MPS型磨煤机液压加载系统控制特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代火力发电机组中,火电厂的装机容量越来越大,MPS型磨煤机成为磨粉系统中广泛应用的设备,它具有启动迅速、调节灵活、阻力小、单位磨煤金属磨耗小、结构紧凑、占地面积小及制粉系统简单、单位电耗低、噪音低等优点。
     传统的固定式磨辊加载系统具有磨辊加载力不能随磨煤机出力变化而变化,导致磨煤机出力降低,电耗增大,研磨件金属磨损大及磨煤机振动大等缺点。针对这些缺点,笔者提出应用电液比例技术对磨煤机进行可变加载的设计,使磨煤机的液压加载系统与电子技术PLC相结合,从而解决原有加载系统的缺陷,提高磨煤机变加载的自动化程度。
     由于磨煤机许多参数之间的关系比较复杂,有许多问题需要做进一步的研究,本论文运用仿真法对该磨煤机液压加载系统进行研究探讨。基于对磨煤机加载系统原理的介绍,笔者设计了模拟加载方法,应用Matlab对系统进行仿真。论文中,笔者根据磨煤机实际工作中对加载系统控制特性的要求进行了研究,再次证明应用电液比例技术设计加载系统的合理性,笔者认为影响整机工作性能的最为关键性问题是当磨煤机所受负载突变时,加载系统的缓冲效果。为此,笔者对加载系统中影响缓冲效果的重点因素进行了一系列的理论分析和仿真研究,探讨分析了其影响机理,得出一些新的有益结论。
     实践证明,本文所采用的思想方法是合理的、正确的,对研究其他类似系统有一定的参考价值。该文中所研究出的有益结论已经在磨粉机加载系统中得到了应用和验证,达到了预期目的。
In the modern thermal power generating units, as the boiler to the direction of the development of large capacity, MPS mill becomes widely used in the large-scale thermal power generating units. There are many advantages, such as start-up rapidly, adjusts neatly, little resistance, compact, simple system, low noise and so on.
     The traditional loading system’s loading force of the grinder roll can hardly varies with the output force changing, so that there are many problems in work. It causes to debase the output of the coal mill increase the consumption of the electricity, fray the abrasion and affect the librations of the coal pulverizes. To solve those problems, this paper combines the hydraulic loading system with electro-hydraulic proportional technique, so that the deficiencies of original system are solved and the automatic degree of coal mill loading mode is improved.
     Because the relationship of many parameters of this machine is complex, there are many problems to be studied. This paper uses the simulation method to research its hydraulic loading system. The writer designed experiment device and appropriative computer testing system. After a series of practical tests under various conditions, the test results are analyzed and compared to the simulation results, and then the mathematic model of this system is verified. On the base of abundant simulations and experiments, a lot of researches and analysis are carried out. At last, some useful conclusions are derived.
     Practice in all stages above reflects the author’s rational and correct mind. The thesis can be referred by those similar systems. What’s more, these well-proved research results have been applied successfully on the plot. Generally speaking, the study fulfills previous goals.
引文
[1]马新立,睢彬.MPS磨煤机磨辊自动加载系统原理及分析.锅炉技术,2001,32(4):74~77.
    [2]宋宏,张龙新.中速磨煤机液压加载系统改造与性能优化.东北电力技术,2009(9):162~167.
    [3]赵云龙.盘辊磨粉机恒压加载系统的仿真分析与研究:(硕士学位论文).郑州:郑州大学,2005.
    [4]张一军.浅析我国中速磨煤机的发展与设计.科学实践,2009,25(5):749~761.
    [5]梁昊.MPS型中速磨煤机的功能模拟研究:(硕士学位论文).长春:吉林大学,2005.
    [6]吴景兴,马金凤.350MW机组锅炉制粉系统调整分析.中国电力,2003,36(12):34~39.
    [7] Stojanovic Z. Determination of a time step interval in hydraulic systems transients simulation. Advances in Engineering Software, 2000, 31(2). 293 ~305.
    [8]于红旭.中速磨煤机的运行特性计算机仿真研究:(硕士学位论文).长春:吉林大学,2003.
    [9]解其林.MPS中速磨煤机旋转式煤粉分离器的改造及应用.中国电力,2005,38(3):111~119.
    [10]赵凯军.MPS型中速磨煤机在水泥厂的应用.新世纪导报,2002(5):749~761.
    [11]曲静涛,李彬玲.200MW机组磨煤机调节系统优化设计与应用.电站辅机,2007(4):74~77.
    [12]高歆光.大型电站锅炉磨煤机研究与改造:(硕士学位论文).大连:大连理工大学,2009.
    [13] G. Tilley D, BurrowsC. R. Development of computer based techniques for fluid power systems design. Design Studies, 1995(5): 580~586.
    [14] T. M. Johnson. Development of China’s energy sector reform Efficiency and environment impacts. Oxford Review of Economic Policy, 1995, 24(3): 41~45.
    [15] R.B. Jonson. Test Code for Air Heater. ASME Performance Test Codes, 1968(5): 183~185.
    [16]孟宇.MPS磨煤机三维设计系统的开发:(硕士学位论文).大连:大连理工大学,2006.
    [17] Borutzky. W. Bond graph modeling from an object oriented modeling point of view. Simulation Practice theory, 1999, 54(5): 580~586.
    [18]崔健,李学刚.辊盘式磨煤机的PLC控制及应用.工程管理,2010,17(4):74~77.
    [19]辛胜伟,刘汉伟.大型煤粉锅炉磨煤机技术发展及选型分析.电站系统工程,2008,24(2):40~43.
    [20]党国军,陈佳新.MPS型中速磨煤机运行状况的分析.宁夏电力,2006(3):35~37.
    [21]刘祥.浅谈中速磨煤机的加载方式.内蒙古电力技术,2003,21(3):37~39.
    [22]胡庆银,马昌胜.HRM2200M型辊盘式磨煤机液压系统的自动化改造.新世纪水泥导报,2008,35(2):37~41.
    [23]倪润忠.轮式中速磨煤机出力浅析.华北电力技术,2009(4):52~55.
    [24]卢建农.300MW机组磨煤机出力低的原因及对策.电站辅机,2005,17(2):18~20.
    [25]郑晓明.HP843磨煤机出力的影响因素.科技广场,2007(7):79~82.
    [26]杨丰超,何美艳.ZGM型磨煤机用液压变加载系统研究及推广.液压与气动,2011(2):15~16.
    [27]郑志远.700MW机组磨煤机油站控制系统存在问题及解决方案.自动化仪表,2006(2):21~25.
    [28] Venkataraman K. Energetics of collision between grinding media in ball mills and mechanochemical effects. Power Technology, 1988, 22(3): 315~320.
    [29]张玫,段恒友.8.5E磨煤机改造及应用.华北电力技术,2002,35(1):4~5.
    [30]李长青.中速辊式磨煤机拉杆密封结构设计的改进.科技信息,2010,24(2):11~12.
    [31]张睿鑫,张永明.磨煤机变加载液压系统的应用.中国电力教育,2010(5):47~50.
    [32]唐军,郭荣.MPS中速磨煤机加载系统的自动化改造.发电设备, 2005,5(7):78~81.
    [33]李华民.液压变加载MPS磨煤机故障分析及处理.华北电力技术,2002(9):101~104.
    [34]张幼明,金福国.MPS89G型中速磨煤机自动加载方式的优化研究.东北电力技术,2007 (5):66~69.
    [35]许洪升,富海渊.磨煤机液压加载系统调试与维护.液压气动,2009,12(4):42~43.
    [36]谢国鸿,朱光明等.1000MW机组ZGM133G中速磨技术特点及运行分析.电力建设,2010,10(5):74~77.
    [37]陈永贤.150MN桥梁支座试验机横摆液压加载系统研究:(硕士学位论文).四川:西南交通大学,2009.
    [38] J. P. Hartnett, E.N. Ganic. Handbook of HEAT Transfer Applications. McGraw-Hill, 1985, 12(10):151~157.
    [39] K. Kasseck G. Salewski. Coal grinding by roller. Griding mill for pulverized coal injection in blast furnaces. Iron and steel engineer, 1995, 7: 697~701.
    [40] Bogacki. P. Pair of Runge-Kutta formulaes. Appl. Math, 1989(3): 235~239.
    [41] Roberts P D. Optional Control of Nonlinear Systems with Model-Reality Differents. 31th Conference of Decision and Control, 1922, 15(2): 355~358.
    [42]候典来.125MW机组磨煤机的智能控制.自动化仪表,2006,27(1):1~5.
    [43]乔桂增,刘述显.600MW机组双进双出磨煤机启停控制优化.中国电力,2006,40(7):99~102.
    [44]许桂琴,陈昭等.600MW机组中速磨煤机选型设计.吉林电力,2006,157(6):75~78.
    [45]包斌.MPS190型中速磨煤机加载方式的改进.中国电力,2001,34(7):99~102.
    [46]王宏伟,刘书兵.PLC辊盘式磨煤机的应用.2007(8):98~105.
    [47]岳峻峰.MPS磨煤机工作特性试验研究.热力动力工程,2005,20(1):1~2.
    [48] J. P. Hartnett, E.N. Ganic. Handbook of HEAT Transfer Applications. McGraw-Hill, 1985, 12(10): 151~157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700