纳米薄水铝石复合微米二硼化钛导电涂膜技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在陶瓷涂层制备工艺中,溶胶-凝胶法可在低温下制备纯度高、成分控制精确
    的涂层而得到广泛研究。与其他方法相比,溶胶-凝胶法还具有易操作、成本低、
    可制备复杂形状涂层等优点。但溶胶-凝胶法的应用受到两大限制:1) 制备胶体
    多用醇盐或无机盐水解。以醇盐作为前驱体致使工艺成本太高;而用无机盐作为
    前驱体时,所得胶体含较多的杂质离子,要得到纯度很高的胶体涂层须先去除杂
    质离子,使工艺变得复杂,胶体成本高,且不宜实现大规模生产。2) 溶胶-凝胶
    法制备涂层时,因干燥过程中的龟裂问题,只能制备薄膜(<1μm)。因此,如何
    防止厚膜龟裂和改善其附着力是该领域的关键科学技术问题。
    本文针对上述溶胶-凝胶法涂层制备工艺的缺点,用工业薄水铝石制备稳定活
    性胶体,通过外加微米级陶瓷颗粒,借助纳米级胶团的分散作用,实现复合溶胶-
    凝胶(CSG,composite sol-gel)厚膜陶瓷涂层(≥10μm)。用喷雾方法在不锈钢
    和碳电极上制备涂层;为解决涂膜与基底的附着力问题,用磷酸对涂层进行处理,
    研究涂层与基底间的化学键合(CB,Chemically Bonded)的机理问题;初步分析
    了涂层与碳电极间浸润、扩散和渗透机理。
    研究了工业薄水铝石制备胶体的工艺。采用工业薄水铝石粉体,用硝酸和磷
    酸作为胶溶酸,制备了薄水铝石胶体。研究了胶体的流变性、稳定性、溶胶时间
    等与胶体固含量、pH值、温度等工艺条件的关系。结果表明,用硝酸调pH所得
    的胶体中,pH<4时可得到稳定的胶体,pH>4则得到悬浮体;用磷酸调pH值时得
    到的全部是悬浮体。用硝酸作为胶溶酸所得薄水铝石稳定胶体的流变性、稳定性
    随胶体固含量、温度的增加及pH值的降低而增大;溶胶时间随胶体固含量、温度
    的增加及pH值的降低而降低。
    对薄水铝石的胶溶机理进行了分析。用硝酸作为薄水铝石胶溶剂时,胶粒表
    面因吸附H+而呈正电性,由于NO3-中O原子的电负性高于N原子的电负性,电
    子在NO3-中的分布不均匀,更有利于NO3-在呈正电性的薄水铝石胶粒表面吸附,
    吸附后形成的双电层之间的排斥作用使颗粒相互分开,打破Al-O-Al化学键。随
    着酸的不断加入,酸的“渗透”作用使胶粒彼此完全分开,从而得到分散良好的薄
    水铝石胶体。相比之下,H3PO4不能使薄水铝石颗粒问的Al-O-Al键断裂。
    用电镜和红外光谱分析表征了薄水铝石胶粒的结构特点。TEM图像显示薄水
    铝石胶粒的粒度约10nm,各胶粒间相互紧密结合形成念珠状的长链,这些长链形
    
    
    昆明理工人学硕士学位论文
    摘要
    成空间三维网状结构。傅立叶红外光谱(FTIR)分析结果表明胶体体系中的一N氏-
    除了与AI形成A卜NO3键外,还有部分一NO3一以游离态NO3一存在与胶体体系中。
     采用复合溶胶一凝胶技术是解决涂层龟裂问题的重要技术途径。即在纳米颗粒
    的薄水铝石胶体中引入微米级TIB:陶瓷颗粒,均匀分散,组成纳米/微米(O一3)
    复合体系,热处理过程中陶瓷颗粒与胶体层间水的置换作用,在一定程度上抑制
    了厚膜开裂。对薄水铝石胶体/TIB:颗粒组成的陶瓷涂料的流变性、稳定性进行了
    实验测定。认为TIBZ颗粒与薄水铝石胶体间的相互作用包括化学吸附、化学反应
    和渗透作用。
     采用喷雾方法在不锈钢基底上进行涂膜,然后用磷酸对涂层进行表面处理,
    最后进行热处理。涂层附着力检测结果表明,磷酸能明显提高涂层与基底间的结
    合力。涂层SEM结果表明,磷酸具有对涂层表面进行封孔和实现涂层与基底间化
    学键合两种作用。涂层电性能结果表明涂层的导电性能明显优于基底,但当磷酸
    浓度太高后,反而使涂层电阻率增加。作为特别的应用实例,采用同样的喷雾方
    法,对铝电解碳阳极试样进行了TIBZ涂层处理,涂层与基底间的结合机理与化学键
    合不同。
     本文系统研究了薄水铝石胶体和TIBZ浆料的稳定性及其稳定机理,对涂层与基
    底间的键合机理进行了初步研究。研究结果对发展陶瓷清洁湿法成型技术的基础
    问题具有学术价值,对包括铝工业电极材料在内的高温陶瓷涂层和块体材料的制
    备技术具有应用价值。
Among the fabrication techniques of ceramic coatings, sol-gel (SG) method has been the subject of extensive research studies over many decades worldwide as it provides a high-purity, low temperature synthesis and, especially a precise composition control. Meanwhile, the sol-gel method can overcome lots of the disadvantages of conventional techniques because it is simple, cost-effective and allows coating of complex geometry. The sol-gel method, however, is limited by two main disadvantages: 1) The precursors used in sol making are always aluminium alkoxides or aluminium salts. The aluminium alkoxides are expensive. The aluminium salts-derived sols contain a large quantity of impurity ions. Removing these impurity ions also increases the cost of the whole sol-gel processing. 2) SG technology often fails if the film is thicker than around 1um owing to the damaging shrinkage strains during drying process. Therefore, it is critical to prevent the cracking in the coatings and to improve the adhesivity between the
     coating and substrate.
    In our work, the problems as mentioned above are approached by using
    
    
    
    commercial boehmite powder as precursor and applying composite sol-gel (CSG) technology. The well-dispersed slurry used for coating (>10um) is made by adding micro-TiB2 particles into stabilized, active boehmite sols. The adhesivity between coating and metallic substrate is enhanced through sealing treatment with phosphoric acid, and the mechanism of chemical bonding involved is studied. Besides, the mechanisms of sol-drived TiB2 coating on porous carbon anode are preliminarily examined.
    The boehmite sol is made of commercial boehmite powder, using HNO3 and H3P04 as peptizing acids. The influences of solid concentration, pH value, temperature and other parameters on the viscosity, stability and soling time of the boehmite sols, are investigated. The experimental results show that a stable boehmite sol can be successfully made only by adding HNO3 until pH<4. On the contrary, only suspensions could be obtained under every pH values when H3P04 is used as peptizing agent. The viscosity and stability of the HN03-peptized boehmite sol increase with the decrease of the pH value and the increase of solid concentration and temperature.
    The peptization mechanisms of the boehmite powders are experimentally studied. In the case of HN03, since the electronegativity of 0 is higher than that of N, the electron density is not uniformly distributed over the nitrate ions. As a result, the - N(V ions are firstly adsorbed on the colloidal particles surface with positive charges, and form the adsorption layer and the diffusion layer. The repulsive force make the colloidal particles separated from one another. In comparison, H3PO4 is unlikely to break the A1-O-A1 bonds among the boehmite particles.
    TEM and FTIR technology are used to characterize the structures of the boehmite colloidal particles. TEM images show that the boehmite colloidal particles are of around lOnm and form a moniliform structure. Fourier transform infrared (FTIR) analysis reveals that some of N03- ions has reacted with A100H, forming A1-N03 bond, while the rest exists in the forms of dissociated ions.
    One important way to prevent the cracking in coating is through CSG technology. Namely, a nano-micro (0-3) slurry is obtained by dispersing
    
    micro TiB2 particles into nano-scaled boehmite particulate sol. The displacement of intercalated water in sols by the added ceramic particles prevents the cracks in the coating. The viscosity and stability of the slurry were experimentally measured. The interactions between TiB2 particles and the surrounding colloid are supposed to be chemical adsorption, chemical reaction and penetration.
    The stainless steel substrates were coated by spraying using conventional pressurized air spray gun, then sealed with phosphoric acid solution, and finally heat treated. The adhesive strength between coating and substrate is obviously improved by in-situ chemical reactions. SEM results of sealed coatings show that the phosphoric acid play
引文
[1] 纪树青,铝电解槽寿命的研究,何允平、段继文编,北京:冶金工业出版社,1998,229-236.
    [2] 苏继楷,高技术TiB2陶瓷粉末的应用与发展,中国搪瓷,Vol.21(4) ,2000,43-45.
    [3] Deng Jianxin,Ai Xing.Wear resistance of Al2O3/TiB2 ceramic cutting tools in sliding wear tests and in machining processes.Journal of Nateriale Proceeding Technology 72(1997) 249-255.
    [4] K.L.Tee,L.Lu,M.O.Lai,Improvement in mechanical properties of in-situ Al-TiB2 composite by incorporation of carbon,Materials Science and Engineering A (2003) 227-231.
    [5] N.L.Yue,L.Lu,M.O.Lai,Application of thermodynamic calculation in the in-situ process of Al/TiB2,Composite Structures 47 (1999) 691-694.
    [6] K.L.Tee,L.Lu,M.O.Lai,In situ processing of Al-TiB2 composite by the stir-casting technique,Journal of Materials Processing Technology 89-90 (1999) 513-519.
    [7] Yanfeng Han,Xiangfa Liu,Xiufang Bian,In situ TiB2 particulate reinforced near eutectic Al-Si alloy composites,Composites:Part A33(2002) 439-444.
    [8] D.E.Alman,J.A.Hawk,J.H.Tylczak,C.P.Dogan,R.D.Wilson,Wear of iron-aluminide intermetallic-based alloys and composites by hard particles,Wear 251(2001) 875-884.
    [9] K.L.Tee,L.Lu,M.O.Lai,Wear performance of in-situ Al-TiB2 composite,Wear 240 (2000) 59-64.
    [10] K.L.Tee,L.Lu,M.O.Lai,Synthesis of in situ Al-TiB2 composites using stir cast route,Composite Structures 47 (1999) 589-593.
    [11] S.C.Tjong,S.Q.Wu,H.G.Zhu,Wear behavior of in situ TiB2. Al2O3/Al and TiB2. Al2O3/Al-Cu composites,Composites Science and Technology 59 (1999) 1341-1347.
    [12] T.D.Gregory,R.J.Hoffman,R.C.Winterton,J.Electrochem.Soc.137(1990) :775.
    [13] 吕霖,铝电解槽TiB2可湿性阴极制备技术研究:[硕士学位论文].昆明理工大
    
    学冶金系昆明理工大学,2002.
    [14] 鲍昌,赵建生,TiB2涂层的制备技术进展,陶瓷工程10(2000) 8-13.
    [15] J.J.Fuentes-Gallego,E.Blanco,L.Esquivias.Ellipsometric characterization of an AISI 304 stainless steel protective coating.Thin Solid Films 301 1997 12-16.
    [16] 陈敬超,孙加林,孙可伟,40Cr钢表面改性覆层的磨料磨损研究,理化检验-物理分册,Vol.34,No.7(1998) 3-5.
    [17] H.O.Pirson and A.W.Mullendore,Thin Solod Films,95(1982) 99-104.
    [18] P.V.Ananthapadmanabhan,K.P.Sreekumar,P.V.Ravindran,etc.Jornal of Materials sciemce,1993,28:1655-1658.
    [19] A.W.Mullendore,D.M.Matrox,J.B.Whitley,etc.,Thin Solid Films,79(1979) 243-249.
    [20] S.K.Kim,Y.H.Ahn,Electrical resistance of TiB2-Al2O3 thin films deposited by r.f.magnetron sputtering,Thin Solid Films 377-378 2000 772-775.
    [21] C.E.Kennedy,R.V.smilgys,D.A.Kirkpatridk,J.S.Ross,Optical performance and durability of solar reflectors protected by an alumina coating,Thin Solid Films 304(1997) 303-309.
    [22] Dislich,H.,J.Non-Cryst.Solids,1983,57,371.
    [23] Nilgun Ozer,John P.Cronin,Yong-Jin Yao,Antoni P.Tomsia,Optical properties of sol-gel deposited Al2O3 films,Solar Energy Materials & Solar Cells 59 (1999) 355-366.
    [24] A.Corina Geiculescu,Thomas F.Strange,A microstructural investigation of low-temperature crystalline alumina films grown on aluminum,Thin Solid Films 426(2003) 160-171.
    [25] Hirai,S.,Shimakage,K.,Sekiguchi,M.,Wada,K.and Nukui,A.,J.Am.Ceram. Soc.,1999,82,2011.
    [26] Mohamed Atik,Pedro de Lima Neto,Luiz A.Avaca,Michel A.Aegerter,Sol-Gel Thin Films for Corrosion Protecion,Ceramics International 21(1995) 403-406.
    [27] Yuan-Chun Chen,Xing Ai,Chuan-Zhen Huang,Bao-You Wang.Preparation of a-alumina coated carbide tools by the sol-gel process Materials Science and Engineering,4288 (2000) 19-25.
    [28] Christos Agra.otisa,Athena Tsetsekou,Deposition of meso-porous γ-alumina coatings on ceramic honeycombs by sol-gel methods,Journal of the European
    
    Ceramic Society 22 (2002) 423-434.
    [29] S.Zhang,W.E.Lee,Improving the water-wettability and oxidation resistance of graphite using Al2O3/SiO2 sol-gel coatings,Journal of the European Ceramic Society 23 (2003) 1215-1221.
    [30] Mohamed Atik,Pedro de Lima Neto,Luiz A.Avaca,Michel A.Aegerter,Sol-Gel Thin Films for Corrosion Pwotection,Ceramics Internationsl 21(1995) 403-406.
    [31] Wenguang Zhang,Weimin Liu,Chengtao Wang,Characterization and tribological investigation of sol-gel Al2O3 and doped Al2O3 films,Journal of the European Ceramic Society 22 (2002) 2869-2876.
    [32] S.Wilson,H.M.Hawthornea,Q.Yang,T.Troczynski,Sliding and abrasive wear of composite sol-gel alumina coated Al alloys,Surface and Coatings Technology 133-134 (2000) 389-396.
    [33] J.Masalski,J.Gluszek,J.Zabrzeski,K.Nitsch,P.Gluszek.Thin Solid Films 349 (1999) 186-190.
    [34] S.El Hajjaji,M.T.Maurette,E.Puech-Costes,A.Guenbour,A.Ben Bachir,L. Aries.Surface and Coatings Technology 110(1998) 40-47.
    [35] V.Guttmann,F.Hukelmann,D.Griffin,A.Daadbin,S.Datta.Surface and Coatings Technology 166 (2003) 72-83.
    [36] P.de Lima Neto,M.Atik,L.A.Avaca,M.A.Aegerter.J.Sol-Gel.Sci.Technol., 1(1994) 177.
    [37] K.Izumi,H.Tanaka,Y.Uchida,N.Tohge and T.Minami,J.Non-Cryst.Solids, 147&148 (1992) 474.
    [38] Dachuan Chen,Liping He,Shouping Shang.Materials Science and Engineering A00(2002) 1-7.
    [39] O.de Sanctis,L.Gomez,N.Pelligri,C.Parodi,A.Marajofski and.A.Duran,J. Non-Cryst.Solids,121(1990) 338.
    [40] M.Guglielmi,D.Festa,P.C.Innocenzi,P.Colombo and M.Gobain,J.Non-Cryst. Solids,147&148 (1992) 474.
    [41] A.R.Di Giampaolo,M.Puerta,J.Lira and N.Ruiz,J.Non-Cryst.Solids, 147&148 (1992) 474.
    [42] M.Atik and M.A.Aegerter,J.Non-Cryst.Solids,147&148 (1992) 474.
    [43] P.de Lima Neto,M.Atik,L.A.Avaca and M.A.Aegerter.J.Sol-Gel Sci.
    
    Technol,2 (1994) 529.
    [44] J.J.Fuentes-Gallego,E.Blanco,L.Esquivias.Ellipsometric characterization of an AISI 304 stainless steel protective coating,Thin Solid Films 301 (1997) 12-16.
    [45] R.di Maggio,P.Scardi and A.Tomas,Mater.Res.Soc.Symp.,180(1990) 481.
    [46] D.Y.Ding,J.C.Rao,D.Z.Wang,Z.Y.Ma,L.Geng,C.K.Yao.Materials Science and Engineering A279 (2000) 138-141.
    [47] X.Nie,E.I.Meletis,J.C.Jiang,A.Leyland,A.L.Yerokhin,A.Matthews. Surface and Coatings Technology 149 (2002) 245-251.
    [48] Yu-Qing Wang,Ben-Lian Zhou,Zuo-Ming Wang.Carbon,Vol.33,No.4 (1995) 427-433.
    [49] Yuan-Chun Chen,Xing Al,Chuan-Zhen Huang Materials Science and Engineering B77 (2000) 221-228.
    [50] P.Peng,X.D.Li,G.F.Yuan,W.Q.She,F.Cao,D.M.Yang,Y.Zhuo,J.Liao,S.L. Yang,M.J.Yue.Materials Letters 47 2001 171-177.
    [51] D.Y.Ding,D.Z.Wang,X.X.Zhang,C.K.Yao.Materials Science and Engineering A308 (2001) 19-24.
    [52] S.Wilson,H.M.Hawthorne,Q.Yang,T.Troczynski.Wear 251 (2001) 1042-1050.
    [53] Kvande Halvor Intert electrodes in aluminum electrolysis cells,light metals: proc.of Sessions,TMS Annual Meeting Warrendale,Pennsylvani,1999,369-376.
    [54] Xia Changrong,Wu Feng,Meng Zhao jing,Li Fangqing,Peng Dingkun,Boehmite sol properties and preparation of two-layer alumina membrane by a sol-gel process,Journal of Membrane Sciece 116(1996) 9-16.
    [55] J.A.Sekhar,V.de Nora,and J.Liu.Porous Titanium Diboride Composite Cathode Coating for Hall-Heroult Cells:Part 1:(thin coatings),to be appear in Met.Trans.1997.
    [56] J.A.Sekhar,V.de Nora,J.Liu,and J.J.Duruz.A Critical Analysis of Sodium Membranes to Prevent Carbon Cathode Damage in the Hall-Heroult,Light Metals,TMS,Anaheim,1996,271-273.
    [57] J.A.Sekhar,V.de Nora,J.Liu,and J.J.Duruz.Cathodic Coating for Improved Cell Performance,Light Metles,TMS,Las Vegas,1995,507-514.
    [58] H.A.Oye,V.de Nora and G.Johnston,Properties of a Colloidal Alumina-Bonded
    
    TiB2 Coating on Cathode Carbon Materials,Light Metals,IMS,Orlando, 1997,279-286.
    [59] H.A.Oye,J.Thonstad,K.Cahiqvist,S.Honda and V.de Nora,Reduction of Sodium Induced Stresses in Hall-Heroult Cells,Aluminium 1996,1-7.
    [60] J.Liu,G.Johnson,H.Zhang,J.Holz,V.de Nora and J.A.Sekhar,Is an Aluminum-Wettable Cathode Useful in Aluminum Electrowinning Cells.5th Astralian Aluminum Smelting Technologu Workshop,Sydney Australia(1995) .
    [61] H.Zhang,V.de Nora and J.A.Sekhar,Materials Used in the Hall-Heroult Cell for Aluminum Production,TMS,Warrendale 1994.
    [62] 王兆文,高炳亮,邱竹贤,改进的二硼化钛惰性阴极耐蚀性的研究,轻金属,Vol.12,(2001) 35-37.
    [63] 邱竹贤,李庆峰,王晶,李冰,铝电解槽阴极碳块上TiB2涂层研究,有色金属,1993. 8
    [64] 黄永忠,瘳贤安,刘业翔等,碳热法生产TiB2粉和铝电解槽节能阴极,轻金属1998(增刑):225-229.
    [65] 瘳贤安,刘业翔等,Light Metal 1998(TMS-ALMS)JOM,1997(11) 42.
    [66] 瘳贤安,刘业翔等,Light Metal 1992(TMS-AIMS)JOM,427-429.
    [67] 王晶,邱竹贤等,TiB2碳胶涂层性能研究.有色冶金,1998,50(1) 60-62
    [68] 卢惠民,方克明等.惰性TiB2阴极在低温铝电解中的应用.矿冶,1999,8(1) 50-53.
    [69] 佐久间洋,太田晖人,ぁるAl,1977,No 9.
    [70] K.Billehaug,H.A.Oye,Aluminium,1980,No 10,642-648.
    [71] K.Billehaug,H.A.Oye,Aluminium,1980,No 11,713-718.
    [72] 周政,姜有伟,吴举,铝电解新型惰性阴极研究,铝镁通讯,No.1(1999) 20-21
    [73] 吕增旭,成庚,王醒钟,铝电解阴极新技术,世界有色冶金2000(3) 23-25
    [74] J.A赛哈克,J.李等,铝电解用无沥青成分碳素,国外碳素技术信息沈阳铝镁设计研究院科技部,技术信息室
    [75] Oye HA,de Nora V,Duruz J-J,Johnston G.Minerals,Metals and Materials Society/AIME (USA),pp.279-286,1997.
    [76] Sekhar-JA,de-Nora-V,Liu-J,Wang-X.Minerals,Metals & Materials Soc (TMS)(1998) 605-615.
    [77] H.A.Oye et al.,Properties of Colloidal Alumina-Bonded TiB2 Coating on Carbon
    
    Cathode Materials.Light Metals 1997,pp.279-286.
    [78] J.A.sekhar,V.de Nora,etc.TiB2/colloidal alumina carbon cathode coatings in Hall-Heroult and drained cells.Light Metals 1998,605-613.
    [79] 王双喜,王建江,李俊涛等,氧化铝陶瓷内衬不锈钢复合钢管的组织与性能,硅酸盐学报,Vol.26,No.6,1998,804-808.
    [80] 孔宪中,薛山,氧化铝陶瓷内衬钢管的静态生成及性能研究,东南大学学报,Vol.29,No.6,1999,140-145.
    [81] 何允平,段继文,铝电解槽寿命的研究,冶金工业出版社,北京,1998.
    [82] D.L.Cocke,E.D.Johnson,R.P.Merril,Catal Rev.-Sci.Eng.26 (1984) 163. ][J.B.Peri,J.Phys.Chem.69 (1965) 211.
    [83] 赵琰,氧化铝(拟薄水铝石)的孔结构研究,催化剂测试与表征Vol.10 No.12002. 55-63.
    [84] 张海明,叶岗,李光辉,俞芳.薄水铝石与拟薄水铝石的差异的研究,石油学报,第15卷第2期,1999,29-34.
    [85] 叶岗,李光辉,等,氧化铝的水热化学研究Ⅲ--薄水铝石脱水产物的再水合现象,物理化学学报,Vol.12,No.10(1996) 921-925.
    [86] Yuan-Chun Chen,Xing Al,Chuan-Zhen Huang.Preparation of alpha alumina coating on carbide tools.Materials Science and Engineering B77(2000) 221-228.
    [87] Hart L.D.editor,Alumina Chemical Science and Technology Handbook,Esther Lense,associate Editor,Westerville Ohio:The American Ceramic society Inc.1990.
    [88] 鲁彬,武克忠,等,薄水铝石制备实验的改进,河北科技大学学报,Vol.21,No.2,(2000) 37-39.
    [89] Y.G.Wang,P.M.Bronsveld,J.T.M.DeHosson,B.Djuricic,D.McGarry,S. Pickering,J.Am.Ceram.Soc.81 (6) (1998) 1655.
    [90] D.Mishra,S.Anand,R.K.Panda,R.P.Das.Effect of anions during hydrothermal preparation of boehmites,Materials Letters 53 2002 133-137.
    [91] Johnson M F L,J.Catal,1990,123:245.
    [92] R.Petrovic,S.Milonfic,V.Jokanovic,Lj.Kostic-Gvozdenovic,et.al,Influence of synthesis parameters on the structure of boehmite sol particles,Powder Techno logy,(2003) in press.
    [93] B.E.Yoldas,Alumina sol preparation from alkoxides.Ceram.Bull.54 (1975)
    
    289-290.
    [94] R.Petrovic,S.Milonjic,V.Jokanovic,Lj.Kostic-Gvozdenovic.Influence of synthesis on the structure of boehmite sol particles.Powder Technology 2003 1-5.
    [95] A.C.Pierre,D.R.Uhlman,Gelation of aluminiun hydroxide sols,J.Am.Ceram. Soc.70(1987) 28-32.
    [96] S.K.Milonjic,Colloid particles and advanced materials,Mater.Sci.Forum 214 (1996) 197-204.
    [97] R.Petrovic,S.Milonfic,V.Jokanovic,Lj.Kostic-Gvozdenovic,et.al,Influence of synthesis parameters on the structure of boehmite sol particles,Powder Technology,(2003) in press.
    [98] 沈钟,王果庭,胶体与表面化学,化学工业出版社,北京,1997.
    [99] R.Brace,E.Matijevic,Aluminium hydrous oxide sols:I.J.Inorg.Nucl.Chem. 35(1973) 3691-3705.
    [100] JI GUANG LI and XUDONG SUN,SYNTHESIS AND SINTERING BEHAVIOR OF A NANOCRYSTALLINE a-ALUMINA POWDER,Acta mater. 48(2000) 3103-3112.
    [101] 郭玉忠,黄瑞安,孙加林,SnO2系溶胶.凝胶转变的流变学研究,无机材料学报,Vol.16. No.2,(2001) 249-255.
    [102] 卢伟光,田辉平,拟薄水铝石溶胶法制备改性氧化铝的研究,燃料化学学报,Vol.29,Suppl.(2001) 188-191.
    [103] Pramod K.Sharma,V.V.Varadan,V.K.Varadan.A critical role of Ph in the colloidal synthesis and phase transformation of nano size α-Al2O3 with high surface area.Journal of the European Ceramic Society 23(2003) 659-666.
    [104] M.J.Gieselmann,M.A.Anderson,Effect of ionic strength on boehmite hydrogel formation,J.Am.Ceram.Soc.72(1989) 980-985.
    [105] 郑忠,编著,胶体科学导论,高等教育出版社,1989,北京.
    [106] W.B.Scott,E.Matijevic,Aluminium hydrous oxide sols:Ⅲ Preparation of uniform particles by hydrolysis of aluminium chloride and perchlorate salts. J.colloid Interface Sci.66(1978) 447-454.
    [107] Kiyoshi Okada,Toru Nagashima,et al.Relationship between Formation Conditions,Properties,and Crystallite Size of Boehmite.Journal of Colloid ahd Interface Science 253,308-314(2002) .
    
    
    [108] Tsukada,T.,Segawa,H.,Yasumori,A.,ahd Okada,K.,J.Mater.Chem. 9,549(1999) .
    [109] Cecile Pagnoux,Marina Serantoni,Richard Laucournet,Thierry Chartier. Influence of the Temperature on the Stability of Aqueous Alumina Suspensions. Journal of the European Ceramic Society 19(1999) 1935-1948.
    [110] Cecile Pagnoux,Marina Serantoni,Richard Laucournet,Thierry Chartier, Jean-Francois Baumard,Influence of the Temperature on the Stability of Aqueous Alumina Suspensions,Journal of the European Ceramic Society 19(1999) 1935-1948.
    [111] S.Mustafa,B.Dilara,Z.Neelofer,A.Naeem,and S.Tasleem.Temperature Effect on the Surface Charge Properties of γ-A12O3. Journal of colloid and interface science 204,284-293 (1998) .
    [112] 徐国财张立德纳米复合材料,化学工业出版社。北京,2002.
    [113] M.Dj.Petkovic,S.K.Milonjic,V.t.Dondur.Stability of colloidal alumina in the presence of various inorganic anions,Bull.Chem.Soc.Jpn.68(1995) 2133-2136.
    [114] J.A.Sekhar,V.de Nora,J.Liu,X.Wang,TiB2/Colliudal Alumina Carbon Cathode Coatings in Hall-Heroult ahd Drained Cells,Light Metals 1998,605-613.
    [115] Xinwen Zhu,Dongliang Jiang,Shouhong Tan,Zhaoquan Zhang,Dispersion properties of alumina powders in silica sol,Journal of the European Ceramic Society 21 (2001) 2879-2885.
    [116] Petro.,T.E.,Sayer,M.and Hesp,S.A.,Modi.cation of ceramic dispersion using zirconaium hydrogel.Colloids Surf.A.,1993,78,235-243.
    [117] Yang,Q.and Troczynskl,T.,Dispersion of alumina and silicon carbide powders in alumina sol.J.Am.Ceram.Soc.,1999,82(7) ,1928-1930.
    [118] J.A.Sekhar,V.de Nora,J.Liu,X.Wang,TiB2/Colliodal Alumina Carbon Cathode Coatings in Hall-Heroult and Drained Cells,Light Metals 1998,605-613.
    [119] S.El Hajjaji,M.-T.Maurette,E.Puech-Costes,A.Guenbour,A.Ben Bachir, L.Aries,Duplex conversion-alumina coating on stainless steel for high temperature applications,Surface and Coatings Technology 110 (1998) 40-47.
    [120] V.Guttmann,F.Hukelmann,D.Griffin,A.Daadbin,S.Datta,Studies of the influence of surface pre-treatment on the integrity of alumina scales on MA 956, Surface and Coatings Technology 166 (2003) 72-83.
    
    
    [121] J.Masalski,J.Gluszek,J.Zabrzeski,K.Nitsch,P.Gluszek,Improvement in corrosion resistance of the 3161 stainless steel by means of A12O3 coatings deposited by the sol-gel method,Thin Solid Films 349 (1999) 186-190.
    [122] Minnamari Vippola,Samppa Ahmaniemi,et al.Aluminum phosphate sesled alumina coating:characterization of microstructure.Materials Science and Engineering,4323(2002) 1-8.
    [123] Dachuan Chen,Liping He,Shouping Shang Study on aluminum phosphate binder and related A12O3-SiC ceramic coating.Materials Science and Engineering A348 (2003) 29-35.
    [124] 梁志杰,等,编著,非金属刷镀技术,机械工业出版社,北京,1993.
    [125] 石淼森,编著,耐磨耐蚀涂膜材料与技术,化学工业出版社,北京,2003.
    [126] [美]W.R.鲁尼安编著,半导体测量和仪器,上海科技大学半导体材料教研室译,上海科学技术出版社1980.
    [127] M.Vippola,J.Vuorinen,Vuoristo,T.Lepisto,T.Mantyla.Thermal analysis of plasma sprayed oxide coatings sealed with aluminium phosphate.Journal of the European Ceramic Society 22 (2002) 1937-1946.
    [128] V.K.Marghussian,R.Naghizadeh,Chemical Bonding of Silicon Carbide, Journal of the European Ceramic Society 19 (1999) 2815-2821.
    [129] Jari Knuuttil,Samppa Ahmaniemi,Tapio Mantyla,Wet abrasion and slurry erosion resistance of thermally sprayed oxide Coatings,Wear 232 1999 207-212.
    [130] Dilermando Travessa,Maurizio Ferrante,Gert den Ouden.Diffusion bonding of aluminium oxide to stainless steel using stress relief interlayers.Materials Science and Engineering A337 (2002) 287-296.
    [131] Dachuan Chen,Liping He,Shouping Shang,Study on aluminum phosphate binder and related Al2O3-SiC ceramic coating,Materials Science and Engineering A00(2002) 1-7.
    [132] V.K.Marghussian and R.Naghizadeh,Chemical Bonding of Silicon Carbide, Journal of the European Ceramic Society 19(1999) 2815-2821.
    [133] P.V.Ananthapadmanabhan,K.P.Sreekumar,P.V.Ravindran,etc.Journal of Materials science,1993,28:1655-1658.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700