料的制备技术与展望[J].机械工程材料,2002,26(12):9-11
    [36]杨才定,薛烽,吴钱林等.原位合成TiC颗粒增强铝基复合材料及其磨损性能[J].东南大学学报(自然科学版),2005,35(6):907-910
    [37] S . Ranganath , A review on particulate-reinforced titanium matrix composites[J].J.Mater.Sci.,1997,32(1):1-16
    [38] Stanley Abkowitz,Paul E Weihrauch,Susan M.Abkowitz,Particulate-reinforced titanium alloy composites economically formed by combined cold and hot isostalic pressing[J].Industrial Heating,1993,60(9):32-37
    [39] M.H.Loretto,D.G Konitzer,The effect of matrix reinforcement reaction on fracture in Ti-6A1-4V base composites[J].Metal.Mater.Trans.,1990,21A(6):1579-1587
    [40] S.K.Choi,M.Chandrosekaran,M.J.Brabers,Interaction between titanium and SiC[J].J.Mater.Sci.,1990,25(4):1957-1964
    [41]陈华辉,邢建东,李卫.耐磨材料应用手册[M],北京:机械工业出版社,2006
    [42]李荣久主编.陶瓷-金属复合材料(第2版)[M].北京:冶金工业出版社,2004
    [43] Kitty W.Lee,Yu-Hsia Chen,Yip-Wah Chung,et a1.Hardness internal stress and thermal stability of TiB2/TiC multilayer cladding layers synthesized by magnetron sputtering with and without substrate rotation[J].Surface and cladding layers Technology.2004,177-178:591-596
    [44]王红美,蒋斌,徐滨士等.纳米SiO2颗粒增强镍基复合镀层的组织与微动磨损性能研究[J].摩擦学学报,2005,25(3):289-292
    [45]李荣久主编.陶瓷-金属复合材料[M].北京:冶金工业出版社,第2版,2004:6-118
    [46]吕维洁,杨志峰,张荻等.原位合成钛基复合材料增强体TiC的微结构特征[J].中国有色金属学报.2006,12(3):511-515
    [47]杨瑞成,周琦,郑丽平等.WC,TiC,Fe3C及Co2C的价电子结构与性能的分析[J].甘肃工业大学学报.2001,27(3):11-14
    [48]金云学.TiCp/Ti复合材料TiC生长形态及其控制.哈尔滨工业大学博士学位论文
    [49]吴玉萍,刘立民.常压等离子熔覆FeCrSiB+TiC涂层的研究[J].煤炭学报.2001,26(4):414-417
    [50] R.B.Heimann.Application of Plasma-sprayed Ceramic cladding layers[J].Key Engineering Materials (Advanced Ceramic Materials).1996,122-124:399-442
    [51] L.Fabbri,M.Oksanen.Characterization of plasma-sprayed cladding layers using nondestructive evaluation techniques:round-robin test results[J].Journal of Thermal Spray Technology.1999,8(2):263-272
    [52]吴军,王成国,孙康宁.TiC弥散强化铁基合金粉末[J].金属热处理学报,1996,17(4):56-60
    [53]黄继华,刘长松,党全坤等.TiC/Fe-A1复合涂层反应火焰喷涂研究[J].粉末冶金技术.2002,20(4):219-222
    [54] W H.JIANG,W:D.PAN,G H.SONG,et a1.In-situ synthesis of a TiC-Fe composite in liquid iron[J] . JOURNAL OF MATERIALS SCIENCE LETTERS.1997,16:1830-1832
    [55] R.Zee,Chi Yang,Yi Xing,et a1.Effects of boron and heat treatment on structure of dual-phase Ti-TiC[J].J.Mater.Sci.,1991,26(14):3853-3861
    [56]王一三,张欣苑,李凤春等.反应铸造生成Fe-TiC梯度表面复合材料的研究[J].热加工工艺.1999,4:13-15
    [57] Jongrnin Lee,Kwangiun Euh,Stmghak Lee,et a1.Microstructural analysis of TiC reinforced ferrous surface composites processed by accelerated electron beam irradiation[J].Current Applied Physics.2001,1:467-471
    [58] S.Economou,M.Bonte,J.Celis,et a1.Processing,Structure and Triological Behavior of TiC-reinforced Plasma Sprayed cladding layers[J].Wear.1998,220.34-50
    [59]武晓雷,陈光南.原位TiC/金属基激光熔覆涂层的微结构特征[J].金属热处理学报.1998,19(4):1-8
    [60] D.A.Noble.Abrasive Wear Resistance of Hardfacing Weld Deposits[J].Metal Constructure.1985,17(9):605-611
    [61] E.A.Levashov,EV.Vakaev,E.I.Zamulaeva,et a1.Disperse-strengthening by nanoparticles advanced tribological cladding layers and electrode materials for their deposition[J].Surface and cladding layers Technology.2007,201(13):6176-6181
    [62]王新洪,邹增大,宋思利等.TiC-VC免预热耐磨堆焊焊条[J].焊接学报,2002,23(4):31-34
    [63]田永生,陈传忠,王德云等.激光表面合金化层内枝状碳化钛的生长模式[J].应用激光,2005,25(2):109-112
    [64]刘林,傅恒志,史正兴.高温合金中碳化物的初生形貌与晶体结构的关系[J].金属学报.1989,25(4):282-287
    [65]邵荷生,张清编著.金属的磨料磨损与耐磨材料[M].北京:机械工业出版社,1988
    [66]徐滨士,马世宁,刘世参等.表面工程的进展与再制造工程[J].同济大学学报,2001,29(9):1085-1090
    [67] Weijie Lu,Di Zhang,Xiaonong Zhang,et a1.Microstructural characterization of TiC in in situ synthesized titanium matrix composites prepared by common casting technique[J].Journal of Alloys and Compounds.2001,327(1-2):248-252
    [68] Padma Gopalan,R.Rajaraman,B.Viswanathan,et a1.The kinetics of formation and growth of TiC precipitates in Ti-modified stainless steel studied by positron annihilation spectroscopy[J].Journal of Nuclear Materials.1998,256(2-3):229-234
    [69] Chengyun Cui,Zuoxing Guo,Hongying Wang,Jiandong Hu.In situ TIC particles reinforced grey cast iron composite fabricated by laser cladding of Ni-Ti-C system[J].Journal of Materials Processing Technology.2007,183(2-3):380-385
    [70] Julius J.Nickl,Rtidiger Vesper.Morphologie des gasphasenabge schiedenensystems titancarbid·graphit[J].Journal of the Less Common Metals.2001,25(3):275-135
    [71]于熙泓,张静华,胡壮麒等.快速凝固条件下单晶镍基高温合金中MC碳化物的形态及生长机制[J].金属学报.1994,30(2):55-59
    [72]王华明,于利根,李晓轩等.MC碳化物准快速凝固形态与生长机制研究[J].金属学报.1999,35(12):1246-1248
    [73]陈瑶.小平面相凝固理论及TiC增强金属间化合物复合材料涂层组织与耐磨性[D].北京航空航天大学博士论文.2003
    [74]吕维洁,张小农,张荻等.原位合成TiC/Ti基复合材料增强体的生长机制[J].金属学报.1999,35(5):536-540
    [75]田永生,陈传忠,王德云等.激光表面合金化层内枝状碳化钛的生长模式[J].应用激光,2005,25(2):109-112
    [76]刘林,傅恒志,史正兴.高温合金中碳化物的初生形貌与晶体结构的关系[J].金属学报.1989,25(4):282-287
    [77]邵荷生,张清编著.金属的磨料磨损与耐磨材料[M].北京:机械工业出版社,1988
    [78]徐滨士,马世宁,刘世参等.表面工程的进展与再制造工程[J].同济大学学报,2001,29(9):1085-1090
    [79]王家金主编.激光加工技术[M].北京:中国计量出版社,1992.
    [80] Jinke Tang,Jeffrey S.Zabinski,John E.Bultman.TiC cladding layers prepared by pulsed laser deposition and magnetron sputtering[J].Surface and cladding layers Technology.1997,91:69-73
    [81] YL. REN,L.QI,L.M.FU,et a1.Microstructural characteristics of TiC and (TiW)C iron matrix composites[J].JOURNAL OF MATERIALS SCIENCE.2002,37:5129-5133
    [82] B.Feng,D.M.Cao,W.J.Meng,et a1.Probing for mechanical and tribological anomalies in the TiC amorphous hydrocarbon nanocomposite cladding layer system[J].Thin Solid Films.2001,398-399:210-216
    [83]王立人,王湘,谢贤清等.TiC/ZA43复合材料耐磨性能的试验研究[J].湖南大学学报(自然科学版),2000,27(4):44-49
    [84]王军,武晓雷.激光熔覆涂层中TiCp界面结构与涂层冲击磨损性能[J].材料科学工艺,1999,7(4):21-24
    [85] Y Chen,H.M.Wang.Microstructure and wear resistance of laser clad TiC reinforced FeAl intermetallic matrix composite cladding layers[J].Surface and cladding layers Technology.2003,168:30-36
    [86] O.P.Modi,B.K.Prasad,A.K.Jha,et a1.Effects of material composition and microstructural features on dry sliding wear behaviour of Fe-TiC composite and a cobalt-based satellite[J].Tribology Letters.2004,17(2)
    [87] YH.Wang,YF.Tan.Theory and Practice of“Spontaneous Protective Layer”in Soil Cutting[J].Terramechanics.1995,32(2):99-104
    [88] R.VIj ande,J.Belzunce.Wear and Microstructure in fine cermic cladding layers[J].Wear.1991,146:221-233
    [89] J.D.Ayers.Abrasive wear with fine diamond particles of carbides containing aluminum and titanium aluminum alloys[J].Wear.1984,93:193-206
    [90] Y.Su,J.S.Lin.Friction and Wear behaviors of a number of ceramic-coated steels matched as sliding pairs to various surface-treated steels[J].Wear.1993,166:27-35
    [91]杜学铭,施雨湘,李爱农.碳化钨复合耐磨堆焊层泥沙磨损性能的研究[J].武汉理工大学学报(交通科学与工程版),2002,26(2):161-164
    [92] A.Karimi,Ch.Verdon.Hysroabrasive Wear Behavior of High Velocity Oxyfuel Thermally Sprayed WC-M cladding layers[J].Surface and cladding layers Technology,1993,(63):493-498
    [93] I.YKonyashin.Improvements in Reliability and Serviceability of Cemented Carbides with Wear-resistant cladding layers[J] . Materials Science and Engineering.1997,1.121(A230):213-220
    [94]张树生,王志平等.碳化钨喷焊层耐磨性的研究[J].沈阳工业大学学报.1991,13(1):43-51.
    [95]刘越,于宝海等.TiC/NiCr金属陶瓷复合堆焊材料摩擦磨损性能[J].摩擦学报.2000,20(4):90-93
    [96]潘春旭,陈俐.耐磨堆焊层显微组织特征及其与耐磨性关系的研究[J].兵器材料科学与工程,2000,23(2):8-12
    [97]周细应,柯黎明,华小珍等.堆焊界面特征与裂纹形成之间的关系研究[J].兵器材料科学与工程,2001,24(6):18-21
    [98] Wang Hui,Xia Weiming,Jin Yuansheng.A Study on abrasive resistance of Ni-based cladding layer with a WC hard Phase[J].Wear.1996,195(1):47-50
    [99] M.A.Moor.The Relationship Between Abrastance,Wear Resistance and Microstructure of Ferritic Materials[J].Wear.1974,28:5968
    [100]王莲芳,陈伯蠡等.堆焊金属耐磨性与硬度关系的研究[J].焊接,1991(6):6-9
    [101]陈丽芳,刘咏.稀土元素的添加对原位生成的Ti-TiC-TiB复合材料抗磨损性能的影响[J].粉末冶金材料科学与工程,2005,10(2):100-104
    [102]王新洪,邹增大.稀土对TiC基金属陶瓷耐磨堆焊材料组织性能的影响[J].中国稀土学报,2001,19(3):233-237
    [103] Wang Xinhong,Zou Zengda.Effect of rare earths on microstructure and properties of Tic-based cermet/Cu alloy composite wear resistant materials[J],Journal of Rare Earths,2003,2l(3):375-229
    [104] R.L.Biomnery,C.M.Perrot and P.M.Robinson.Abrasive wear of tungsten carbide-cobalt composites.I.Wear Mechanisms[J].Materials Science and Engineering.1974,3:93-100
    [105]湛永钟,张国定.SiCp/Cu复合材料摩擦磨损行为研究[J].摩擦学学报,2003,23(6):495-499
    [106]刘灿楼,胡镇华等.Ti(C,N)基金属陶瓷的摩擦磨损研究[J].硬质合金.1994,(3):148-152
    [107] Zum Gahr K H.How microstructure affects abrasive wear resistance[J].MetalProgress,1979,116(4):4652
    [108]辛艳辉,林建国,任志昂.Ti-A1-Cr-Nb-V合金激光表面原位TiC颗粒增强涂层及耐磨性研究[J].材料热处理学报.2004,25(4):63-66
    [109] J.E.Femandez,et a1.Sliding wear of a plasma-sprayed A1203 cladding layer [J].Wear.1995,181-183:417-425
    [110] H.M.Hawthorne,et a1.The microstructural dependence of wear and indentation behavior of some plasma-sprayed alumina cladding layers[J].Wear.1997,203-204:709
    [111]上官宝,陈跃,铁喜顺等.WC等离子喷涂涂层摩擦磨损特性研究[J].表面技术,2004,33(1):21-22
    [112] Wellinger,E.,Uetz,H.,Wear,11(1968),No. 3,173
    [113]杨军,杨建广,荆雷.抽油泵质量监督对策探讨[J].石油工业技术监督,2008,(10):35-39
    [114] Perkin Elmer Instruments,Inc.SoftCorrTMⅢCorrosion Measurement Software Instruction Manual.2000
    [115]曾德麟主编.粉末冶金材料.北京:冶金工业出版社,1989,190-200.
    [116]姜晓霞,李诗卓,李曙.金属的腐蚀磨损[M].北京:化学工业出版社,2003. 220-221
    [117] Wellinger,E.,Uetz,H.,Wear,11(1968),No. 3,173
    [118]沈迪成.抽油泵.石油工业出版社,1994.316-318
    [119] R.Zee,Chi Yang,Yi Xing,et a1.Effects of boron and heat treatment on structure of dual-phase Ti-TiC[J].J.Mater.Sci.,1991,26(14):3853-3861
    [120]王一三,张欣苑,李凤春,等.反应铸造生成Fe-TiC梯度表面复合材料的研究[J].热加工工艺.1999,4:13-15
    [121] Westwood A R C.Metall Tirana,1988; 19A:749
    [122] Rohatgi P K,Asthana R.J.Met,1991,5:35
    [123] Hu C,Barnard L,Mridha S,Baker T N.J Mater Pr,oceas Technol,1996, 124-44 Abbas G,West D R F.Wear,1991,143:353
    [124]武晓雷,洪友士.激光熔覆TiCp/Ni合金涂层中界面结构及界面硬度与弹性模量分布[J].金属学报,2000,(3) 282-286
    [125] M.H.Loretto,D.G Konitzer,The effect of matrix reinforcement reaction on fracture in Ti-6A1-4V base composites[J].Metal.Mater.Trans,1990,21A(6):1579-1587
    [126]张淑英,陈玉勇,沈光骏,等.喷射沉积Al25.5Cu/ TiB2自生复合材料的界面结构[J].中国有色金属学报1999,9(7) Supply.1,131-135
    [127]周美玲,李俊,王金淑,张久兴.离心SHS陶瓷衬管铁过渡层的研究[J].中国有色金属学报,1996,6(1).66-69
    [128]张庆茂,刘文今,杨森,等.送粉式激光熔覆稀释率的分析模型及其影响因素[J].钢铁研究学报,2002,14(1):11-15
    [129]国外硬质合金编写组.国外硬质合金[M].北京:冶金工业出版社,1976,
    [130]周泽华,丁培道.Ti(C,N)基金属陶瓷添加成分的研究[J].材料导报,2000,14 (4):21-22
    [131] Hornbogen,E.,Fortschr.Ber,VDI-Z Reihe 5,Nr. 24(1976)
    [132]夏斌华,郭幸华,邹序枚等,SHS法合成TiC碳原子饱和度的影响因素研究[J].硬质合金.1996,13(4):207-212
    [133]长崎诚三,平林真编著,刘安生译.二元合金状态图集[M].北京:冶金工业出版社,2004
    [134] ZHONG Minlin,LIU Wenjin.Comparative research on cracking tendency in powder feeding laser cladding stellite and NiCrSiB alloys[J].Chinese Journal of Lasers,2002,29(11):1032-1036.
    [135]时海芳,胡世菊,侯柏松,等.25SiMnMoV钢粒状贝氏体回火过程研究[J].煤矿机械,2000,(1).28-30
    [136]董建新,张麦仓,曾燕屏.新型Ni-Cr基GH648合金成分对热力学平衡相析出行为的影响[J].稀有金属材料与工程,2005,34(1):51-55
    [137] Liu Xiubo,Yu Gang,Pang Ming,Dissimilar Autogenous Full Penetration Welding of Superalloy K418 and 42CrMo Steel by a High Power CW Nd:YAG[J]. Laser Applied Surface Science,2007,253 (17):7281-7289
    [138]宋武林,朱蓓蒂,甘翠华,等.激光熔覆层结晶方向对覆层裂纹方向和开裂敏感性的影响[J].中国激光,1995,22(4):309-312
    [139]孙一唐.工具钢及其热处理[M].机械工业出版社.1986.65-69
    [140]《国外硬质合金》编写组编,国外硬质合金[M].北京:冶金工业出版社,1976:168-519
    [141] Humenik M.,Jr.,Parikh N.M.K.Amer Ceram.Soc,1965:39(2):60
    [142]熊惟皓.Ti(C,N)基金属陶瓷相界面结合机理的研究[J].华中理工大学学报,1995,23(12):28-32
    [143] Nishigaki K,Doi H.J.Powder[J].Powder Metal,1980,27:130-136
    [144] Moskowitz D,Humenik M,Jr.Modern developments in P/M,3.Ed by Hausner H H,Plenum press N Y.1996.83
    [145] Zou,Zhengguang; Wu,Yi; Long,Fei; Xu,Wenwu; Yao,Dongye Effects of Mo(Ni) on valence electron structures of TiC/ Fe cermets.Key Engineering Materials,v 368- 372 PART 2,2008,1119- 1122
    [146] Liu N,Xu Y D,Li Z H,et al.Influence of molybdenum addition on the microstructure and mechanical properties of TiC based cermets with nano-TiN modification[J].Ceram Int,2003,29:919- 925
    [147] Lu,J.J.; Yang,S.R.; Wang,J.B.; Xue,Q.J.Wear,2001,249:1070
    [148] Zhang,Z.F.; Yu,L.G.; Liu,W.M.; Xue,Q.J.Wear,2001,34:83
    [149] Xu,J.J.; Zhang,Q.M.; Jin,Z.; Zhe,H.B.; Li,Y.Acta Inorg.-Chim.Sin.,2006,22(8):1041
    [150] Lian,Y.F.; Yu,L.G.; Xue,Q.J.Wear,1995,188:56
    [151] Harry,R.F.and Charles,p.M.UK Patent 1975,1:418,240
    [152]杜挺,韩其勇,王常珍著.稀土碱土等元素的物理化学及在材料中的应用[M].北京:科学出版社,1995
    [153]刘光华编著.稀土固体材料学[M].北京:机械工业出版社,1997
    [154] Li Mugin,Ma Chen,Shao Dechun et a1.On mechanism of the effect of rare earthon wear ability of nickel Base Self-fluxing Alloy[J].Joumal of Rare Earths,1991,9(4):294-299
    [155]吴钱林,孙扬善,薛烽,周健. CeO2对原位TiC弥散强化钢组织和性能的影响[J].中国稀土学报,2008,(1):92-96
    [156]余宗森等.稀土在钢铁中的应用[M].北京:冶金工业出版社,1987
    [157]王莲芳等.堆焊金属耐磨性与硬度关系的研究[J].焊接. 1991(6):6-9
    [158]朱日彰等.金属腐蚀学[M].北京:冶金工业出版社,1989.48-49
    [159]稀土在钢铁中的应用编委会.稀土在钢铁中的应用[R].北京:冶金工业出版社,1987. 287
    [160]姜晓霞,李诗卓,李曙.金属的腐蚀磨损[M].北京:化学工业出版社,2003.220-221
    [161] Hofman R,Vreijling M P W,Ferrari G M,Wit J H W de.Electrochemical methods for characterization of thermal spray corrosion resistant stainless steel cladding layers [J].Materials Science Forum,1997,1998,289-292 pt 2:641-654
    [162] Souza V A D,Neville A.Linking electrochemical corrosion behavior and corrosion mechanisms of thermal spray cermet cladding layers (WC-CrNi and WC/CrC-CoCr)[J].Mater.Sci.Eng.2003,A352(1-2):202
    [163] Guilemany J M,Fernández J,Delgado J,Benedetti A V,Climent F.Effects of thickness cladding layer on the electrochemical behavior of thermal spray Cr3C2-NiCr cladding layers [J].Surface and cladding layers Technology,2002,153 (2-3):107
    [164] S?derlund E,Ljunggren P.Formability and corrosion properties of metal/ ceramic multiplayer coated strip steels [J].Surface and cladding layers Technology,1998,110(1-2):94
    [165] Cunha L,Andritschky M.Residual stress,surface defects and corrosion resistance of CrN hard cladding layers [J].Surface and cladding layers Technology,1999,111(2-3):158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700