基于逆向工程学的仿生非光滑齿轮表面耐磨性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摩擦阻力广泛存在于实际生产和我们的生活中,运动副之间的摩擦将导致零件表面材料的逐步丧失或迁移,即形成磨损,磨损是金属零件失效的三种主要原因(磨损、腐蚀、疲劳)之一。据不完全统计,能源的1/3到1/2消耗于摩擦与磨损;对材料来说,约80%的零件失效是磨损引起的。磨损不仅消耗能源和花费材料、降低设备运转效率,而且加速设备报废、导致部件更换频繁,造成极大的经济损失。因此,由磨损而带来的诸多问题越来越引起学术界的广泛重视。齿轮传动过程中,其主要失效形式是齿轮磨损,大小齿轮根部的磨损量较大,特别是球磨机的传动齿轮、发电厂磨煤机的传动齿轮等大模数齿轮,这些齿轮尺寸都很大,加工制造工艺复杂,更换一个新齿轮需要十万元,甚至几十万元,给企业和社会造成了巨大的经济损失。为此,迫切需要采用一种新型、有效的方法提高传动齿轮的抗磨损和承载能力,这是本文的关键之所在。因此,针对以上问题,本文具体做了以下几方面的工作:
    1. 对齿轮表面进行了逆向工程学研究。利用3D SCANNER激光扫描仪对齿轮表面进行了三维测量,由于考虑到实际扫描中对整体扫描的困难以及齿轮结构的对称性,所以本文只是对齿轮进行了局部扫描,然后利用Surfacer软件对点云进行初步处理,采用人工法进行噪声去除,从去除噪声以后的点群中取出一个扫描效果比较好的齿形作为研究对象,采用由曲面拼接的方法生成单个齿形的曲面模型,再利用该软件中的镜像功能获得了齿轮整体曲面模型,最后,将重构的曲面导入到UG软件中,获得齿轮三维几何实体模型。
    2. 从仿生学原理的角度出发,设计了九种不同的大小及间距的凹坑形仿生非光滑表面形态,由于非光滑结构单元为微观非光滑,几何单元小、形态复杂,传统的机械加工不能满足加工要求,所以采用激光表面处理技术来加工其表面非光滑结构。所有试件的加工均是在JHM-1GY-100B型激光数控加工机上完成的,通过激光表面重熔强化处理技术使表面层获得比
    
    
    较硬而耐磨的组织结构和非光滑形态。
    3. 对光滑与仿生非光滑齿轮模型试件进行了耐磨性的试验研究。由于主要是要研究其微观摩擦学性能,所以利用微观摩擦学实验机测试其摩擦磨损特性。利用试验优化设计理论,采用正交试验设计安排试验方案,通过探索性试验,确定了本试验中影响磨损的四个主要因素及其相应水平,即:非光滑单元大小(300、250、200)、距离(550、450、350)、速度(140、110、80)、负荷(13N、10N、7 N)。本试验中,各种试件的摩擦磨损的时间均为90分钟,其耐磨的性能通过体积磨损率和摩擦系数来评定,体积磨损率利用XTJ-30型体视显微图像电脑分析系统测出磨痕宽度,再利用公式ΔV= a和K=计算得到,其中,a为往复滑动距离;d为试件表面磨痕宽度;r为对磨件GCr15钢球的半径;L为试验时所加的负荷;T为试验时间,摩擦系数由微观摩擦学试验机记录的摩擦力与负荷之比得到。
    通过光滑与仿生非光滑齿轮模型试件耐磨性的对比试验可知,光滑试件的体积磨损率较大,说明非光滑表面形态的确具有耐磨的性能,其耐磨性提高值在7.222%~135.389%之间。分析了仿生非光滑表面耐磨的机理,一方面是由于激光处理重熔强化的作用,另一方面则是仿生非光滑表面形态的效应。同时对几种不同大小及间距的凹坑形非光滑形态的耐磨性也进行了对比,发现几种形态参数中,凹坑4是最耐磨的,其形态参数是凹坑大小为300,距离是350,分析其耐磨的原因主要是在微观的范围内,由于凹坑4与其它几种形态相比,其形态参数相对较大,因此,由以上两点带来的耐磨程度更强,所以最耐磨。
    最后,运用多元线性回归正交试验设计对具有非光滑表面形态的齿轮模型试件的试验结果进行了回归分析,获得了其体积磨损率和摩擦系数与各试验因素间的回归方程:
    
    
    
    其中,、、、分别代表大小、距离、速度、负荷。
    通过回归方程可以看出各试验因素对试验指标的影响程度。对于体积磨损率来说,各因素对其影响程度由大到小依次是、、、,即负荷、速度、大小、距离,可以看出,随着负荷和转速的增加体积磨损率逐渐增大;对于摩擦系数来说,各因素对其影响程度由大到小依次是、、、,即负荷、速度、距离、大小,与体积磨损率相反,随着负荷和转速的增加,摩擦系数逐渐减小,通过回归方程还可以看出,因素间的交互作用与各因素单独作用相比都是很微小的,这在以后的研究中可以不予考虑。
    本文通过采用激光表面重熔强化技术,将仿生非光滑耐磨技术应用于齿轮模型试件的表面,使其耐磨性得到显著的提高,为齿轮行业长期存在的齿面磨损严重的问题提供了一个行之有效的方法,本研究对于进一步将仿生非光滑形态用于其它机构及零部件的表面,以期提高其承载能力及耐磨性具有重要的实际参考价值。
Wear resistance extensively exists in the actual production and our life. Abrasion is one of the three kinds of main reasons (abrasion, corrosion, fatigue) of invalidation of metal parts. According to incomplete statistics, about 1/3 or 1/2 of the consumption of the energy is caused by friction and abrasion. About 80% invalidation of components is caused by abrasion for materials. Abrasion not only consumes the energy and materials and decreases the equipment efficiency, but also accelerates the equipments discard and causes the parts replacement frequently and big economy loss. Therefore, abrasion is causing more and more extensive academic attention of many fields. In the process of gear driving, its main invalidation form is abrasion. The abrasion on the gear root is bigger, especially for the driving gears of ball mill, the driving gears of power plant, which have big modulus. These gears are very big, and it is complicated to be manufactured. To replace such a gear need RMB100,000, even than RMB100,000, which leads to enormous economy loss for the enterprise and society. Therefore, a new and valid method of improving anti-wear ability and carrying capacity is required, which is the key research content in the paper. The research works are as follows:
    1. To study the gear surface based on the reverse engineering. 3D measurement of gear surface was completed with 3D SCANNER laser scanner. Considering the difficulty of scanning the whole parts and the structural symmetry of gear, the partial scanning of gear was done. The data point cloud was processed with Surface software, and the noise was deleted with the artificial method. The good gear model in the deleted data point cloud was selected as research object, and was made up a curve surface to form a curve surface model, then the function of mirror image was used to get the whole gear model and input the model to the UG software. Finally, the 3D geometry
    
    
    entity model of gear was got.
    2. From the view of bionics principle, nine kinds of bionic non-smooth concave surfaces with different sizes and distance of non-smooth units were designed. For small geometry unit and complex form of non-smooth units, the traditional machinery manufacturing methods cannot satisfy to the requirement, and the laser texturing method was adopted to manufacture the non-smooth surfaces. All samples were processed and completed in the JHM-1GY-100B laser NC manufacturing machine.
    3. The experimental investigations of anti-wear ability for smooth and bionics non-smooth gear model samples were completed.
    The micro-tribology tester was adopted to study the micro-tribology characteristics of non-smooth samples. Considering the experimental optimum design theory and orthogonal design, the main four factors and levels effecting the friction and abrasion were confirmed, namely, size(300μm, 250μm, 200μm), distance(550μm, 450μm, 350μm), velocity(140 rpm,110 rpm,80 rpm), load(13 N,10 N,7 N). In this experiment, the wear time of every sample was 90 minutes, and the anti-wear ability of the samples was assessed by the rate of volume abrasion and the friction coefficient. The rate of volume abrasion was measured by the wear width from the XTJ-30 microscope system, and calculated by ΔV= a and K= . Where, a is back and forth sliding distance, d is the wear width, r is the radius of GCr15 steel ball, L is the experimental load, and T is the wear time. The friction coefficient was confirmed by the ratio of the friction force and experimental load.
    It was found in the contrast wear experiments of smooth and bionics non-smooth gear model samples that the rate of volume abrasion of the smooth sample was bigger, and the increasing vale of volume abrasion rate is between 7.222% and 135.839%. The anti-wear mechanism of bionics non-smooth
    
    
    surface was due to the re-melting strengthening of laser and bionics non-smooth surface morphology. At the same time, the anti-wear ability of several non-smooth concave surfaces with different size and distance of non-smooth unit was compare
引文
[1] 邵云环, 张清. 金属的磨料磨损与耐磨材料. 北京:机械工业出版社,
    1988年第一版, 21~22、29~30.
    [2] 王云鹏, 任露泉, 杨晓东, 李建桥. 仿生柔性非光滑表面减粘降阻的试验研究. 农业机械学报, 1999, 30(4): 1~4.
    [3] 任露泉, 张建伟, 陈秉聪, 齐宝山. 仿生挠性铲斗减粘降阻的研究. 农业机械学报, 1990, (4): 33~39.
    [4] 李建桥, 任露泉, 刘朝宗, 陈秉聪. 减粘降阻仿生犁壁的研究. 农业机
    械学报, 1996,27(2): 1~4.
    [5] Fly like a shark The Economist, Aprial, 30, 1998, 86.
    [6] Hutchings I. M. New Direction in Tribology: Dowson D. Progress in Trib
    -ology a Historical Perspective, 1997: 3~20.
    [7] 谢友柏. 摩擦学面临的挑战与对策. 见: 中国工程院第三次院士大会
    学术报告汇编, 北京: 中国工程院, 1997: 331~342.
    [8] 薛群基, 党鸿辛. 摩擦学研究的发展概况与趋势. 摩擦学学报, 1993, 13(1): 73~81.
    [9] 张嗣伟. 摩擦学的进展与展望. 摩擦学学报, 1994, 14(1): 84~88.
    [10] 温诗铸.世纪回顾与展望—摩擦学研究的发展趋势. 机械工程学报, 2000, 36(6): 1~5.
    [11] 黄平, 温诗铸. 粘弹性流体动力润滑与润滑磨损. 机械工程学报,1996,
    32 (5): 35~41.
    [12] Huang Changhua, Wen Shizhu,Huang Ping.Multilevel solution of EHL of
    concentrated contacts in spiroid gears. Journal of Tribology, 1993,115(3):
    481~486.
    [13] 刘家俊. 材料磨损原理及其耐磨性. 北京: 清华大学出版社, 1993年
    第三版, 92~93、243~246.
    [14] 王齐华. 纳米复合材料的摩擦学性能研究. (博士学位论文)兰州: 兰
    
    州化学物理研究所, 1998.
    [15] 张洪欣主编. 汽车设计(修订本). 北京: 机械工业出版社, 1989.
    [16] 王小宝. 齿轮失效的原因和对策. 矿冶: 北京矿冶研究总院, 1998.
    [17] 詹启贤. 自动机械设计[M]. 北京: 轻工业出版社, 1987.
    [18] 李志扬, 宗志坚等. 基于逆向工程的油箱开发. 机械设计与制造工程, 2002, 31(4): 18~20.
    [19] 许智钦, 孙长库编著. 3D逆向工程技术.北京: 中国计量出版社出版, 2002, 2~10、137~144.
    [20] 金国藩, 李景镇. 激光测量学. 北京: 科学技术出版社, 1998.
    [21] 孙长库,叶声华编著.激光测量技术.天津:天津大学出版社,2001.
    [22] 金涛, 童水光等编著. 逆向工程技术. 北京: 机械工业出版社, 2003, (8): 2~10、26~56.
    [23] 林文明. 快速原型制作技术. 机械技术. 1998, (8): 92~95.
    [24] 马淑梅, 张曙, 陈彬. 以逆向工程为技术支撑的模具数控加工. 数控技术专栏, 2001, 4: 11~14.
    [25] 梅田干雄. 逆向工程のけんきゅう及び開発に力に入れる. 日本机械学会论文集(C编)[A], 1999, 56: 125~128.
    [26] 刘之生. 反求工程技术. 北京: 机械工业出版社, 1992, 4.
    [27] 刘阳, 唐罗生, 吴琦等. 逆向工程技术及其在产品开发中的应用. 机械设计与制造, 1999, 1: 26~28.
    [28] 刘影. 反求工程与现代设计. 机械设计, 1998, 2: 1~4.
    [29] Otto Kevin N. Wood Kristin L. Product evolution: A reverse engineering
    and redesign methodology. Research in Engineering Design, 1998, 10(4):
     226~243.
    [30] Kwok Wai-liu, Eagle Paul J..Reverse engineering. Extracting CAD data
     from existing parts.Mechanical Engineering, 1991, 113(3): 52~55.
    [31] 闫华, 林巨广, 蔡树煌等. 汽车覆盖件逆向工程中的若干关键技术探
    讨. 合肥工业大学模具研究所, 2000, 9: 4~7.
    [32] 季劲松. 逆向工程中三坐标测量数据处理的研究及系统开发. 杭州:浙
    江大学硕士学位论文, 2002, 1.
    
    [33] Tamas Varady, Ralph Martin, Jordan Cox..Reverse engineering of geometric models—an introduction. Computer Aided Design, 1997, 29:
     253~254.
    [34] 张丽艳, 缪文和, 周儒荣. 逆向工程的关键技术及其应用研究. 数据采集与处理, 1999, 14(1): 33~66.
    [35] 于喆, 赵敏. Imageware优秀的逆向工程软件. 计算机辅助设计与制造, 2000, 9: 13~15.
    [36] 范光照, 章明, 姚宏宗, 许智钦编著. 逆向工程技术及应用. 台北: 高立图书有限公司, 1988.
    [37] 刘利.三维测量技术新动态.机电一体化, 1997, 3(1): 20~23.
    [38] Watanabe.S and Yoneyama. M. An ultrasonic visual sensor for three-dimen -sional object recognition using neural networks. IEEE Transactions on R- obotics and Automation, 1992, 8(2): 240~248.
    [39] 李世武. 牛蹄三维几何模型逆向工程研究. 吉林大学博士后工作报告, 2003.
    [40] Hosni Yasser, Ferreira Labiche.Laser based system for reverse engineering,
    Computers & Industrial Engineering, 1994, 26(2): 387~394.
    [41] Stanley J H,etal.CT-assisted solid freeform fabrication.Proceeding of the
    sixth International Conference on Rapid Prototyping, Dayton, OH, 1995, 4: 267~27.
    [42] 粟全庆, 王宏, 张英杰, 赵汝嘉. 实物反求工程的关键技术分析. 机械设计与制造, 1999, 6(6): 4~6.
    [43] Broacha Rustum, Young Michael. Getting from points to products. Computer
    -Aided Engineering, 1995, (14)7: 4~8.
    [44] 任露泉, 丛茜等. 界面粘附中非光滑表面基本特性的研究. 北京: 农
    业工程学报, 1992(1).
    [45] 丛茜, 任露泉, 吴连奎等. 几何非光滑生物体表形态的分类学研究. 农业工程学报, 1992, 8(2): 7~12.
    [46] 丘军林. 激光加工技术. 电工技术杂志, 1996, 7(4): 40~42.
    [47] 激光加工技术. 林业机械, 1994, 5: 40
    
    [48] 苏宝蓉. 我国的激光加工现状及发展前景. 激光与红外, 1996, 26(3) :
    175~177.
    [49] M Labudovic, D Hu, R Kovacevic. Three-dimensional finite element modeling of laser surface modification. Proc instn mech Engrs, 2000, 214(8): 683~692.
    [50] 崔满丰, 张国顺, 赵祥明, 赵爱国. YAG激光加工机在仪表制造业中的应用. 激光与光电子学进展, 1996, (9): 23~25.
    [51] 任露泉. 试验优化设计与分析. 长春: 吉林科学技术出版社, 2001.
    [52] 杨亚洲. 三种天然生物材料的干滑动摩擦学行为及机理. 吉林大学硕士学位论文, 2001.
    [53] 曾明, 魏晓伟. ZA27合金摩擦系数及耐磨性的试验研究. 四川工业学
    院学报, 1996, 15, (3):12~16.
    [54] Gerrais E, Levert H. The Development of a Family of Zinc-Base Foundry Alloys. A.F.S Transaction,1980, 88(193)
    [55] 谢恒星, 张一清, 李松仁, 李定或. 钢球的应用现状与磨损机理. 武汉化工学院学报, 2002, 3, 24(1): 42~48.
    [56] 渡边义见, 福井泰好. 歯車の耐磨せいのけんきゅうについて. 日本机械学会论文集(B编)[C], 1993, 58(556): 240~245.
    [57] 克拉盖里斯基,维诺格拉陀娃著. 摩擦系数.科学出版社, 1957, 9.
    [58] 栾军编著. 现代试验设计优化方法. 上海交通大学出版社, 1995, 3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700