用户名: 密码: 验证码:
CrNiMo不锈钢表面激光熔覆与合金化抗空蚀涂层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
0Cr13Ni5Mo马氏体不锈钢(CrNiMo)具有良好的抗空蚀性能、耐蚀性能和抗冲刷磨损性能,是常用的水轮机部件材料。但是,CrNiMo不锈钢在作为制造大型水轮机转轮的材料时,容易出现裂纹。为降低开裂趋势,提高材料性能,对合金成份进行了调整,增加真空精炼冶炼工艺,开发出了M-CrNiMo不锈钢。
     本文将二者与0Cr13Ni4Mo不锈钢相对照,研究了这三种不锈钢材料的抗空蚀损伤、空蚀与腐蚀交互作用损伤和冲刷磨损行为,并对其抗空蚀机理进行了探讨。为了进一步提高M-CrNiMo不锈钢的抗空蚀能力,利用激光表面合金化和激光熔覆技术在M-CrNiMo不锈钢材料表面制备具有冶金结合界面、无裂纹等缺陷、组织致密和抗空蚀性能优良的涂层,进而改进水轮机转轮表面处理技术。
     采用超声振荡空蚀实验设备对三种不锈钢材料进行了超声空蚀实验;利用电化学测试系统测量了不锈钢材料在静态和空蚀条件下的极化曲线;并采用旋转圆盘仪装置对不锈钢材料进行了冲刷磨损实验。
     实验结果表明,M-CrNiMo不锈钢在单相液体介质中的抗空蚀和抗冲刷磨损性能明显高于CrNiMo不锈钢和0Cr13Ni4Mo不锈钢。不锈钢微观组织中的各相在空蚀作用下产生塑性变形和破坏。破坏从铁素体薄弱区开始,而后扩展到马氏体,产生空蚀微坑;到了空蚀稳定期,在整个材料表面,空蚀微坑随空蚀的继续而加宽、加深,发展成尺寸较大的空蚀坑。腐蚀与冲刷磨损因素对三种不锈钢的空蚀破坏都有显著促进作用,M-CrNiMo不锈钢在含砂水中的抗冲刷磨损性能略高于CrNiMo不锈钢和0Cr13Ni4Mo不锈钢。不锈钢的显微组织尺寸与硬度因素对抗空蚀性能的提高起决定作用。
     以M-CrNiMo不锈钢材料作为基体,采用激光表面技术,通过优化各项激光工艺参数,在M-CrNiMo不锈钢表面制备出了的抗空蚀性能更强的WC合金化涂层和NiCrSiB熔覆层。利用光学显微镜(OM)、扫描电镜(SEM)及附带能谱仪(EDAX)、透射电镜(TEM)、X-射线衍射分析(XRD)、超声振荡空蚀试验机以及测定显微硬度等分析手段,对所制备涂层的组织结构、界面结合、空蚀失重、空蚀形貌及相关机理进行了系统的研究。
     选取纯WC粉末作为合金化材料,利用脉冲Nd:YAG激光器,优化激光工艺,在M-CrNiMo不锈钢材料表面制备出的激光表面合金化WC涂层的表面光滑均匀,内部组织细小且致密、无气孔和裂纹等微观缺陷。X-射线分析结果表明,WC合金化层的基体由Fe-Ni-Cr固溶体构成,内部有W2C、Ni4W、MoNi4、Fe6W6C、Fe7W6和CrC等硬质相生成。合金化工艺使表面的显微硬度得到大大提高,并增强了M-CrNiMo不锈钢的抗蚀性能。WC合金化层表面空蚀破坏形貌与M-CrNiMo不锈钢相比明显轻微,空蚀过程没有大的空蚀坑出现。WC合金化层抗空蚀性能增强的原因归结于其与基体的界面处呈良好的冶金结合、合金化层中的硬质析出相和激光表面处理时的快速冷却。
     分别采用脉冲Nd:YAG激光器和CO2连续激光器在M-CrNiMo不锈钢材料表面制得了NiCrSiB熔覆层。熔覆层表面光滑,内部组织细小、均匀,与不锈钢基体具有良好的冶金结合,在涂层以及界面处均没有裂纹和气孔等缺陷存在。X-射线分析结果表明,NiCrSiB熔覆层的基体由CrNiFe构成,内部有M23[CB]6(M=Cr、Fe)、CrB、CrSi和Fe2B等硬质相生成。超声空蚀实验结果表明,激光熔覆NiCrSiB涂层空蚀破坏损伤降低,熔覆层的空蚀失重率仅为M-CrNiMo不锈钢的1/3,且低于WC表面合金化层。熔覆层的硬度有显著的提高,表面有明显的加工硬化效应。此外,NiCrSiB熔覆层表面的空蚀破坏与M-CrNiMo不锈钢相比显著轻微,空蚀3小时后仍有完整表面存在;空蚀6小时后仍然没有大的空蚀坑出现。
     NiCrSiB熔覆层的强化机制包括细晶强化、第二相强化和加工硬化等,涂层与基体的界面处呈良好的冶金结合,NiCrSiB自熔合金自身的良好性能与激光熔覆过程中的急冷因素都是熔覆层抗空蚀性能的提高原因。与脉冲Nd:YAG激光器制备的NiCrSiB熔覆层相比,CO2激光器制备的NiCrSiB熔覆层更厚,更均匀。
0Cr13Ni5Mo stainless steel (CrNiMo) has good structural strength, cavitation resistant, corrosion resistant capabilities and has been widely applied in hydro turbines. However, seriously cracks and cavitation erosion damages were found in CrNiMo large size hydro turbines. In order to decrease its crack tends and to improve its mechanical properties, M-CrNiMo stainless steel was developed by modifying the composition and vacuum refine procedure. In this paper, cavitation erosion damage, cavitation erosion and corrosion interaction damage behaviors of 0Cr13Ni5Mo, M-CrNiMo and 0Cr13Ni4Mo stainless steels were investigated.
     Supersonic cavitation erosion experiment was tested by supersonic vibration cavitation erosion experiment system. Polarization curves of three kinds of stainless steels in static state and in cavitation erosion condition were obtained by electro-chemistry test system. The erosive wear behaviors were completed by rotating disk equipment.
     The results show that M-CrNiMo stainless steel has better cavitation resistance property and erosion abrasion resistance property than those of CrNiMo and 0Cr13Ni4Mo stainless steels. During the cavitation erosion, the microstructure phases in stainless steel were plastic deformed and destroyed. At the first incubation period the micro cracks begin in ferrite weak area, then extend to martensite and come into micro-pit. During the static period the micro-pits get wider and deeper and finally the big size cavitaion erosion pits are produced in the entire surface. Corrosion and erosion abrasion strongly accelerate the cavitation erosion damages in three stainless steels. The erosion abrasion resistance properties of M-CrNiMo stainless steel are better than those of CrNiMo and 0Cr13Ni4Mo stainless steels. Micro-structure and hardness were decisive effects for high cavitation resistance properties of M-CrNiMo stainless steel.
     In order to increase the cavitation erosion of M-CrNiMo stainless steel, complete dense coating with an excellent metallurgical bonding at the interface can be achieved by laser cladding, therefore, the surface treatment technique in hydro turbine can be improved
     WC laser alloying layer and NiCrSiB laser cladding layer were made on surface of M-CrNiMo by laser alloying and cladding techniques respectively. Their micro-structure, interface, cavitation erosion mass loss and surface morphologies etc were investigated by optical microscope, Scanning Electron Microscope (SEM and EDAX), Transmission Electron Microscope (TEM), X-ray diffractometer (XRD), supersonic vibration cavitation erosion experiment setup and digital vision Micro-Vickers etc systemly.
     WC Alloying layer was achieved on surface of M-CrNiMo stainless steel by Nd:YAG pulse laser. The alloying layer was flat, uniform and metallurgical bonded with the substrate, no defect such as crack, air hole was found. The matrix of the WC Alloying layer is Fe-Ni-Cr solid solution. WC alloying layer was strengthened by hard precipitated phases such as W2C, Ni4W, MoNi4, Fe6W6C, Fe7W6, CrC, etc. The surface alloying treatments increase the hardness apparently and strengthen the erosion resistance. Cavitation erosion morphologies of the alloying layer is notably slight compareing to that of the M-CrNiMo stainless steel, with little erosion pits after cavitation erosion test for 6 hours. It is due to the closing metallurgy band with interface and hard phase precipitation as well as the quenching in laser surface alloying treatment.
     NiCrSiB cladding layer was obtained on the surface of M-CrNiMo stainless steel by Nd:YAG pulse laser and CO2 LASER. The laser cladding layer was uniform, compact and no defect as gas hole, crack and metallurgical bond with the substrate. The substrate of cladding layer are composed by CrNiFe solid soltuion, with precipitated phases such as M23[6P-CB]6 (M=Cr、Fe)、CrB、CrSi、Fe2B, etc. The supersonic cavitation erosion test shows that the cumulative mass rate of NiCrSiB cladding layer is 4.2mg/h, which is only 1/3 of the M-CrNiMo stainless steel and lower than that of WC cladding layer. Hardness of cladding layer increased obviously, which means the work hardening occurring on the surface during the test. The cavitation erosion surface damage of NiCrSiB cladding layer was slighter than that of M-CrNiMo stainless steel, with e polished surface after being cavitation eroded for 3 hours and no big cavitation erosion pits after being cavitation eroded for 6 hours.
     The strengthening mechanism of NiCrSiB coating is a mixture of fine grains strengthening, second phase strengthening and work hardening effect during cavitation erosion process, and the coating has excellent bonding at the interface. In comparison with NiCrSiB coating prepared by CO2 laser cladding, the NiCrSiB cladding layer by LASER shows thicker and more uniform.
引文
1.傅自义,三峡工程泄洪深孔防空蚀设计的施工技术[J],水利水电技术,2003,34(1):62-63.
    2.郭俊立,芦俊英.三峡工程表孔体型试验研究[J],长江科学院院报,2000,17(4):12-14.
    3.段生孝,朱国海.刘家峡电厂HLA430a转轮空蚀磨损状况探讨[J],大电机技术,2001,1:45-50.
    4.黄继汤.空化与空蚀的原理及应用[M],北京:清华大学出版社,1991:12.
    5.黄源芳.中国河流沙粒对水轮机磨损影响的研究与实践[J],水利发电,2005,31(12):56-58.
    6.段生孝.我国水轮机空蚀磨损破坏状况与对策[J],大电机技术,2001,6:56-59.
    7.柳伟.耐多相流损伤的金属材料及作用机制研究[D],中国科学院博士学位研究生学位论文,2001:4.
    8.聂荣异.水轮机中的空化与空蚀[M],北京:水利电力出版社,1985:14.
    9. D Krefting, R mettin, W Lauterborn. High-speed observation of acoustic cavitation erosion in multibubble systems [J], Ultrasonics Sonochemistry,2004,11:119-123.
    10. Chiu K Y, Cheng F T, Man H C. Evolution of surface roughness of some metallic materials in cavitation erosion [J], Ultrasonics,2005,43:713-716.
    11. Alicja Krella. Influence of cavitation intensity on X6CrNiTil8-10 stainless steel performance in the incubation period [J], Wear,2005,258:1723-1731.
    12. Sergye Zherebtsov, Takashi Naoe, Masatoshi, etc. Erosion damage of laser alloyed stainless steel in mercury [J], Surface & Coatings Technology,2007,201:6035-6043.
    13. Ji Hui Kim, Hyun Seon Hong, Seon Jin Kim. Effect of boron addition on the cavitation erosion resistance of Fe-based hardfacing alloy [J], Materials Letters,2007, 61:1235-1237.
    14. Hiromi Mochizuki, Motohiro Yokota, Shuji Hattori. Effects of materials and solution temperatures on cavitation erosion of pure titanium and titanium alloy in seawater, Wear, 2007,262:522-528.
    15. Chiu K Y, Cheng F T, Man H C. Hydrogen effect on the cavitation erosion resistance of AISI 316L stainless steel laser surface-modified with NITi [J], Materials Letters,2007, 61:239-243.
    16. G Bregliozzi, A Di Schino, S I-U, etc. Cavitation wear behaviour of austenitic stainless steels with different grain sizes [J], Wear,2005,258:503-510.
    17. Jiang Sheng Li, Zheng Yu Gui, Yao Zhi Ming. Cavitation erosion behaviour of 20SiMn low alloy steel in Na2SO4 and NaHCO3 solutions [J], Corrosion Science,2006, 48:2614-2632.
    18. M G Di V, Cuppari, R M Souza, A Sinatora. Effect of hard second phase on cavitation erosion of Fe-Cr-Ni-C alloys [J], Wear,258:596-603.
    19. Shuji Hattori, Yuki Goto, Takaki Fukuyama [J]. Influence of temperature on erosion by a cavitating liquid jet, Wear,2006,260:1217-1223.
    20.R.T.柯乃普.空化与空蚀[M].北京:水利出版社,1981:241.
    21. I M Hutchings. A model for the erosion of metals by spherical particles at normal incidence [J], Wear,1981,70:269-281.
    22. I Finnie. On the velocity dependence of the erosion of ductile metals by solid particles at low angles of incidence [J], Wear,1978,48:181-190.
    23.马颖,任峻,李元冬等.冲蚀磨损研究的进展[J],兰州理工大学学报,2005,31(1):21-25.
    24.陈冠国,褚秀萍,张宏亮等.关于冲蚀磨损问题[J],河北理工学院院报,1997,19(4):27-32.
    25. G P Tilly. A two stage mechanism of ductile erosion [J], Wear,1973,23:87-96.
    26. J G A Bitter. A study of erosion phenomena [J], Wear,1963,6:5-21.
    27. Andre Paulo Tschiptschin, Carlos Mario Garzon, Diana Maria Lopez. The effect of nitrogen on the scratch resistance of austenitic stainless steels [J], Tribology International, 2006,39:167-174.
    28.姜胜利.多相流中几种金属材料的损伤规律及机制转型[D],中国科学院博士学位研究生学位论文,2004:4.
    29. Luo S Z, Zheng Y G, Li J, Ke W. Slurry erosion of fusion-bonded epoxy powder coating [J], Wear,2001,249:733.
    30. Li Shengcai. Cavitation enhancement of silt erosion—An envisaged micro model [J], Wear,2006,260:1145-1150.
    31. Cheng F T, Shi P, Man H C. Using a modified Knoop Indentation Technique to estimate the cavitation erosion resistance of NiTi [J], Materials Charaterization,2004,52:129-134.
    32. G32-92, Annual Book of ASTM Standards, ASTM, Philadelphia, PA,1992.
    33.GB 6383-86,中华人民共和国国家标准,UDC 620.193.16:608-611.
    34. Peter R Birkin, Douglas G Offin, Timothy G. The study of surface processed under electrochemical control in the presence of inertial cavitation [J], Wear,2005, 258:623-628.
    35. Matevz Dular, Bend Bachert, Bernd Stoffel. Relationship between cavitation structures and cavitation damage [J], Wear,2004,257:1176-1184.
    36. Peter R Birkin, Douglas G Offin, Timothy G Leighton. Electrochemical measurements of the effects of inertial acoustic caviation by measns of a novel dual microelectrode [J], Electrochemistry Communications,2004,6:1174-1179.
    37. Shuji Hattori, Ryohei Ishikura, Qing liang Zhang. Construction of database on cavitation erosion and analyses of carbon steel data [J], Wear,2004,257:1022-1029.
    38. Shuji Hattori, Kohei Maeda, Qing liang Zhang. Formulation of cavitation erosion behavior based on logistic analysis [J], Wear,2004,257: 1064-1070.
    39. Chen X, Xu R Q, Shen Z H. Optical investigation of cavitation erosion by laser-induced bubble collapse [J], Optics & Laser Technology,2004,36:197-203.
    40.胡颖颖,朱克勤,席葆树.固壁空蚀数值研究[J],应用力学学报.2004,21(1):22-26.
    41. Matevz Dular, Bernd Stoffel, Brane Sirok. Development of a cavitation erosion model [J], Wear,2006,261:642-655.
    42. M Szkodo. Mathematical description and evaluation of cavitation erosion resistance of materials [J], Journal of Materials Processing Technology,2005,164-165:1631-1636.
    43. Wang Zai You, Zhu Jin Hua. Correlation of martensitic transformation and surface mechanical behavior with cavitation erosion resistance for some iron-based alloys [J], Wear,2004,256:1208-1213.
    44. Z Xiaojun, L A J Procopiak, N C Souza, etc. Phase transformation during cavitation erosion of a Co stainless steel [J], Materials Science and Engineering,2003, A358:199-204.
    45. Wang Zai You, Zhu Jin Hua. Effect of phase transformation on cavitation erosion resistance of some ferrous alloys [J], Materials Science and Engineering,2003, A358:273-278.
    46. Lin C J, He J L. Cavitation erosion behavior of electroless nickel-plating on AISI 1045 steel [J]. Wear,2005,259:154-159.
    47.国旭明,郑玉贵,姚治铭.CrMnB堆焊合金抗空蚀和冲刷磨损性能的研究[J],金属学报,2002,38(9):936-940.
    48.姜胜利,郑玉贵,姚治铭.不同砂粒粒径多相流中CrMnB堆焊层的损伤行为[J],材料保护,2004,10:12-14.
    49.国旭明,郑玉贵,姚治铭.Ni基等离子堆焊合金的空蚀行为[J],材料研究学报,2002,12(6):570-574.
    50.郝百顺,蒋涛峰,高松林.H-1泵叶轮耐气蚀磨损涂层材料的应用[J],轻金属,1999,11:59-60.
    51.张萍,林萍华,王泽华等.Ni60喷焊层与ZG06Crl3Ni5Mo抗气蚀性能的研究[J],材料保护,2006,8:8-11.
    52.康进兴,赵文轸,徐英鸽等.WC/NiCrSiB复合覆层的耐气蚀性研究[J],热加工工艺,2002,4:13-14.
    53.康进兴,赵文轸,肖洁.WC对CuNiSiB喷焊覆层材料耐气蚀性的影响[J],材料科学与工程,2002,20(1):44-46.
    54.康进兴,徐英鸽,赵文轸.WC/Ni和WC/Cu基复合覆层的耐气蚀性能[J],中国有色金属学报,2002,12(4):673-676.
    55.康进兴,赵文轸.WC对铜基和镍基喷焊覆层材料耐气蚀性能的影响[J],材料工程,2002,3:3-6.
    56.康进兴,赵文轸.镍基覆层材料抗冲蚀气蚀性研究[J],材料保护,2002,35(6):9-11.
    57.张萍,吴玉萍,林萍华等.镍基喷焊层的抗气蚀性能研究[J],中国与防护学报,2006, 26(4):197-201页.
    58.吴欣强,敬和民,郑玉贵等.超音速热喷涂316L合金涂层在实际炼油环境中的冲蚀行为[J],腐蚀科学与防护技术,2002,14(1):19-22页.
    59.潘国顺,杨文言,邵天敏等.多弧离子镀硬质膜的抗空蚀性能研究[J],摩擦学学报,2001,21(1):15-18.
    60.刘俊英,王玉民,任玉锁.冷阴极离子镀TiN薄膜的空蚀磨损特性研究[J],摩擦学学报,2004,24(4):322-325.
    61. Roger W Staehle. Transient stability of passive films in aquous solutions [J], Corrosion Science,2007,49:7-19.
    62. Alicja Krella, Andrzej Czyzniewski. Cavitation erosion resistance of Cr-N coationg deposited on stainless steel, Wear,2006,260:1324-1332.
    63. Lin C J, He J L. Cavitation erosion behavior of electroless nickel-plating on AISI 1045 steel [J], Wear,2005,259:154-159.
    64. Chiu K Y, Cheng F T, Man H C.A preliminary study of cladding steel with NiTi by microwave-asisted brazing [J], Materials Science and Engineering,2005, A 407:273-281.
    65. J Stella, E Schuller, C HeBing etc. Cavitation erosion of plasma-sprayed NiTi coatings [J], Wear,2006,260:1020-1027.
    66. C Godoy, R D Mancosu, M M Lima, etc. Influence of plasma nitriding and PAPVD Cr1-XNX coating on the cavitation erosion resistance of an AISI 1045 steel [J], Surface and Coatings Technology,2006,200(18-19):5370-5378.
    67. Lin C J, Chen K C, He J L. The cavitation erosion behavior of electroless Ni-P-SiC composite coating [J], Wear,2007,261:1390-1396.
    68. Nelso Gauze Bonacorso, Armando Albertazzi Goncalves Jr, Jair Carlos Dutra. Automation of the processes of surface measurement and of deposition by welding for the recovery of rotors of large-scale hydraulic turbines [J], Journal of Materials Processing Technology,2006,179:231-238.
    69. K Farrell, T S Byun. Structural stability and hardness of carburized surfaces of 316 stainless steel after welding and after neutron irradiation [J], Journal of Nuclear Materials, 2006,356:178-188.
    70. M K Lee, S M Hong, G H Kim. Numerical correlation the cavitation bubble collapse load and frequency with the pitting damage of flame quenched Cu-9Al-4.5Ni-4.5Fe alloy [J], Materials Science and Engineering,2006, A425:15-21.
    71. Carlos Mario Garzon, Hebert Thomas, Jose Francisco dos Santos, etc. Cavitation erosion resistance of a high temperature gas nitrided duplex stainless steel in substitute ocean water [J], Wear,2005,259:145-153.
    72. Kenichi Sugiyama, Shuhei Nakahama, Shuji Hattori, etc. Slurry wear and cavitation erosion of thermal-sprayed cermets [J], Wear,2005,258:768-775.
    73. Jose Francisco dos Santos, Carlos Mario Garzon, Andre Paulo Tschiptschin. Improvement of the cavitation erosion resistance of an AISI 304L austenitic stainless steel by high temperature gas nitriding [J], Materials Science and Engineering,2004, A382:378-386.
    74.浜崎正信,陈敬之.实用激光加工[M],北京:机械工业出版社,1986,12:89-90.
    75.刘芳.结晶器铜合金表面激光熔覆制备强韧耐磨涂层的研究[D],东北大学院博士学位研究生学位论文,2004:10-11.
    76.姜银方.现代表面工程技术[M],北京:化学工业出版社,2006,1:126.
    77. A W Momber. Aggregate liberation from concrete by flow cavitation [J], International Journal Miner Process,2004,74:177-187.
    78. Chiu K Y, Cheng F T, Man H C. Corrosion behavior of AISI 316L stainless steel surface-modified with NiTi [J], Surface & Coating Technology,2006,200:6054-6061.
    79. Tang C H, Cheng F T, Man H C. Effect of laser surface melting on the corrosion and cavitation erosion behaviors of a manganese-nickel-aluminium bronze [J], Materials Science and Engineering,2004, A373:195-203.
    80. Lo K H, Cheng F T, C T Kwok, etc. Effects of laser treatments on cavitation erosion and corrosion of AISI 440C martensitic stainless steel [J], Materials Letters,2003,58:88-93.
    81. Man H C, Cui Z D, Yue T M. Cavitation erosion behavior of laser gas nitrided Ti and Ti6A14V alloy [J], Materials Science and Engineering,2003, A355:167-173.
    82.王家金.激光加工技术[M],北京:中国计量出版社,1992,11:239-240.
    83.郑启光,辜建辉.激光与物质相互作用[M],武汉:华中理工大学出版社,1996,12:187-190.
    84.郑启光.激光先进制造技术[M],武汉:华中科技大学出版社,2004,4:161-172.
    85. Lo K H, Cheng F T, Man H C. Cavitation erosion mecaism of S31600 stainless steel laser surface modified with unclad WC [J], Materials Science and Engineering,2003, A357:168-180.
    86. M Szkodo. Relationship between microstructure of laser alloyed C45 steel and its cavitation resistance [J], Journal of Materials Processing Technology,2005, 162-163:410-415.
    87. C T Kwok, Cheng F T, Man H C. Cavitation erosion and corrosion behavior of laser-aluminized mild steel [J], Surface & Coating Technology,2006,200:3544-3552.
    88. Tang C H, Cheng F T, Man H C. Laser surface alloying of a marine propeller bronze using aluminium powder—Part Ⅱ:Corrosion and erosion-corrosion synergism [J], Surface & Coatings Technology,2006,200:2594-2601.
    89. Tang C H, Cheng F T, Man H C. Laser surface alloying of a Marine propeller bronze using aluminium powder—Part Ⅰ:Mirostructural analysis and cavitation erosion study [J], Surface & Coating Technology,2006,200:2602-2609.
    90. Cheng F T, Lo K H, Man H C. A preliminary study of laser cladding of AISI 316 stainless steel using preplaced NiTi wire [J], Materials Science and Engineering,2004, A380:20-29.
    91.刘常升,才庆魁.激光表面改性与纳米材料制备[M],沈阳:东北大学出版社,2001,38-41.
    92. Muthukannan Duraiselvam, Rolf Galun, Volker Wesling. Cavitation erosion resistance of AISI 420 martensitic stainless steel laser-clad with nickel aluminide intermetallic composites and matrix composites with TiC reinforcement [J], Surface & Coating Technology,2006,201:1289-1295.
    93. Chiu K Y, Cheng F T, Man H C. Laser cladding of austenitic stainless steel using NiTi strips for resisting cavitation erosion [J], Materials Science and Engineering,2005, A 402:126-134.
    94.李朋.45#钢表面激光熔覆Ni基合金粉末的研究[D],沈阳理工大学硕士学位研究生学位论文,2007:6
    95.陈家璧.激光原理及应用[M],北京:电子工业出版社,2004:165-166.
    96.范玉殿.表面改性技术工程师指南[M],北京:清华大学出版社,1992,3:398-410.
    97.李俊昌.激光热处理优化控制研究[M],北京:冶金工业出版社,1995,12:6-10.
    98.李志忠.激光表面强化[M],北京:机械工业出版社,1984,11:132-146.
    99.张永康.激光加工技术[M],北京:化学工业出版社,2004,9:106.
    100.Chiu K Y, Cheng F T, Man H C. Cavitation erosion resistance of AISI 316L stainless steel laser surface-modified with NiTi [J], Materials Science and Engineering, A392:348-358.
    101.Boleslaw G. Giren, Marek Szkodob, Janusz Stellera. Microstructure and properties of laser remelted chromium carbide layer [J], Wear,2005,258:614~622.
    102.Boleslaw G. Giren, Marek Szkodo, Janusz Steller. Cavitation erosion of some laser-produced iron-base corrosion-resistant alloys [J], Wear,2005,258:614-622.
    103.C T Kwok, Man H C, Cheng F T. Cavitation erosion-corrosion behaviour of laser surface alloyed AISI 1050 mild steel using NiCrSiB [J], Materials Science and Engineering,2001, A303:250-261.
    104.P Bendeich, N Alam, M Brandt et al. Residual stress measurements in laser clad repaired low pressure turbine blades for the power industry [J], Materials Science and Engineering, 2006, A437:70-74.
    105.L Shepeleva, B Medres, W D Kaplan. Laser cladding of turbine blades [J], Surface and Coatings Technology,2000,125:45-48.
    106.马援东,储训.水泵抗空蚀激光熔覆材料研究[J],水泵技术,2001,卷(期):17-21.
    107.储训,马援东.铸铁、铸钢激光表面改性材料及工艺研究[J],农业工程学报,2001,17(4):22-25.
    108.谢沛霖,吴新跃.汽轮机叶片表面激光熔覆抗汽蚀研究[J],海军工程学院学报,1999,2:69-72.
    109.张小彬,刘常升,朱杰等.大型水轮机叶片用马氏体不锈钢的多相流损伤行为[J],东北大学学报(自然科学版),2006,27(11):1232-1235.
    110.张小彬,刘常升,朱杰等.大型水轮机叶片用马氏体不锈钢的超声空蚀行为[J],东北大学学报(自然科学版),2006,27(12):1335-1338.
    1. Boleslaw G, Giren, Marek Szkodo, etc. Cavitation erosion of some laser-produced iron-base corrosion-resistant alloys [J], Wear,2005,258:614-622.
    2. Shuji Hattori, Eisaku Nakao. Cavitation erosion mechanisms and quantitative evaluation based on erosion particles [J], Wear,2002,249:839-845.
    3.GB 6383-86,中华人民共和国国家标准,UDC 620.193.16:608-611.
    4.周本省.工业水处理技术[M],北京:化学工业出版社,2002:3.
    5.北方交通大学,金属材料学[M].北京,中国铁道出版社,1982,4:337-338.
    6.张小彬,刘常升,朱杰等.大型水轮机叶片马氏体不锈钢的多相流损伤行为[J],东北大学学报,2006,27(10):42-44
    7.柳伟.耐多相流损伤的金属材料及作用机制研究[D],中国科学院金属研究所,2001,3:44-45.
    8.蔡泽高,刘以宽,王承忠等.金属磨损与断裂[M],上海:上海交通大学出版社,1985:178.
    9.柳伟,郑玉贵,刘常升.Cr-Mn-N奥氏体-铁素体不锈钢的空蚀行为[J],金属学报,2003,39(1):86-88.
    10.国旭明,郑玉贵,姚治铭.Ni基等离子堆焊合金的空蚀行为[J],材料研究学报,2002,16(6):570-574.
    11. R H Richiman, A S Rao, D E Hodgson. Cavitation erosion of two NiTi alloys [J], Wear, 1992,157:401-407.
    12. Chen Y L, J Israelachvili. New Mechanism of cavitation damage [J], Science,1991, 252:1157-1160.
    13. M G Di V, Cuppari, R M Souza et al. Effect of hard second phase on cavitation erosion of Fe-Cr-Ni-C alloys [J], Wear,2005,258:596-603.
    14.魏宝明.金属腐蚀理论及应用[M],北京:化学工业出版社,1984:103.
    15. C T Kwok, Cheng F T, Man H C. Synergistic effect of cavitation erosion and corrosion of various engineering alloys in 3.5% NaCl solution [J], Material Science and Engineering A,2000,290:145.
    16. A Al-Hashem, P G Caceres, A. Abdullah et al. Cavitation corrosion of duplex stainless steel in seawater [J], Corrosion,1997,53(2):103.
    17. G Engelberg, J Yahalomm. The corrosion factor in the cavitation of steel [J], Corrosion Science,1992,48(3):206.
    18.鲍崇高,高义民,邢建东等.含沙水域水轮机过流部件的材料应用及进展[J],水利水电科技进展,2001,21(6):14-16.
    19. C T Kwok, Man H C, Cheng F T. Cavitation erosion and pitting corrosion of laser surface melted stainless steels [J], Surface and Coating Technology,1998,99:295-304.
    1.姜胜利.多相流中几种金属材料的损伤规律及机制转型[D],中国科学院博士学位研究生学位论文,2004:7-9.
    2. Allen C, Ball A. A review of the performance of engineering materials under prevalent tribological and wear situations in South Africa industries [J], Tribo International,1996, 29(2):105-116.
    3. Kwok C T, Cheng F T, Man H C. Synergistic effect of cavitation erosion and corrosion of various engineering alloys in 3.5% NaCl solution [J], Materials Science and Engineering A,2000,290(2):145-154.
    4. Tam K F, Cheng F T, Man H C. Improvement in cavitation erosion resistance of a copper based propeller alloy by laser surface melting [J], Surface and Coatings Technology,2004, 182(2):300-307.
    5. Johnson M L, Mikkola D E, Wright R N. Cavitation erosion and abrasive wear of Ni3Al alloys [J], Intermetallics,1995,3(5):389-396.
    6. Mann B S. Boronizing of cast martensitic chromium nickel stainless steel and its abrasion and cavitation-erosion behaviour [J], Wear,1997,208(2):125-131.
    7.郑玉贵,姚治铭,龙康等.液/固双相流冲刷磨损实验装置的改制及动态电化学测试[J],腐蚀科学与防护技术,1993,5(4):286.
    8. E Heitz, G Kreysa, C Loss. Investigation of hydrodynamic test systems for the selection of high flow rate resistance materials [J], Journal of Applied Electrochemistry,1979, 9(2):243.
    9.姜胜利,郑玉贵,姚治铭.20SiMn低合金钢在不同砂粒粒径的多相流中的损伤行为 [J],金属学报,2004,40(2):163-167.
    10.刘娟,许洪元,齐龙浩.水力机械中冲刷磨损规律及抗磨措施研究进展[J],水力发电学报,2005,24(1):113-117.
    11.高家诚,孙玉林.水轮机过流部件用材料的抗磨蚀技术措施[J],腐蚀与防护,2004,25(8):355—358.
    12.柳伟,郑玉贵,刘常升等20SiMn低合金钢和0Cr13Ni5Mo不锈钢的多相流损伤行为[J],材料研究学报,2002,16(6):585-589.
    13. Chiu K Y, Cheng F T, Man H C. Evolution of surface roughness of some metallic materials in cavitation erosion [J], Ultrasonics,2005,43(9):713-716.
    14. Budinski K G. Incipient galling of metals [J], Wear,1981,74(1):93-105.
    1. Sergye Zherebtsov, Takashi Naoe, Masatoshi, etc. Erosion damage of laser alloyed stainless steel in mercury [J], Surface & Coatings Technology,2007,201:6035-6043.
    2. Muthukannan Duraiselvam, Rolf Galun, Volker Wesling, Cavitation erosion resistance of Ti6A14V laser alloyed with TiC-reinforced dual phase intermetallic matrix composites [J], Materials Science and Engineering,2007,A 454-455:63-68.
    3. Cheng F T, Kwok C T, Man H C. Cavitation erosion resistance of stainless steel laser-clad with WC-reinforced MMC [J], Materials Letters,2002,57:969-974.
    4. Tang C H, Cheng F T, Man H C. Laser surface alloying of a marine propeller bronze using aluminium powder—Part Ⅱ:Corrosion and erosion-corrosion synergism [J], Surface & Coatings Technology,2006,200:2594-2601.
    5. Tang C H, Cheng F T, Man H C. Laser surface alloying of a Marine propeller bronze using aluminium powder—Part Ⅰ:Mirostructural analysis and cavitation erosion study [J], Surface & Coating Technology,2006,200:2602-2609.
    6. Lo K H, Cheng F T, C T Kwok, etc. Improvement of cavitation erosion resistance of AISI 316 stainless steel by laser surface alloying using fine WC powder [J], Surface and Coatings Technology,2003,165:258-267.
    7. G32-92, Annual Book of ASTM Standards, ASTM, Philadelphia, PA,1992.
    8. GB 6383-86,中华人民共和国国家标准,UDC 620.193.16:608-611.
    9. Lin C J, Chen K C, He J L. The cavitation erosion behavior of electroless Ni-P-SiC composite coating [J], Wear,2007,261:1390-1396.
    10. Lo K H, Cheng F T, Man H C. Cavitation erosion mecaism of S31600 stainless steel laser surface modified with unclad WC [J], Materials Science and Engineering,2003, A357:168-180.
    11. Matevz Dular, Bend Bachert, Bernd Stoffel. Relationship between cavitation structures and cavitation damage [J], Wear,2004,257:1176-1184.
    12. M M Lima, C Godoy, PJ Modenesi. Coating fracture toughness determined by Vickers indentation:an important parameter in cavitation erosion resistance of WC-Co thermally sprayed coatings [J], Surface and Coatings Technology,2004,177-178:489-496.
    13.刘芳.结晶器铜合金表面激光熔覆制备强韧耐磨涂层的研究[D],东北大学院博士学位研究生学位论文,2004:101-104.
    14. Wang B Q, Geng G Q, A V Levy. Effect of microstructure on the erosion-corrosion of steels [J], Wear of Materials,1991(1):129-136.
    1. J Stella, E Schuller, C Heβing etc. Cavitation erosion of plasma-sprayed NiTi coatings [J], Wear,2006,260:1020-1027.
    2. Jose Francisco dos Santos, Carlos Mario Garzon, Andre Paulo Tschiptschin. Improvement of the cavitation erosion resistance of an AISI 304L austenitic stainless steel by high temperature gas nitriding [J], Materials Science and Engineering,2004, A382:378-386.
    3. C J Lin, J L He. Cavitation erosion behavior of electroless nickel-plating on AISI 1045 steel [J], Wear,2005,259:154-159.
    4.刘常升,才庆魁.激光表面改性与纳米材料制备[J],沈阳:东北大学出版社,2001,38-41.
    5.李朋.45#钢表面激光熔覆Ni基合金粉末的研究[J],沈阳理工大学硕士学位研究生学位论文,2007:6
    6. Chiu K Y, Cheng F T, Man H C. Cavitation erosion resistance of AISI 316L stainless steel laser surface-modified with NiTi [J], Materials Science and Engineering, A392:348-358.
    7. C T Kwok, Man H C, Cheng F T. Cavitation erosion-corrosion behaviour of laser surface alloyed AISI 1050 mild steel using NiCrSiB [J], Materials Science and Engineering,2001, A303:250-261.
    8. M G DiV, Cuppari, R M Souza, A Sinatora. Effect of hard second phase on cavitation erosion of Fe-Cr-Ni-C alloys [J], Wear,258:596-603.
    9.国旭明,郑玉贵,姚治铭.Ni基等离子堆焊合金的空蚀行为[J],材料研究学报,2002,16(6):570-574.
    10.柳伟,郑玉贵,刘常升等.Cr-Mn-N奥氏体-铁素体不锈钢的空蚀行为[J],金属学报,2003,39(1):85-88.
    11.张小彬,刘常升,朱杰等.大型水轮机叶片用马氏体不锈钢的超声空蚀行为[J],东北大学学报(自然科学版),2006,27(12):1335-1338.
    12. M Szkodo. Relationship between microstructure of laser alloyed C45 steel and its cavitation resistance [J], Journal of Materials Processing Technology,2005, 162-163:410-415.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700