WC/Cu基合金非光滑耐磨复合层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在工农业生产中,因磨损而造成的材料消耗、能源消耗成为制约生产发展的严重障碍之一,在各种磨损中磨粒磨损约占磨损总量的50%。目前,通过在部件易磨损部位表面形成耐磨复合层材料,已成为提高部件耐磨性的一个重要手段。
    目前制备具备一定工程厚度要求的耐磨复合层主要有堆焊、钎焊、激光熔覆、铸造表面合金化、粉末冶金等几种方法,通过这些方法能够在部件表面制备具有高耐磨性的复合材料,从而增强部件表面的耐磨性,提高部件的使用寿命。
    本研究受到某些土壤动物体表非光滑几何特征具有减磨、耐磨特性的启示,应用放电等离子烧结(SPS)工艺,选取具有优良塑性的Cu基合金作为复合层基体,硬质点WC颗粒作为增强相,在碳钢表面形成WC\ Cu基合金耐磨复合层,在两体静载荷磨粒磨损条件下,高硬度、耐磨WC颗粒镶嵌在高塑性的Cu基合金基体中,共同抵抗磨粒的磨削,表现出某些土壤动物体表非光滑几何特征所具备的优良减磨、耐磨特性。
    SPS是一种快速烧结新工艺,将瞬间、断续、高能脉冲电流通入装有粉末的模具上,在粉末颗粒间即可产生等离子放电,导致粉末的净化、活化、均化等效应。SPS具有加热均匀、烧结温度低,烧结时间短,可获得细小、均匀的组织、高致密度材
    
    
    料的特点,可以在碳钢表面形成厚度由几毫米到十几毫米任意调节的复合层。目前,应用SPS工艺制备WC\ Cu基合金非光滑耐磨复合层,未见其它研究报道,本文具体开展如下研究工作:
    首先利用正交实验法优化放电等离子烧结制备复合层的的工艺参数,确定具有较佳耐磨性的复合层的基体合金种类以及WC硬质颗粒的含量和几何尺寸。优化结果为:合适的SPS工艺参数为:轴向烧结压力:30Mpa, 以150℃/分钟的加热速度将模具升温到700℃,保温5分钟。耐磨性较佳的材料组分为:Cu基40合金粉,WC颗粒粒度为45~55目,质量百分含量为50%。
    其次,对复合层的组织结构进行研究,结果表明:
    (1)应用放电等离子烧结工艺制备的WC\ Cu基合金耐磨复合层强化低碳钢试样,通过光学显微镜观察,在复合层中,WC颗粒均匀分布于铜基合金基体中,铜基合金组织了晶粒细小、均匀,与WC颗粒结合紧密,复合层中未见明显孔隙。
    (2)在复合层与碳钢构成的系统中,存在着WC颗粒与基体合金界面和两种界面基体合金形成清晰可见的过度层,铜锌合金充满于之间,与WC颗粒接触界面上未见孔隙,另外,复合层基体合金与低碳钢结合界面也清晰可见,二者之间也存在明显的过度层,扫描电镜能谱分析表明以上两种结合界面均有一定元素扩散,有轻微的冶金反应。
    (3)通过对复合层进行X射线衍射分析,结果表明复合层的物相组成包括:WC、WC2、锌在铜中固溶体α相以及电子化合物CuZn为基的固溶体β相。
    最后,本文对WC\ Cu基合金非光滑耐磨复合层的磨粒磨损行为进行了深入研究,并队其耐磨机理进行探讨,得到以下结论:
    (1)放电等离子烧结工艺制备的WC\ Cu基合金非光滑耐磨复合层,WC颗粒粒度为45~55目,质量百分含量在小于50%范围内,复合层的孔隙率在5%以内,复合层致密性好,在这个范围内,随着WC颗粒百分含量的增加,复合层耐
    
    
    磨粒磨损性能增强,WC颗粒百分含量为50%时,复合层的耐磨性为淬火45钢的16倍。
    (2)不同目数、WC质量百分含量为50%的WC/Cu基复合层,在磨粒磨损试验中,在磨粒尺寸等磨损条件一定的情况下,复合层耐磨性随载荷的增加而降低;在载荷等磨损条件一定的情况下,复合层耐磨性随磨粒尺寸的增加而降低,磨粒的粒度对复合层的磨粒磨损性能的影响存在一临界值,本研究中此临界值的范围为74~100μm。
    (3)WC颗粒质量百分数固定为50%,WC颗粒粒度为45~55目的复合层的耐磨粒磨损性能高于WC颗粒粒度为60~75目和80~100目的复合层,说明SPS工艺制备颗粒增强复合材料,在一定程度上能够克服硬质颗粒粒度大、含量高而导致复合层致密性差、耐磨性低的缺陷。
    (4)WC/Cu基合金非光滑耐磨复合层的磨粒磨损失效形式表现为,铜锌合金基体受到磨粒的犁削后在表面产生的犁沟以及WC硬质颗粒的疲劳断裂和整体脱落。
    (5)WC/Cu基复合层中组织细小、均匀的铜锌合金基体具有优良的塑性,并与硬质颗粒WC之间形成结合性能良好的界面,在磨粒磨损过程中,起到稳固硬质颗粒,吸收能量,减缓冲击的作用。
    (6)WC/Cu基复合层中高硬度、高强度的WC颗粒突出在复合材料表面承受载荷,阻止了磨粒的挤压和刺入,并使磨粒棱角钝化,减轻或阻止磨粒对材料表面的切削。
    (7)具有非光滑结构单元(WC颗粒)的复合层表面使参与复合材料磨损的磨粒改变运动方向,使之由滑动变为滚动,产生有利于减小切向力的法向微振动,减少磨粒和复合材料的接触面积和作用时间,从而大大减轻了磨粒对复合材料表面的损伤。
    以上研究表明通过放电等离子烧结工艺制备的WC/Cu基合金非光滑耐磨
    
    
    复合层,由于采用先进的制备工艺,可以获得组织性能优异的复合层材料,复合层在磨损过程中形成的非光滑表面,具有显著的耐磨特性。该材料用于强化低应力磨粒磨损工况条件下的部件表面,具有广泛的应用前景。
The Waste of materials and energy sources has become a serious obstacle in modern industry and agriculture development. In all kinds of wear styles, the abrasive wear nearly occupies 50% of wear total quantity. At present the preparation of wear-resistant composite layer on components has become an important measure to improve wear-resistant of machinery parts.
    At present, the measures preparing wear-resistant composite coating with a certain engineering thickness include overlaying,brazing,laser cladding,cast-in-place surface alloying and powder metallurgy,etc. By using these coating techniques, it is impossible to prepare composites coatings with high wear resistance on components. The coatings improve the wear-resistant of components surface and make components have longer service life.
    The unsmoothed characteristics of some living beings in soil have wear reduction and wear resistance function . The research benefits the revelation that a tungsten carbide(WC) reinforced Cu-base alloy wear-resistant composite coating was produced on mild steel by spark plasma sintering (SPS).Under the condition of two bodies abrasive wear ,the coating with the structure that hight hardness and good wear resistance WC particles embedding in tough fine Cu-base alloy matrix resist the abrasion wear and manifest the good wear reduction and wear resistance properties that the unsmoothed bodysurface of some living beings in soil have.
    SPS is a new process of rapid sintering technics. The instantaneous, intermittent and high-powered electric pulse is applied in die where the powders are put in. The high-powered electric pulse can generate plasma among powder particles,resulting in cleaning effect,activation effect and uniformization effect ,etc. It’s properties include uniform heat up, low sintering temperature and short sintering time . It can produce high compact materials with fine and uniform structure. By using this technique, it is impossible to prepare composite coating with the adjusted arbitrarily thickness. At present ,there were many studies on the wear-resistant composite coatings,but no research groups besides the author’s research group concerned about the WC/Cu–base alloy wear-resistant composite produced by using SPS. The following research works have been conducted in this paper.
     Firstly, the normal test was utilized for optimization of technique parameters of SPS , the weight fraction and dimension of reinforcing particles in order to obtain
    
    
    better wear resistance. The optimal results of reinforcing particles weight fraction and dimension and technique parameters have been obtained as following: WC particles weight fraction of 50%, WC particle dimension of 45-55 mesh, sintering pressure of 30Mpa, perform preheated temperature of 700℃,heat up speed of 150℃ per minitue, heat preservation for 5 minitues.
    Secondly, the structure of the coating was investigated . The research results have been obtained as following.
    (1) In the specimen that WC/Cu-base alloy composite coating reinforcing mild steel , The optial micrstructure of the composite coating indicated that WC particles are distributed homogeneously in the Cu-base alloy matrix and the crystal grains of the Cu-base alloy are fine and uniform . WC particles combine strongly with the alloy matrix. There no obvious pore in the coating.
    (2) There exists two interfaces in the coating-substrate system. One is the inner interface between WC and Cu-base alloy in the coating,the other is the coating/substrate(mild steel) interface.With EDS(SEM) analyses, the elemental distributions across the interfaces were investigated. The research results show that elemental diffusion and light metallurgy action was occurred in the interfaces.
    (3)The results of XRD examinations manifest that the phases of the coating consist of WC ,WC2 , αphases-the solution that Zn dissolve in Cu andβphases-CuZn compound .
    Lastly, the abrasive wear properties of the composite coating and the wear-resistant mechanism were investigated .The research results have been obtain as
引文
刘英杰,成克强. 磨损失效分析.机械工业出版社,1991,第一版:1-4
    Eytre.T.S. Tribology International,1976 (10):203-212
    孙家枢.金属的磨损.冶金工业出版社,1992,第一版:4
    刘家浚.材料磨损原理及其耐磨性.清华大学出版社,1993,第一版:93-95
    刘家浚.材料的磨料磨损.机械工业出版社,1990, 第一版:163-166
    H.-J.Kim et al. .Assessment of wear performance of flame sprayed and fused Ni-based coatings.Surface and Coating Technology,172(2003) :262-269
    任露泉,徐德生,邱小明,赵宇光.仿生非光滑耐磨复合层的研究.农业工程学报,2001,17(3):7-9
    Tong Jin, Ren Luquan,Li Jianqiao and Chen Bingchong. Abrasive wear behaviour of bamboo .Tribology International,1995,28(5):323-327
    王洪发. 金属耐磨材料的现状与展望.铸造 2000,(49)增刊,577
    仝建民.耐磨钢研究进展.水利电力机械,2003,25(2):29-32
    李宏兴.球墨铸铁在耐磨材料领域的应用及发展. 铸造设备研究,2001.1:39-41
    王荣国,武卫莉,谷万里.复合材料概论.哈尔滨工业大学出版社,1999,第一版:1-3
    朴东学等. 铸造金属基复合材料现状及发展动向. 铸造 2000,(49)增刊:601
    林丽华等.金属表面渗层与覆盖层金相组织图谱.机械工业出版社,1998,第一版:1-3
    
    宋仁国,陈光南,张坤.激光和电子束表面强化技术的发展及其应用. 物理,2000,7:411-415
    T.S.SUDARSHAN著,范玉殿等译.表面改性技术工程师指南.清华大学出版社.1992,第一版:436
    潘蕾等. WC增强Cu-Mn-Ni复合涂层的磨损性能研究.摩擦学学报. 2002,22(1):10-13
    李力军,杨瑞林,新型铸造WC颗粒复合耐磨材料的研究.硬质合金.1998, 15(4):208-212
    戚文军,何艳兵,刘斌,况敏. 激光堆焊镍基碳化钨梯度焊层及耐磨机理分析.焊接学报,2002,23(1):57-60
    S.-P.Lu.et al. .Microstructure and bonding strength of WC reinforced Ni-base alloy brazed composit coating.Surface and Coatings Technology,2002,153 40-48
    Peng-Zhu Wang,Jing-Xin Qiu,He-Sheng Shao.Cemented carbide reinforced nickel-based alloy coating by laser cladding and the wear characteristics.Materials&Design,1996,17(5):289-296
     P.Wu et al. .Microstructural characterization and wear behavior of laser cladded nickel-based and tungsten carbide composite coatings.Surface and Coatings Technology, 2003,166:84-88
    J.Przybylowicz,J.Kusinski.Structure of laser cladded tungsten carbide composite coatings.Journal of Materials Processing Technology , 2001,109:154-160
    许斌,冯承明,杨胶溪. 碳化钨-高铬铸铁表面复合材料耐磨粒磨损性能的研究. 摩擦学学报,1998,18(4):322-326
    R.Zhou et al. .The effect of volume fraction of WC particles on erosion resistance of WC reinforced iron matrix surface composites.Wear ,2003,
    
    
    255 :134-138
    张兆森.铜基离合片的研制.湖南有色金属,1996,12(1):31-33
     R.Zhang et al..Preparation of Cu/SiC FGM by coating method and SPS sintering.Materials Science Forum,2003,423-425:249-252
    S.W.Wang,et al. .The effects of various ceramic-metal on wear performance of clad layer.Journal of Materials Processing Technology,2003,140:682-687
     D.Lou et al.Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites.Materials Science and Engineering A,340(2003):155-162
    Shan-Ping Lu,Oh-Yang Kwon.Microstructure and bonding strength of WC reinforced Ni-base alloy brazed composite coating.Surface and Coating Technology 153(2002):40-48
    J.Przybylowicz. et al. .Structure of laser cladded tungsten carbide composite coatings.Journal of Matrials Processing Technology, 2001,109:154-160
    张久兴,刘科高,周美玲.放电等离子烧结技术的发展和应用[J] .粉末冶金技术,2002,20(3):129-134
    甄汉生.等离子体加工技术.清华大学出版社,1990,第一版:1-4
    陈佳洱等.等离子体物理学.科学出版社,1994,第一版:14-15
    鲍崇高,等. 不同基体材料WC/铁基复合材料的抗冲蚀性能研究.铸造 2000,(49)增刊,604-605
    张清.金属磨损和金属耐磨材料手册.冶金工业出版社,1991,第一版:58-69
    杜军.Al2O3+Cf/ZL109混杂复合材料的力学及耐磨性能研究.吉林大学博士学位论文.2003
    Alpas A T,Zhang J.Effect of microstructure (particle size and volume farcation) and counterface material on the sliding wear resistance of particulate-reinforced aluminum matrix composites.Metall Mater Trans,1994,25A:969-983
    
    Wilson S,Alpas A T.Wear mechanisms maps for metal matrix composites.Wear,1997,212:41-49
    李景德,沈韩.神妙材料.北京科学出版社,2000,第一版:1-3
    Adamson A.W.Physical Chemistry of Surface.London:Wiley1990
    Bechert D W and Hoppe G.On the drag reduction of the shark skin .AIAA Shear Flow Control Conference,AIAA-85-0546,1985:1-18
    Webb P W.Form and Function in Fish Swimming. Scientific American,1984,6:72-82
    Budker P.The Life of Sharks.London:Weidenfeld&Nicholson ,1971
    
    向春霆,范镜泓. 自然复合材料的强韧化机理和仿生复合材料的研究.力学进展,1994,24(2):220-232
    Ren Luquan,Li Jianqiao and Chen Bingcong.Unsmoothed surface on reducing resistance by bionics.Chinese sciene bulletin, 1995,40(13):1077-1080
    丛茜,王连成,任露泉,陈秉聪,周淑辉,李安琪. 波纹非光滑仿生推土板减粘降阻的试验研究. 建筑机械,1996,3:29-36
    董世运,韩杰才,杜善义.激光熔覆铜基自生复合材料涂层及其耐磨性能.材料开发与应用.2000.15(3):1-4
    湖南省顶立新材料工程中心材质证明书
    赵乃勤等.粉末冶金真空热压法制备WC/Cu复合电阻电极.兵器材料科学与工程.1997,20(3):39-44
    张利波,彭金辉.等离子体活化烧结在材料制备中的新应用.稀有金属,2000,24(6):445-449
    任露泉.试验优化设计与分析.吉林科学技术出版社,2001,第一版:372
    
    王兴业,唐羽章.复合材料力学性能.国防科技大学出版社.1988,第一版:331-333
    杜则裕,刘继元,张世林,朱秀文.工程材料简明手册.电子工业出版社,1996,第一版:254-295
    崔崑.钢铁材料及有色金属材料.机械工业出版社,1981,第一版:416-418

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700